

 A Strategy for Improving Dynamic Composability:
Ontology-driven Introspective Agent Architectures

Levent YILMAZ
Department of Computer Science and Software Engineering

 Auburn University
Auburn, AL 36849, USA

yilmaz@auburn.edu

ABSTRACT

Seamless composability of disparate simulations within
systems of systems context is challenging. Large complex
simulations must respond to changing technology,
environments, and objectives. The problem exacerbates when
dynamic extensibility and adaptability are significant concerns
in an application domain. Simulations that are dynamically
extensible, while being composable require principled designs
that facilitate engineering interoperability and composability in
the first place. Basic concepts for composability are delineated
to set the stage for emergent challenges. Specifically, the issue
of sharing and exchange of simulations through advanced
model bases that enable intelligent brokering and matchmaking
is raised to frame the dynamic composability problem. The role
of ontologies and their axiomatization is discussed as a
potential strategy to improve dynamic composability.

Keywords: interoperability, composability, ontology,
simulation, intelligent agents.

1. INTRODUCTION

An increasingly important trend in the engineering of complex
systems is the design of component integration standards. Such
standards define rules of interaction and shared communication
infrastructures that permit composition of systems out of
independently developed components. One problem with these
standards is that it is often difficult to understand exactly what
they require and provide (i.e., import and export features), and
to recognize their substantive properties. To reduce the cost of
developing complex simulations and to facilitate the process of
building complex collaborative simulation systems,
interoperability between disparate models is of paramount
importance. Moreover, to make such a system highly
extensible, individual federates, which could reside on the same
or distributed hosts, should be able to freely join and leave a
federation without full knowledge of its peer federates. Simply
put, an ideal simulation system should allow for quick and
flexible assembly of a complex simulation out of independently
developed simulations on demand and at the same time allow
the participant simulations to have maximum independence

Dynamic extensibility of simulations is needed at least for the
following reasons:

1. For most realistic scientific problems, the nature of the

problem changes as the simulation unfolds. Initial
parameters, as well as models, can be irrelevant under
emergent conditions. Relevant models need to be

identified and instantiated to continue exploration. Manual
exploration is not cost effective and realistic within a large
problem state space.

2. Dealing with uncertainty is paramount in analyzing
complex evolving phenomena. Adaptivity in simulations
and scenarios is necessary to deal with emergent
conditions for evolving systems in a flexible manner.

3. As simulations of complex phenomena are more and more
used to aid intuition, dynamic run-time simulation
composition with exploratory simulation will help identify
(re)solution strategies that are flexible, adaptive, and
robust.

In this work the separation of meta-level run-time composition
mechanisms from the simulation infrastructure is suggested to
facilitate evolution of composition strategies independent of the
actual simulation infrastructure. We also discuss that by
altering the way the meta-level operates one can dynamically
evolve and extend the actual simulation system without ad-hoc
interventions. Hence, we need simulation infrastructures that
support change and extension while addressing the
composability challenges between existing and new model
components inserted at run-time. Large complex simulation
systems must respond to changes in environment, technology,
and requirements. The position advocated in this paper is that
introspective agent architectures that support seamless dynamic
evolution and extension in conjunction with formal
axiomatized ontologies have the potential to address dynamic
composability challenges raised above.

The rest of the paper is organized as follows. Section 2
provides a brief overview of existing related work on
composability and interoperability in relation to the proposed
strategy, which is outlined in section 3. Section 4 argues how
formalized ontologies can aid reasoning about composability of
models at run-time performed by agents within the
introspective meta-level simulation. Finally, section 5
concludes by discussion of potential avenues of further
research.

2. INTEGRATABILITY, INTEROPERABILITY
AND COMPOSABILITY

Composability is defined as the capability to select and
assemble components in various combinations to satisfy user
requirements meaningfully [1]. Tolk and Muguira [3, 4, 5]
suggests a model called Levels of Conceptual Interoperability
(LCIM), the key point of which is the need for unambiguous
interpretation of shared data at multiple levels of abstraction. In
LCIM, technical interoperability refers to integratability via
physical connectivity and shared protocols with standardized

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 1ISSN: 1690-4524

interfaces. Technical interoperability [2] via shared data
structures and representation languages are viewed as
necessary, but insufficient to achieve semantic interoperability.
Harmonized alignment and interpretation of data and services
exchanged between simulation services is a prerequisite for
semantic interoperability. Finally, LCIM suggests the
alignment of the conceptualization space as well as behavioral
assumptions and obligations of models for meaningful
composability of models.

Concomitantly, recent initiatives such as Extensible Modeling
and Simulation Framework (XMSF) are targeting the
development of web-scale simulation technology [6]. XMSF is
based on a set of Web-based technologies that can be applied
within an extensible framework to enable new generation of
modeling & simulation (M&S) applications to emerge and
interoperate [7, 8]. Concomitantly, Agent-Based Environment
for Linking Simulations (ABELS) is another federated
infrastructure that uses software agents to allow simulations to
enter and exit a virtual simulation “cloud” of heterogeneous
resources [9].

The framework uses a limited form of brokering and service
matchmaking to facilitate loosely-coupled interactions among
disparate simulations. However, none of these infrastructures
currently has the capability to mediate incompatible
interactions, improve composability, and support transparent
simulation updating.

In engineering systems, hardware assembly (composability) is
paramount but not universally realizable. The non universality
is typical in systems approach. For example, the assembly of
the “best” engine, the “best” body, the “best” wheels, and the
“best” brake system not only does not end up with the “best”
car, but components may be completely incompatible. Hence,
the assembly may not be realizable at all. And if by some
coincidence, the assembly is physically realized, the
performance of the assembly may be far from being acceptable
with respect to the requirements of intended users. In
engineering applications, the selection of a hardware
component cannot be done by functionality alone. There are
compatibility standards and each component is labeled
accordingly. This type of labeling (or documentation) can be
named semantic labeling and has a cardinal role in selecting a
hardware component. Furthermore, a given hardware
component may be interchangeable by a set of other
components.

This type of knowledge is also well documented for hardware
interchangeability (substitutability). Hence, semantic labeling
is necessary for pertinence (applicability) as well as
interchangeability. Hence, the success of some engineering
fields, such as mechanical and electrical, rely on composability
and interchangeability (substitutability) of components into
workable systems and by nesting, to the realization of systems
of systems where components are also systems. However,
hardware composability and interchangeability require
disciplined approach in developing hardware components and
labeling (documenting) their characteristics with great care. A
warehouse of hardware components without any proper
documentation about their usability and compatibility may not
be sufficient for successful practice of component-based
engineering. Similar considerations should be taken into
account for successful practice of model composability.

Nayak’s 1995 ACM Distinguished Dissertation showed that the
general model selection problem for application composition is
NP-hard [10] Others have shown that deciding whether an
identified collection of submodels meet a stated set of
objectives is an NP-complete problem [11, 12]. Currently faced
difficulties of simulation model composability as well as worst-
case theoretical limitations on automated model selection [13]
should not be deterrent factors for model composability.
Rather, necessary studies such as found in [14] should be
conducted to overcome the apparent difficulties. At one stage
of the maturity of modeling and simulation field, some systems
were (erroneously) labeled as ill-defined systems. However,
relentless studies have been influential in the advancement of
for example, human behavior modeling and simulation.

Basic Concepts

In general, the term “composability” is the quality of being
composable and means to be capable or worthy of being
composed. Similar to other terms ending with –ability, for
example acceptability, it refers to the object to which it applies
and not to the agent (a model composer –human or software)
which performs necessary acts to realize the composition of
models and/or model components. In simulation, three aspects
of “model composability” need to be elaborated on. These
aspects are: related entities, related processes, and related
characteristics (see Figure 1).

Entities - Model composability is related with the following
entities:

• e1 - A model composed from other models or model

components (This model can be called a composed
model(a synthesized model, an assembled model), or
model, for short).

• e2 - Models or model components from which one can
compose other models (they are elements of a model
base for composable models).

• e3 - A model-base for models or model components
from which one can compose other models.

• e4 - An entity (human or preferably a software system)
that composes (synthesizes) models from other models
or model components. This entity can be called a model
composer or composer, for short.

Processes - Model composability is related with the following
processes:

• p1 - Labeling of the models and model components in the

model base prior to any search. Semantic labeling would
entail, among other things, specification of the intention
(or goal, or aim) for the use of the model, applicable
assumptions, constraints, etc. For a model component,
semantic labeling may necessitate its nature (e.g.,
variable, constant, parameter, state transition function,
output function, etc.); for a variable, one can specify its
type (input, output, auxiliary variable; if applicable,
physical units, upper and lower acceptable values; for
state variables, default initial conditions, etc.)

• p2 - The process of formulation of a set of search criteria
–based on the intention or the goal of the user– to detect
relevant models and/or model components in the model
base.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 52 ISSN: 1690-4524

• p3 - Searching the model base according to the search

criteria. (This may require a semantic search engine to be
developed for the model base.) The result of the search
may be some plausible models and/or model components.

• p4 - Selection of relevant models and/or model
components after screening plausible models or model
components for relevancy. This is qualification and
selection.

• p5 - Synthesizing a model from selected model(s) and/or
model component(s) (This process can also be called
model composition or model assembly).

Characteristics - Model composability entails characteristics of
the following entities:

• c1 - Characteristic of the composed model: Within this

perspective, model composability is the characteristics of
a model to be synthesized (or composed, or assembled)
from other models and/or model components into
computationally (syntactically) and logically
(semantically) coherent combinations that work together
within a simulation system to satisfy user’s intentions.

• c2 - Characteristics of models or model components from
which one aims to compose other models: From this
perspective, models and model components need to be
annotated to be analyzable for the determination of
possible detection, selection, and relevance assurance for
model synthesis. Hence, crude legacy models may need to
be preprocessed for model composability. High-level
specification languages may be useful in alleviating the
need of semantic labeling.

• c3 - Characteristics of model bases: A model base can be
used for model composability, if the models and model
components it contains are annotated to be analyzable for
the determination of possible detection, selection, and
relevance assurance for model synthesis.

• c4 - Characteristics of model composer: A model
composer needs: (1) the ability to process intention of
model composition, (2) the ability to formulate a set of
search criteria, (3) to access to a model base of properly
annotated models and model components, (4) to perform
relevance assessment of plausible models and model
components, and (5) the ability to synthesize (or compose,
or assemble) models from selected other models and/or
model components into computationally (syntactically)

Figure 1: Entities and Processes in Model Composability

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 3ISSN: 1690-4524

and logically (semantically) coherent combinations that
work together within a simulation system to satisfy user’s
intentions.

While engineering disciplines successfully apply component-
based approach to build systems, it has proven significantly
difficult to apply in simulation model development. As such,
advancements in the theory, methodology, and infrastructure of
simulation modeling are needed to facilitate compositional
development of components of simulation studies, such as
simulation models, experimental frames as well as model
behavior generators and processors.

Challenges

Improving composability through the realization of the
characteristics of the entities and processes identified in this
section require advancing the theory, methodology, and
technology of simulation modeling. Figure 2 depicts these three
elements of the composability infrastructure. In particular, the
following prospective issues emerge as the challenges that need
to be addressed to facilitate satisfaction of with the desiderata
listed in section 1.

Figure 2: Elements of the Composability Infrastructure

• How can we improve the technology of sharing and

exchange of simulations through advanced model bases
that enable intelligent brokering and matchmaking
between simulation goals (intentions) and contextual
(i.e., experiential, conceptual, realization) assumptions of
available models?

• From a methodology point of view, what are the
components of conceptual models of composable and
reusable simulation models? How can contextual
assumptions of components can be packaged and
distributed with simulation models to facilitate high
precision context-sensitive search over model bases?

• With regard to theory, are there novel design constructs
(other than popular but intractable component-connector
strategy) that can facilitate development of a practical
and sound model of composition. What would be the
proper underlying unified theory with uniform syntax
and semantics for composition rules that can take
contextual assumptions into account?

3. IMPROVING DYNAMIC COMPOSABILITY

To address the above issues we need simulation infrastructures
that support change and extension without causing
interoperation and composability problems between the

existing and new model components that are inserted at run-
time. Large complex simulation systems must respond to
changes in environment, technology, and requirements.

Requirements
To satisfy the desiderata listed in section 1 and to address the
issues raised in section 2, we need to develop simulation
infrastructures that support their own evolution. There are
several forces associated with this problem:

• The simulation system needs to be updated without

changing the underlying simulation software program.
This is mainly due to at least two reasons. First, in real-
time training simulations, emergent unforeseen actions
(e.g., course of actions that are inconsistent with the
learning objectives) may require updating the simulation
to bring the trainee back to the scenario to achieve
objectives. Second, simulation system may require
performance tuning.

• Integrating changes and extensions should be uniform and
easy.

• The proposed solution should facilitate not only structural,
but also behavioral changes.

• It should be possible to incorporate certain changes that
are not foreseen earlier at the design time.

Furthermore, the lack of machine processable formal
annotations describing the behavior, assumptions and
obligations of federates is a fundamental roadblock, as such
information pertains to (1) finding and matching candidate
models, (2) infer limits on the use and interpretation of
federates, and (3) perform run-time mediation and facilitation
(i.e., translation) among disparate federates. To facilitate
formal composability as envisioned here, advances in the
following areas are needed:

1. Formalisms: There is a need for formalisms that form the

basis of annotating models with profiles that include
assumptions, objectives, and constraints. Such information
should be amenable to inference needed to identify and
qualify models. HLA FOM and BOM models fall short
such inference since specified interactions simply denote
the syntax and type information. Furthermore, the type
information is not available at run-time to facilitate
analysis for composition even at the syntactical level.

2. Ontologies: Ontologies based on a specification
formalism need to be utilized to capture various facets of
models and simulators to describe the kinds of
composability information needed in a given problem
domain. Yet, the underlying formalism must be general
enough to accommodate various problem domains.

3. Profiles: Each model needs to be annotated with a
schema that describes the services they provide in terms of
domain-specific ontologies. Such service ontologies may
include (1) declarative advertisements of model properties
and capabilities, in the form to be used for automatic
federate discovery, qualification, and instantiation (2)
declarative APIs of federates for execution, and (3)
declarative specification of the assumptions and
obligations of federates and their capabilities to infer the
consequences of their use during automatic run-time
federate composition.

4. Tools: To aid the instantiation and configuration of
simulations, tools are necessary to perform inference and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 54 ISSN: 1690-4524

make run-time decisions about composing candidate
models.

Strategy
We propose a meta-level introspective agent architecture that
comprises various agents that coordinate and orchestrate
seamless information, data, and service exchange among
conceptually interoperable simulations. Figure 1 depicts an
agent organization that constitutes mediator, facilitator, broker,
and matchmaker agents that are proposed to perform the
necessary data and service management, alignment, and
transformation functions.

Furthermore, the agent organization aims to decouple the
simulation from the intricate details of instantiating and
interoperation of a family of models to avoid explicit concrete
assumptions and facilitate seamless reconfiguration with
alternative ensembles. This way, the agent organization
abstracts the simulation instantiation and interoperation
process. It helps make a simulation system independent of how
its models are created, composed, and represented. The
organizational domain encapsulates the knowledge about which
models the simulation uses. Furthermore, the concrete
organization hides the details about how simulation programs
for these models are created and composed together. Therefore,
the decoupling of the instantiation and interoperation processes
from the simulation infrastructure gives significant flexibility
in terms of what concrete components get instantiated and
exchanged, who instantiates them, how they get created and
transformed, and when.

Figure 3: Meta-simulation Layer

Figure 3 illustrates how the interoperation framework and its
components are positioned with respect to the service
infrastructure. An infrastructure that facilitates dynamic
composability and interoperability needs to be aware of its
evolution. MSF is provided by specific functions, by which
simulations can alter meta-simulations (facilitator agents) to
influence the subsequent behavior of the simulation. More
specifically, the MSF aims to provide the facilities that

1. establish a self-representation of each simulation,
2. provide means by which this representation can be

manipulated , and

3. assure that the manipulations to the self-representation
immediately affect the behavior of the simulation system.

In effect, the simulation system’s self-representation is causally
connected to the behavior of the actual simulation. The
structure of a simulation application is divided into two
components: (1) Simulation level and (2) Meta-simulation
level. The simulation level includes the stable components of
the model, simulation application level software objects, and
the structural and behavioral dependencies between the
components it includes. The meta level includes components
that are subject to change, MSF agents (i.e., meta-simulation
entities), each capturing a particular aspect of the structure and
behavior of the simulation level. The MSF Façade object
provides an interface to facilitate configuring or updating meta-
simulations. The Façade object provides three categories of
functions:

• Reflection: Simulation level can access information about

the simulation (itself) via facilitator agents associated with
the simulation. This information can then be used to guide
the behavior of the simulation.

• Introspection: Simulation level can access and update the
parameters of existing meta-simulation entities (e.g.,
facilitator agents). This enables seamless and transparent
update of the behavior of the simulation system, since the
behavior of the simulation level is influenced by the meta-
simulation entities.

• Intercession: Simulation level can change, exchange,
insert, or remove meta-simulation entities and their
connections to the simulation level. This feature enables
dynamically including or inserting new simulations into
the society of simulations at run-time.

The facilitator agent in Figure 1 acts as a gateway between the
simulation infrastructure and the agent organization that
orchestrates the simulation interoperation. Simulations join a
society of simulations by registering their facilitator with the
meta-level interoperation protocol. As a controller, the
facilitator agent is aware of the capabilities and needs of the
simulation service that it is associated with. The requests
coming from the simulation domain will be delegated to
brokering, matchmaking, and mediation agents in accordance
with the embedded interoperation protocol that facilitate
seamless data discovery, location, retrieval, and transformation.
The mediator agent is responsible for converting simulation
content to/from a common reference model (i.e., C2IEDM). To
facilitate mediation, conflicts between the assumptions and
obligations of simulations need to be resolved.

The interaction between content (i.e., data, model) requesting
facilitators (consumers) and potential service providers
(producers) are achieved via flexible mechanisms that can vary
depending on the characteristics of the application domain. The
brokering protocols include recommendation, recruiting, and
notification [15]. Qualifying content specification objects and
then ranking them requires interpretation of specifications to
compute relevance metrics. The matchmaker agent measures
the distance between the requested and target objects to qualify
concepts within a common domain ontology used by the
mediation component.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 5ISSN: 1690-4524

4. ONTOLOGY-DRIVEN COMPOSABILITY

The strategy presented above facilitates seamless evolution of
the simulation. Yet, to improve composability for run-time
extension requires mechanisms that address the requirements
that pertain to ontologies, profiles, their underlying formalism,
and associated tools that enable inference.

Conceptual alignment between a model and its new context
needs to be established for meaningful composition. Unless the
composition of two models is expected to generate the desired
outcome and satisfy the requisite objectives, assuring their
interoperability may not be of value for the simulation study.
Ontologies (i.e., SPEM – Software Process Engineering
Metamodel) in the MSF framework, if engineered with
composability in mind, could improve dynamic composability.
As a principle, the tasks for which the ontology will be used
need to impose requirements on the ontology. The aptitude of
an ontology is defined as its capability to respond to a set of
questions and evaluations with respect to a specific
requirement. Specifically, we define composability aptitude of
an ontology in the context of Rational Unified Process (RUP)
as the capabilities of the ontology to facilitate querying and
performing inference pertaining to composability. This raises
the issue of the extent of inferencing and deductive capabilities
that is to be assumed by an ontology.

One possible strategy is to define the ontology as a
specification of conceptualization that includes objects,
attributes, and their relations. The properties of the objects and
the relations over them can be defined in terms of predicates.
Finally, a set of axioms can be defined as the constraints over
the objects and relations. The axiomatization of the ontology
provides a declarative specification of various definitions and
constraints on the domain of discourse. The consistency of the
constraints of the ontology and the results of the queries
imposed on the identified models provides a basis to evaluate
the composability of the context and the new model. More
specifically, if the structural and behavioral capabilities of the
model defined in first-order logic satisfy the constraints
required by the ontology on that model, we can safely
substitute the identified model for composition. However, this
strategy requires associating metadata with models so that
structural (e.g., what role does a model play?) and behavioral
(e.g.,what are the activities available for a role to achieve its
goal?) aptitude queries can be applied. Introspective models
[15] that enable access to their own specification could be
useful to serve that purpose. The results of these queries can
then be used to evaluate the model against the axioms of the
ontology to determine if it is consistent with the domain
invariants.

An Ontology for Software Process Simulation

To illustrate the utility of the proposed strategy we provide an
example that pertains to software process simulation. The
metamodel depicted in Figure 4 presents the concepts and
relations captured in the simulation. According to the ontology,
an organization aims to achieve a number of performance
objectives in terms of a strategy. The organization is specified
by organization design, the layout of which is defined by the
structure component. The function of the organization is
defined by the behavior class that constitutes primitive or
composite task objects. Tasks are performed by agents playing
roles that exhibit skills related to solving the tasks. The

behavior of agents is moderated by behavior moderators such
as technology, turnover, and deadlines. Agents interact with
each other, act on objects in the environment, and use
resources to complete their task.

The conceptual domain model presented in an ontology
provides a common shared vocabulary. However, existing
ontology specification languages are limited in describing the
constraints on properties of concepts as well as relations. On
the other hand, composability analysis requires clear and
precise description of the assumptions and obligations of
models with respect to each other within the compositional
structure. Furthermore, domain constraints impose restrictions
on properties of individual models (i.e., a team should include
at least two agents). Axiomatization of an ontology facilitates
specification of such constraint so that metasimulation level
agents can make inference about the composability of models.

Formalization of Ontologies using Axioms

The constraints over a domain can be classified in three
categories: (1) domain invariants, (2) model assumptions, and
(3) model obligations. Domain invariants refer to constraints
that must hold true for all models and their relations that are
instances of the concepts and dependencies represented in the
metamodel. For instance, the constraint that requires every
team in the simulation to contain at least two agents as team
members is a domain invariant.

Domain Invariants: Domain invariants may not only constrain
the properties of a single model, but may also pertain to
constraints over a set of models and their dependencies.
According to the ontology shown in Figure 4, an organization
is specified by organization design and realizes a strategy (i.e.,
innovation, market expansion, risk reduction).

specified_by (o, od)
realizes (s, o)

The predicates specified_by and realizes with parameters o
(organization), od (organization design), and s (strategy) denote
the instances of associated concepts in the ontology. While
each instance may be a model on its own, a combination of
entities may be aggregated to constitute a composite model. In
that case the entities are considered to be the components of a
model.

Agents play roles that require skills needed for a given task.

plays(a, r) and has(r, S), where a, r, and S
denote the specific agent, its role, and the set of skills played by

the agent, respectively

Similarly, the agent under consideration exhibits a specific
behavior (e.g., defined by an algorithm encapsulated in an
instance of the behavior class) to fulfill a task that requires a
skill set. Note that this skill set should be the proper subset of
S.

Formally,

exhibits(a,b) and implements(b,t)
and requires(t, S’) and S’⊆ S

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 56 ISSN: 1690-4524

Another domain constraint is that only two or more agents can
form a team; hence, we have:

For all t, where team(t), there exist two agents a1 and a2, s.t
a1 ≠ a2 and has (t, a1) and has (t, a2).

Domain constraints can be imposed on the properties of
individual concepts and models. For instance, the simulation
may require specific types of agents (i.e., subsumption reactive
architecture) that use a contract net task allocation in
conjunction with coordination by synchronization protocol.
Such properties can be encoded in the domain metamodel as
well as the metadata associated with individual models to
facilitate matching domain constraints to model properties.

Assumptions: Assumptions specify the expectations of a
model (i.e., a concept or collections of concepts that constitute
a model) from external entities that depend on it. In our
example, a task model in a simulation requires the existence of
an instance of corresponding behavior component that
implements the task specification. The metadata for a behavior
component includes its precondition (pre(b)) and postcondition
(post(b)). A precondition is a predicate that must be true before
enacting the behavior, while a postcondition is the predicate
that must be true after the completion of the behavior.
Similarly, a task is associated with a precondition (pre(t)) and
postcondition (post(t)).

The relation between the task and its associated behavior can
be characterized as follows:

Implements(b,t) =pre(b) ⇒ pre(t) and
post(t) ⇒ post(b)

Obligations: Obligation of a model refers to the formalization
of the relation(s) between the source model (concept under
consideration) and a target model (concept). Note that in the
metamodel the relations are binary; therefore each relation
involves two components. In our example, a task model
requires a skill model. One possible interpretation of this
relation is in terms of a domain constraint. That is, the behavior
that implements the task is performed by an agent that plays a
role, which requires a set of skills. The skills needed for this
task need to be a proper subset of the skills of the role that
performs the task.

∀ a, ∃ r plays(a, r) and has(r, S) = requires(t, S’) and S’⊆ S

Analyzing the composability of a model involves (1) assuring
its alignment with the domain constraints and (2) satisfiability
of metamodel relations that it participates by taking into
account the local assumptions and obligations.

Figure 4: A Partial Domain Ontology

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 7ISSN: 1690-4524

On the Need for Introspective Models

To evaluate such queries to decide the composability of models
depicted by (possibly collection of) concepts shown in Figure
4, an inference engine needs to decide if

• the properties (predicates) of the model under

consideration are consistent with the domain constraints,
• the assumptions of the model are not violated with respect

to other entities that it is related to according to the
metamodel, and

• the obligations of the model do not violate the
assumptions of the entities that it is associated with.

To facilitate inference, a composability analyzer at the
metasimulation level needs to have access to the metadata
associated with each potential model before it is qualified for
composition. Therefore, similar to the introspective access
from the simulation level to metasimulation, a reflective access
from simulation to metasimulation level would enable
accessing specification information. As discussed in [16]
predicates that depict the constraints of simulation models hold
out the potential to improve ability to understand and reason
about the fitness of a simulation model in a new context.
Achieving these benefits, however, involves effective
communication and distribution of such constraints. This
requires delivering contextual assumptions along with the
simulation model itself. The significance of this issue is
apparent: a client of a simulation model can not harvest the
benefits of the specification of the concept and contextual
assumptions, unless the specification is delivered along with
the simulation model. While conventional methods used in
distributing specifications and documentation in printed form,
as plain text or HTML, or in a platform specific help file can be
utilized, such an approach misses the opportunity to
appropriately use such contextual dependency information by
leveraging them in development and integration tools. The
ability of a system to respond to inquiries about its structure
and ideally its behavior is a well-studied concept and is the
cornerstone of computational reflection [17,18]. Computational
reflection is defined as an activity of a system to query its
structure and behavior to guide its own computation by
accessing and potentially updating its own state. Many OO
languages provide facilities for accessing interface information
(i.e., Java), yet the packaging of concept specification and
contextual information requires embedding coarse-grain
specification objects accessible through the interface of
simulation models.

While the proposed strategy discussed in [16] enables seamless
access to specification objects that facilitate awareness about
the specification of the model, there are a number of
drawbacks. An immediate issue is the augmentation of the
simulation models with such objects and associated services
that may lead to code inflation. This strategy naturally requires
development of drivers to deploy reused simulation model
components and retrieve their specification objects.
Development of such drivers needs to be cost effective.
Another concern entails the representation and communication
of specification objects. First and foremost, the representation
must be interpretable and be manipulated through program
level accesses to the contextualized simulation models. The use
of semi-structured data representation mechanisms such as
XML is a plausible strategy. Committing to a specific format
and having a generally acceptable standard structure that

defines the conceptual constraints of a simulation model are
challenging tasks.

5. CONCLUSIONS

This paper lays out basic concepts to advance composability
through progress in theory, methodology, and technology.
While simulation science is founded on powerful foundations,
there is still need for improvement to facilitate addressing
emergent challenges of reuse and composability. As such, we
delineate the requirements and characteristics of a
composability infrastructure. We argue that, unlike ad hoc
solutions to composability, advancements in simulation theory
and methodology along with their support in the development
of next generation infrastructures could provide a sound basis.

The separation of composition protocols from the simulation
infrastructure constitutes the primary contribution of the
proposed strategy. The proposed level of indirection via an
agent organization aims to decouple the simulation system
from the intricate details of instantiation and interoperation of a
family of models to avoid explicit assumptions and to facilitate
seamless (run-time) reconfiguration with alternative ensembles.
This way, the agent organization abstracts the simulation
instantiation and interoperation process. There are two major
principles underlying the proposed strategy that makes it useful
for the improvement of composability. First, the agent
organization encapsulates the knowledge about the
interoperation administration, alignment, transformation, and
management functions. Second, it hides the details about which
simulation services are discovered, located, and instantiated as
the simulation unfolds. As such, it has the potential to make a
federated simulation system independent of how federates are
created, composed, and represented. While many of the
conflicts that exist between disparate simulations can be
resolved via man-in-the-loop simulations, providing such an
agent technology can help operators focus on mission-critical
activities as opposed to routine interoperability problems.

6. REFERENCES

 [1] P. K. Davis and R. H. Anderson, Improving the

Composability of Department of Defense Models and
Simulations, RAND Technical Report, 2003,
http://www.rand.org/publications/MG/MG101/[last visited
June 2005].

[2] E. H. Page, R. Briggs, and J. A. Tufarolo, Toward a Family
of Maturity Models for the Simulation Interconnection
Problem, Paper 04S-SIW-145 in Proceedings of the
Spring Interoperability Workshop. 2004.

[3] A Tolk, Composable Mission Spaces and M&S
Repositories - Applicability of Open Standards, Paper
04S-SIW-009 in Proceedings of the Spring Simulation
Interoperability Workshop 2004.

[4] A. Tolk and S. Y. Diallo, Model Based Data Engineering
for Web Services,” in IEEE Internet Computing. 2005

[5] A. Tolk and J. A. Muguira, The Levels of Conceptual
Interoperability Model. 2003 Fall Simulation
Interoperability Workshop Orlando, Florida, September
2003.

[6] D. Brutzman., K. J. Morse, M. Pullen, and M. Zyda,
Extensible Modeling and Simulation Framework (XMSF):
Challenges for Web-Based Modeling and Simulation,
Interim Technical Report. Naval Postgraduate School,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 58 ISSN: 1690-4524

Monterey, California. Available online via
<http://www.movesinstitute.org/xmsf/workshop/XmsfWo
rkshopReportDraft.pdf> [accessed August 1, 2004].

[7] Mikalsen T. and I. Rouvellou, Transactional attitudes:
Reliable composition of autonomous Web services, IBM
Watson Research Center Technical Report, Available
online via <http://xml.coverpages.org/ni2002-04-03-
a.html> [accessed February 10, 2004].

[8] White L. E and J. M. Pullen, Adapting Legacy
Computational Software for XMSF, Simulation
Interoperability Workshop (SIW), Fall 2003, Orlando,
Florida.

[9] Murphy P. J., A. Mills-Tettey, L. F. Wilson, Greg Johnston,
B. Xie, Demonstrating the ABELS System Using Real-
World Scenarios, In Proceedings of the SAINT. 2003.

[10] P. P. Nayak, Automated Modeling of Physical Systems.
PhD thesis, Stanford University. 1992.

[11] E. Page and J. Opper, Observation on the Complexity of
Composable Simulation, Proceedings of the 1999 Winter
Simulation Conference , pp. 553-560. 1999.

[12] M. D. Petty, E. W. Weisel, R. R. Mielke, Computational
Complexity of Selecting Components for Composition,
Proceedings of the Software Interoperability
Conference, 03F-SIW-073, Fall 2003.

[13] A. Y. Levy, Y. Iwasaki, and R. Fikes, Automated Model
Selection for Simulation Based on Relevance Reasoning,”
Artificial Intelligence, Vol. 96, 1997, pp. 351–394.

[14] P. K. Davis and A. R. Anderson, Improving the
Composability of Department of Defense Models and
Simulations, RAND Technical Report, 2003.

[15] L. Yilmaz and S. Paspuletti, Toward a Meta-Level
Framework for Agent-supported Interoperation of Defense
Simulations, Journal of Defense Modeling and
Simulation. vol 2, no 3, pp. 161-175. 2005.

[16] L. Yilmaz, On the Need for Contextualized Introspective
Simulation Models to Improve Reuse and Composability
of Defense Simulations, Journal of Defense Modeling
and Simulation, vol. 1, no. 3. pp. 135-145. 2004

[17] G. Kiczales, J. Des Rivieres, and D G. Bobrow, The Art
of the Metaobject Protocol. MIT Press. 1992.

[18] M. Saeki, T. Hiroi, and T. Ugai, Reflective Specification:
Applying a Reflective Language to Formal Specification,”
In Proceedings of the 7th International Workshop on
Software Specification and Design, IEEE CS Press, pp.
204-213. 1993.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 5 9ISSN: 1690-4524

	P213649

