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ABSTRACT 
 

Seamless composability of disparate simulations within 
systems of systems context is challenging. Large complex 
simulations must respond to changing technology, 
environments, and objectives. The problem exacerbates when 
dynamic extensibility and adaptability are significant concerns 
in an application domain. Simulations that are dynamically 
extensible, while being composable require principled designs 
that facilitate engineering interoperability and composability in 
the first place. Basic concepts for composability are delineated 
to set the stage for emergent challenges. Specifically, the issue 
of sharing and exchange of simulations through advanced 
model bases that enable intelligent brokering and matchmaking 
is raised to frame the dynamic composability problem. The role 
of ontologies and their axiomatization is discussed as a 
potential strategy to improve dynamic composability.  
 
Keywords: interoperability, composability, ontology, 
simulation, intelligent agents. 
 
 

1. INTRODUCTION 
 
An increasingly important trend in the engineering of complex 
systems is the design of component integration standards. Such 
standards define rules of interaction and shared communication 
infrastructures that permit composition of systems out of 
independently developed components. One problem with these 
standards is that it is often difficult to understand exactly what 
they require and provide (i.e., import and export features), and 
to recognize their substantive properties. To reduce the cost of 
developing complex simulations and to facilitate the process of 
building complex collaborative simulation systems, 
interoperability between disparate models is of paramount 
importance. Moreover, to make such a system highly 
extensible, individual federates, which could reside on the same 
or distributed hosts, should be able to freely join and leave a 
federation without full knowledge of its peer federates. Simply 
put, an ideal simulation system should allow for quick and 
flexible assembly of a complex simulation out of independently 
developed simulations on demand and at the same time allow 
the participant simulations to have maximum independence 
 
Dynamic extensibility of simulations is needed at least for the 
following reasons: 
 
1. For most realistic scientific problems, the nature of the 

problem changes as the simulation unfolds. Initial 
parameters, as well as models, can be irrelevant under 
emergent conditions. Relevant models need to be 

identified and instantiated to continue exploration. Manual 
exploration is not cost effective and realistic within a large 
problem state space. 

2. Dealing with uncertainty is paramount in analyzing 
complex evolving phenomena.  Adaptivity in simulations 
and scenarios is necessary to deal with emergent 
conditions for evolving systems in a flexible manner. 

3. As simulations of complex phenomena are more and more 
used to aid intuition, dynamic run-time simulation 
composition with exploratory simulation will help identify 
(re)solution strategies that are flexible, adaptive, and 
robust. 

 
In this work the separation of meta-level run-time composition 
mechanisms from the simulation infrastructure is suggested to 
facilitate evolution of composition strategies independent of the 
actual simulation infrastructure. We also discuss that by 
altering the way the meta-level operates one can dynamically 
evolve and extend the actual simulation system without ad-hoc 
interventions. Hence, we need simulation infrastructures that 
support change and extension while addressing the 
composability challenges between existing and new model 
components inserted at run-time. Large complex simulation 
systems must respond to changes in environment, technology, 
and requirements. The position advocated in this paper is that 
introspective agent architectures that support seamless dynamic 
evolution and extension in conjunction with formal 
axiomatized ontologies have the potential to address dynamic 
composability challenges raised above.  
 
The rest of the paper is organized as follows. Section 2 
provides a brief overview of existing related work on 
composability and interoperability in relation to the proposed 
strategy, which is outlined in section 3. Section 4 argues how 
formalized ontologies can aid reasoning about composability of 
models at run-time performed by agents within the 
introspective meta-level simulation. Finally, section 5 
concludes by discussion of potential avenues of further 
research. 
 

2. INTEGRATABILITY, INTEROPERABILITY  
AND COMPOSABILITY 

 
Composability is defined as the capability to select and 
assemble components in various combinations to satisfy user 
requirements meaningfully [1]. Tolk and Muguira [3, 4, 5] 
suggests a model called Levels of Conceptual Interoperability 
(LCIM), the key point of which is the need for unambiguous 
interpretation of shared data at multiple levels of abstraction. In 
LCIM, technical interoperability refers to integratability via 
physical connectivity and shared protocols with standardized 
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interfaces. Technical interoperability [2] via shared data 
structures and representation languages are viewed as 
necessary, but insufficient to achieve semantic interoperability. 
Harmonized alignment and interpretation of data and services 
exchanged between simulation services is a prerequisite for 
semantic interoperability. Finally, LCIM suggests the 
alignment of the conceptualization space as well as behavioral 
assumptions and obligations of models for meaningful 
composability of models. 
 
Concomitantly, recent initiatives such as Extensible Modeling 
and Simulation Framework (XMSF) are targeting the 
development of web-scale simulation technology [6]. XMSF is 
based on a set of Web-based technologies that can be applied 
within an extensible framework to enable new generation of 
modeling & simulation (M&S) applications to emerge and 
interoperate [7, 8]. Concomitantly, Agent-Based Environment 
for Linking Simulations (ABELS) is another federated 
infrastructure that uses software agents to allow simulations to 
enter and exit a virtual simulation “cloud” of heterogeneous 
resources [9].  
 
The framework uses a limited form of brokering and service 
matchmaking to facilitate loosely-coupled interactions among 
disparate simulations. However, none of these infrastructures 
currently has the capability to mediate incompatible 
interactions, improve composability, and support transparent 
simulation updating. 
 
In engineering systems, hardware assembly (composability) is 
paramount but not universally realizable. The non universality 
is typical in systems approach. For example, the assembly of 
the “best” engine, the “best” body, the “best” wheels, and the 
“best” brake system not only does not end up with the “best” 
car, but components may be completely incompatible. Hence, 
the assembly may not be realizable at all. And if by some 
coincidence, the assembly is physically realized, the 
performance of the assembly may be far from being acceptable 
with respect to the requirements of intended users. In 
engineering applications, the selection of a hardware 
component cannot be done by functionality alone. There are 
compatibility standards and each component is labeled 
accordingly. This type of labeling (or documentation) can be 
named semantic labeling and has a cardinal role in selecting a 
hardware component. Furthermore, a given hardware 
component may be interchangeable by a set of other 
components. 
 
This type of knowledge is also well documented for hardware 
interchangeability (substitutability). Hence, semantic labeling 
is necessary for pertinence (applicability) as well as 
interchangeability. Hence, the success of some engineering 
fields, such as mechanical and electrical, rely on composability 
and interchangeability (substitutability) of components into 
workable systems and by nesting, to the realization of systems 
of systems where components are also systems. However, 
hardware composability and interchangeability require 
disciplined approach in developing hardware components and 
labeling (documenting) their characteristics with great care. A 
warehouse of hardware components without any proper 
documentation about their usability and compatibility may not 
be sufficient for successful practice of component-based 
engineering. Similar considerations should be taken into 
account for successful practice of model composability.  
 

Nayak’s 1995 ACM Distinguished Dissertation showed that the 
general model selection problem for application composition is 
NP-hard [10] Others have shown that deciding whether an 
identified collection of submodels meet a stated set of 
objectives is an NP-complete problem [11, 12]. Currently faced 
difficulties of simulation model composability as well as worst-
case theoretical limitations on automated model selection [13] 
should not be deterrent factors for model composability. 
Rather, necessary studies such as found in [14] should be 
conducted to overcome the apparent difficulties. At one stage 
of the maturity of modeling and simulation field, some systems 
were (erroneously) labeled as ill-defined systems. However, 
relentless studies have been influential in the advancement of 
for example, human behavior modeling and simulation. 
 
Basic Concepts 
 
In general, the term “composability” is the quality of being 
composable and means to be capable or worthy of being 
composed. Similar to other terms ending with –ability, for 
example acceptability, it refers to the object to which it applies 
and not to the agent (a model composer –human or software) 
which performs necessary acts to realize the composition of 
models and/or model components. In simulation, three aspects 
of “model composability” need to be elaborated on. These 
aspects are: related entities, related processes, and related 
characteristics (see Figure 1). 
 
Entities - Model composability is related with the following 
entities: 
 
• e1 -  A model composed from other models or model 

components (This model can be called a composed 
model(a synthesized model, an assembled model), or 
model, for short).  

• e2 -   Models or model components from which one can 
compose other models (they are elements of a model 
base for composable models).  

• e3 - A model-base for models or model components 
from which one can compose other models.  

• e4 - An entity (human or preferably a software system) 
that composes (synthesizes) models from other models 
or model components. This entity can be called a model 
composer or composer, for short. 

 
Processes - Model composability is related with the following 
processes: 
 
• p1 -  Labeling of the models and model components in the 

model base prior to any search. Semantic labeling would 
entail, among other things, specification of the intention 
(or goal, or aim) for the use of the model, applicable 
assumptions, constraints, etc. For a model component, 
semantic labeling may necessitate its nature (e.g., 
variable, constant, parameter, state transition function, 
output function, etc.); for a variable, one can specify its 
type (input, output, auxiliary variable; if applicable, 
physical units, upper and lower acceptable values; for 
state variables, default initial conditions, etc.) 

• p2 -  The process of formulation of a set of search criteria 
–based on the intention or the goal of the user– to detect 
relevant models and/or model components in the model 
base. 
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• p3 - Searching the model base according to the search 

criteria. (This may require a semantic search engine to be 
developed for the model base.) The result of the search 
may be some plausible models and/or model components.   

• p4 - Selection of relevant models and/or model 
components after screening plausible models or model 
components for relevancy. This is qualification and 
selection. 

• p5 - Synthesizing a model from selected model(s) and/or 
model component(s) (This process can also be called 
model composition or model assembly). 

 
Characteristics - Model composability entails characteristics of 
the following entities: 
 
• c1 - Characteristic of the composed model: Within this 

perspective, model composability is the characteristics of 
a model to be synthesized (or composed, or assembled) 
from other models and/or model components into 
computationally (syntactically) and logically 
(semantically) coherent combinations that work together 
within a simulation system to satisfy user’s intentions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• c2 - Characteristics of models or model components from 
which one aims to compose other models: From this 
perspective, models and model components need to be 
annotated to be analyzable for the determination of 
possible detection, selection, and relevance assurance for 
model synthesis. Hence, crude legacy models may need to 
be preprocessed for model composability. High-level 
specification languages may be useful in alleviating the 
need of semantic labeling. 

• c3 - Characteristics of model bases: A model base can be 
used for model composability, if the models and model 
components it contains are annotated to be analyzable for 
the determination of possible detection, selection, and 
relevance assurance for model synthesis.  

• c4 - Characteristics of model composer: A model 
composer needs:  (1) the ability to process intention of 
model composition, (2) the ability to formulate a set of 
search criteria, (3) to access to a model base of properly 
annotated models and model components, (4) to perform 
relevance assessment of plausible models and model 
components, and (5) the ability to synthesize (or compose, 
or assemble) models from selected other models and/or 
model components into computationally (syntactically) 

Figure 1: Entities and Processes in Model Composability 
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and logically (semantically) coherent combinations that 
work together within a simulation system to satisfy user’s 
intentions. 

 
While engineering disciplines successfully apply component-
based approach to build systems, it has proven significantly 
difficult to apply in simulation model development. As such, 
advancements in the theory, methodology, and infrastructure of 
simulation modeling are needed to facilitate compositional 
development of components of simulation studies, such as 
simulation models, experimental frames as well as model 
behavior generators and processors. 
 
Challenges 
 
Improving composability through the realization of the 
characteristics of the entities and processes identified in this 
section require advancing the theory, methodology, and 
technology of simulation modeling. Figure 2 depicts these three 
elements of the composability infrastructure. In particular, the 
following prospective issues emerge as the challenges that need 
to be addressed to facilitate satisfaction of with the desiderata 
listed in section 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Elements of the Composability Infrastructure 
 
• How can we improve the technology of sharing and 

exchange of simulations through advanced model bases 
that enable intelligent brokering and matchmaking 
between simulation goals (intentions) and contextual 
(i.e., experiential, conceptual, realization) assumptions of 
available models? 

• From a methodology point of view, what are the 
components of conceptual models of composable and 
reusable simulation models? How can contextual 
assumptions of components can be packaged and 
distributed with simulation models to facilitate high 
precision context-sensitive search over model bases?  

• With regard to theory, are there novel design constructs 
(other than popular but intractable component-connector 
strategy) that can facilitate development of a practical 
and sound model of composition. What would be the 
proper underlying unified theory with uniform syntax 
and semantics for composition rules that can take 
contextual assumptions into account? 

 
3. IMPROVING DYNAMIC COMPOSABILITY 

 
To address the above issues we need simulation infrastructures 
that support change and extension without causing 
interoperation and composability problems between the 

existing and new model components that are inserted at run-
time. Large complex simulation systems must respond to 
changes in environment, technology, and requirements.  
 
Requirements 
To satisfy the desiderata listed in section 1 and to address the 
issues raised in section 2, we need to develop simulation 
infrastructures that support their own evolution. There are 
several forces associated with this problem: 
 
• The simulation system needs to be updated without 

changing the underlying simulation software program. 
This is mainly due to at least two reasons. First, in real-
time training simulations, emergent unforeseen actions 
(e.g., course of actions that are inconsistent with the 
learning objectives) may require updating the simulation 
to bring the trainee back to the scenario to achieve 
objectives. Second, simulation system may require 
performance tuning.  

• Integrating changes and extensions should be uniform and 
easy. 

• The proposed solution should facilitate not only structural, 
but also behavioral changes. 

• It should be possible to incorporate certain changes that 
are not foreseen earlier at the design time. 

 
Furthermore, the lack of machine processable formal 
annotations describing the behavior, assumptions and 
obligations of federates is a fundamental roadblock, as such 
information pertains to (1) finding and matching candidate 
models, (2) infer limits on the use and interpretation of 
federates, and (3) perform run-time mediation and facilitation 
(i.e., translation) among disparate federates. To facilitate 
formal composability as envisioned here, advances in the 
following areas are needed: 

 
1. Formalisms: There is a need for formalisms that form the 

basis of annotating models with profiles that include 
assumptions, objectives, and constraints. Such information 
should be amenable to inference needed to identify and 
qualify models. HLA FOM and BOM models fall short 
such inference since specified interactions simply denote 
the syntax and type information. Furthermore, the type 
information is not available at run-time to facilitate 
analysis for composition even at the syntactical level.  

2. Ontologies: Ontologies based on a specification 
formalism need to be utilized to capture various facets of 
models and simulators to describe the kinds of 
composability information needed in a given problem 
domain. Yet, the underlying formalism must be general 
enough to accommodate various problem domains. 

3. Profiles:  Each model needs to be annotated with a 
schema that describes the services they provide in terms of 
domain-specific ontologies. Such service ontologies may 
include (1) declarative advertisements of model properties 
and capabilities, in the form to be used for automatic 
federate discovery, qualification, and instantiation (2) 
declarative APIs of federates for execution, and (3) 
declarative specification of the assumptions and 
obligations of federates and their capabilities to infer the 
consequences of their use during automatic run-time 
federate composition. 

4. Tools: To aid the instantiation and configuration of 
simulations, tools are necessary to perform inference and 
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make run-time decisions about composing candidate 
models.   

 
Strategy 
We propose a meta-level introspective agent architecture that 
comprises various agents that coordinate and orchestrate 
seamless information, data, and service exchange among 
conceptually interoperable simulations. Figure 1 depicts an 
agent organization that constitutes mediator, facilitator, broker, 
and matchmaker agents that are proposed to perform the 
necessary data and service management, alignment, and 
transformation functions.  
 
Furthermore, the agent organization aims to decouple the 
simulation from the intricate details of instantiating and 
interoperation of a family of models to avoid explicit concrete 
assumptions and facilitate seamless reconfiguration with 
alternative ensembles. This way, the agent organization 
abstracts the simulation instantiation and interoperation 
process. It helps make a simulation system independent of how 
its models are created, composed, and represented. The 
organizational domain encapsulates the knowledge about which 
models the simulation uses. Furthermore, the concrete 
organization hides the details about how simulation programs 
for these models are created and composed together. Therefore, 
the decoupling of the instantiation and interoperation processes 
from the simulation infrastructure gives significant flexibility 
in terms of what concrete components get instantiated and 
exchanged, who instantiates them, how they get created and 
transformed, and when.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Meta-simulation Layer 
 
Figure 3 illustrates how the interoperation framework and its 
components are positioned with respect to the service 
infrastructure. An infrastructure that facilitates dynamic 
composability and interoperability needs to be aware of its 
evolution. MSF is provided by specific functions, by which 
simulations can alter meta-simulations (facilitator agents) to 
influence the subsequent behavior of the simulation.  More 
specifically, the MSF aims to provide the facilities that  
 
1. establish a self-representation of each simulation, 
2. provide means by which this representation can be 

manipulated , and  

3. assure that the manipulations to the self-representation 
immediately affect the behavior of the simulation system. 

  
In effect, the simulation system’s self-representation is causally 
connected to the behavior of the actual simulation. The 
structure of a simulation application is divided into two 
components: (1) Simulation level and (2) Meta-simulation 
level. The simulation level includes the stable components of 
the model, simulation application level software objects, and 
the structural and behavioral dependencies between the 
components it includes. The meta level includes components 
that are subject to change, MSF agents (i.e., meta-simulation 
entities), each capturing a particular aspect of the structure and 
behavior of the simulation level. The MSF Façade object 
provides an interface to facilitate configuring or updating meta-
simulations. The Façade object provides three categories of 
functions: 

 
• Reflection: Simulation level can access information about 

the simulation (itself) via facilitator agents associated with 
the simulation. This information can then be used to guide 
the behavior of the simulation. 

• Introspection: Simulation level can access and update the 
parameters of existing meta-simulation entities (e.g., 
facilitator agents). This enables seamless and transparent 
update of the behavior of the simulation system, since the 
behavior of the simulation level is influenced by the meta-
simulation entities.  

• Intercession: Simulation level can change, exchange, 
insert, or remove meta-simulation entities and their 
connections to the simulation level. This feature enables 
dynamically including or inserting new simulations into 
the society of simulations at run-time. 

 
The facilitator agent in Figure 1 acts as a gateway between the 
simulation infrastructure and the agent organization that 
orchestrates the simulation interoperation. Simulations join a 
society of simulations by registering their facilitator with the 
meta-level interoperation protocol. As a controller, the 
facilitator agent is aware of the capabilities and needs of the 
simulation service that it is associated with. The requests 
coming from the simulation domain will be delegated to 
brokering, matchmaking, and mediation agents in accordance 
with the embedded interoperation protocol that facilitate 
seamless data discovery, location, retrieval, and transformation. 
The mediator agent is responsible for converting simulation 
content to/from a common reference model (i.e., C2IEDM). To 
facilitate mediation, conflicts between the assumptions and 
obligations of simulations need to be resolved. 
 
The interaction between content (i.e., data, model) requesting 
facilitators (consumers) and potential service providers 
(producers) are achieved via flexible mechanisms that can vary 
depending on the characteristics of the application domain. The 
brokering protocols include recommendation, recruiting, and 
notification [15]. Qualifying content specification objects and 
then ranking them requires interpretation of specifications to 
compute relevance metrics. The matchmaker agent measures 
the distance between the requested and target objects to qualify 
concepts within a common domain ontology used by the 
mediation component. 
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4.  ONTOLOGY-DRIVEN COMPOSABILITY 
 
The strategy presented above facilitates seamless evolution of 
the simulation. Yet, to improve composability for run-time 
extension requires mechanisms that address the requirements 
that pertain to ontologies, profiles, their underlying formalism, 
and associated tools that enable inference.  
 
Conceptual alignment between a model and its new context 
needs to be established for meaningful composition. Unless the 
composition of two models is expected to generate the desired 
outcome and satisfy the requisite objectives, assuring their 
interoperability may not be of value for the simulation study. 
Ontologies (i.e., SPEM – Software Process Engineering 
Metamodel) in the MSF framework, if engineered with 
composability in mind, could improve dynamic composability. 
As a principle, the tasks for which the ontology will be used 
need to impose requirements on the ontology.  The aptitude of 
an ontology is defined as its capability to respond to a set of 
questions and evaluations with respect to a specific 
requirement. Specifically, we define composability aptitude of 
an ontology in the context of Rational Unified Process (RUP) 
as the capabilities of the ontology to facilitate querying and 
performing inference pertaining to composability. This raises 
the issue of the extent of inferencing and deductive capabilities 
that is to be assumed by an ontology. 
 
One possible strategy is to define  the ontology as a 
specification of conceptualization that includes objects, 
attributes, and their relations. The properties of the objects and 
the relations over them can be defined in terms of predicates. 
Finally, a set of axioms can be defined as the constraints over 
the objects and relations. The axiomatization of the ontology 
provides a declarative specification of various definitions and 
constraints on the domain of discourse. The consistency of  the 
constraints of the ontology and the results of the queries 
imposed on the identified models provides a basis to evaluate 
the composability of the context and the new model. More 
specifically,  if the structural and behavioral capabilities of the 
model defined in first-order logic satisfy the constraints 
required by the ontology on that model, we can safely 
substitute the identified model for composition. However, this 
strategy requires associating metadata with models so that 
structural (e.g., what role does a model play?) and behavioral 
(e.g.,what are the activities available for a role to achieve its 
goal?) aptitude queries can be applied. Introspective models 
[15] that enable access to their own specification could be 
useful to serve that purpose. The results of these queries can 
then be used to evaluate the model against the axioms of the 
ontology to determine if it is consistent with the domain 
invariants. 
 
An Ontology for Software Process Simulation 
 
To illustrate the utility of the proposed strategy we provide an 
example that pertains to software process simulation. The 
metamodel depicted in Figure 4 presents the concepts and 
relations captured in the simulation. According to the ontology, 
an organization aims to achieve a number of performance 
objectives in terms of a strategy. The organization is specified 
by organization design, the layout of which is defined by the 
structure component. The function of the organization is 
defined by the behavior class that constitutes primitive or 
composite task objects. Tasks are performed by agents playing 
roles that exhibit skills related to solving the tasks. The 

behavior of agents is moderated by behavior moderators such 
as technology, turnover, and deadlines. Agents interact with 
each other, act on objects in the environment, and use 
resources to complete their task. 
 
The conceptual domain model presented in an ontology 
provides a common shared vocabulary. However, existing 
ontology specification languages are limited in describing the 
constraints on properties of concepts as well as relations. On 
the other hand, composability analysis requires clear and 
precise description of the assumptions and obligations of 
models with respect to each other within the compositional 
structure. Furthermore, domain constraints impose restrictions 
on properties of individual models (i.e., a team should include 
at least two agents). Axiomatization of an ontology facilitates 
specification of such constraint so that metasimulation level 
agents can make inference about the composability of models. 
 
Formalization of Ontologies using Axioms 
 
The constraints over a domain can be classified in three 
categories: (1) domain invariants, (2) model assumptions, and 
(3) model obligations. Domain invariants refer to constraints 
that must hold true for all models and their relations that are 
instances of the concepts and dependencies represented in the 
metamodel. For instance, the constraint that requires every 
team in the simulation to contain at least two agents as team 
members is a domain invariant.  
 
 
Domain Invariants: Domain invariants may not only constrain 
the properties of a single model, but may also pertain to 
constraints over a set of models and their dependencies. 
According to the ontology shown in Figure 4, an organization 
is specified by organization design and realizes a strategy (i.e., 
innovation, market expansion, risk reduction).  
 

specified_by (o, od) 
realizes (s, o) 

 
The predicates specified_by and realizes with parameters o 
(organization), od (organization design), and s (strategy) denote 
the instances of associated concepts in the ontology. While 
each instance may be a model on its own, a combination of 
entities may be aggregated to constitute a composite model. In 
that case the entities are considered to be the components of a 
model. 
 
Agents play roles that require skills needed for a given task.  
 

plays(a, r) and has(r, S), where a, r, and S  
denote the specific agent, its role, and the set of skills played by 

the agent, respectively 
 
Similarly, the agent under consideration exhibits a specific 
behavior (e.g., defined by an algorithm encapsulated in an 
instance of the behavior class) to fulfill a task that requires a 
skill set. Note that this skill set should be the proper subset of 
S.  
 
Formally,  

exhibits(a,b) and implements(b,t)   
and requires(t, S’) and S’⊆  S 
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Another domain constraint is that only two or more agents can 
form a team; hence, we have: 
 

For all t, where team(t), there exist two agents a1 and a2, s.t   
a1 ≠ a2 and has (t, a1) and has (t, a2). 

 
Domain constraints can be imposed on the properties of 
individual concepts and models. For instance, the simulation 
may require specific types of agents (i.e., subsumption reactive 
architecture) that use a contract net task allocation in 
conjunction with coordination by synchronization protocol. 
Such properties can be encoded in the domain metamodel as 
well as the metadata associated with individual models to 
facilitate matching domain constraints to model properties.   
 
Assumptions: Assumptions specify the expectations of a 
model (i.e., a concept or collections of concepts that constitute 
a model) from external entities that depend on it. In our 
example, a task model in a simulation requires the existence of 
an instance of corresponding behavior component that 
implements the task specification. The metadata for a behavior 
component includes its precondition (pre(b)) and postcondition 
(post(b)). A precondition is a predicate that must be true before 
enacting the behavior, while a postcondition is the predicate 
that must be true after the completion of the behavior. 
Similarly, a task is associated with a precondition (pre(t)) and 
postcondition (post(t)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The relation between the task and its associated behavior can 
be characterized as follows: 
 

Implements(b,t) =pre(b) ⇒  pre(t) and  
post(t) ⇒  post(b) 

 
 
Obligations: Obligation of a model refers to the formalization 
of the relation(s) between the source model (concept under 
consideration) and a target model (concept). Note that in the 
metamodel the relations are binary; therefore each relation 
involves two components. In our example, a task model 
requires a skill model. One possible interpretation of this 
relation is in terms of a domain constraint. That is, the behavior 
that implements the task is performed by an agent that plays a 
role, which requires a set of skills. The skills needed for this 
task need to be a proper subset of the skills of the role that 
performs the task.  
 

∀  a, ∃  r plays(a, r) and has(r, S) = requires(t, S’) and S’⊆  S 
 
 
Analyzing the composability of a model involves (1) assuring 
its alignment with the domain constraints and (2) satisfiability 
of metamodel relations that it participates by taking into 
account the local assumptions and obligations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: A Partial Domain Ontology 
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On the Need for Introspective Models 
 
To evaluate such queries to decide the composability of models 
depicted by (possibly collection of) concepts shown in Figure 
4, an inference engine needs to decide if 
 
• the properties (predicates) of the model under 

consideration are consistent with the domain constraints,  
• the assumptions of the model are not violated with respect 

to other entities that it is related to according to the 
metamodel, and 

• the obligations of the model do not violate the 
assumptions of the entities that it is associated with.  

 
To facilitate inference, a composability analyzer at the 
metasimulation level needs to have access to the metadata 
associated with each potential model before it is qualified for 
composition. Therefore, similar to the introspective access 
from the simulation level to metasimulation, a reflective access 
from simulation to metasimulation level would enable 
accessing specification information. As discussed in [16] 
predicates that depict the constraints of simulation models hold 
out the potential to improve ability to understand and reason 
about the fitness of a simulation model in a new context. 
Achieving these benefits, however, involves effective 
communication and distribution of such constraints. This 
requires delivering contextual assumptions along with the 
simulation model itself. The significance of this issue is 
apparent: a client of a simulation model can not harvest the 
benefits of the specification of the concept and contextual 
assumptions, unless the specification is delivered along with 
the simulation model. While conventional methods used in 
distributing specifications and documentation in printed form, 
as plain text or HTML, or in a platform specific help file can be 
utilized, such an approach misses the opportunity to 
appropriately use such contextual dependency information by 
leveraging them in development and integration tools. The 
ability of a system to respond to inquiries about its structure 
and ideally its behavior is a well-studied concept and is the 
cornerstone of computational reflection [17,18]. Computational 
reflection is defined as an activity of a system to query its 
structure and behavior to guide its own computation by 
accessing and potentially updating its own state. Many OO 
languages provide facilities for accessing interface information 
(i.e., Java), yet the packaging of concept specification and 
contextual information requires embedding coarse-grain 
specification objects accessible through the interface of 
simulation models. 
 
While the proposed strategy discussed in [16] enables seamless 
access to specification objects that facilitate awareness about 
the specification of the model, there are a number of 
drawbacks. An immediate issue is the augmentation of the 
simulation models with such objects and associated services 
that may lead to code inflation. This strategy naturally requires 
development of drivers to deploy reused simulation model 
components and retrieve their specification objects. 
Development of such drivers needs to be cost effective. 
Another concern entails the representation and communication 
of specification objects. First and foremost, the representation 
must be interpretable and be manipulated through program 
level accesses to the contextualized simulation models. The use 
of semi-structured data representation mechanisms such as 
XML is a plausible strategy. Committing to a specific format 
and having a generally acceptable standard structure that 

defines the conceptual constraints of a simulation model are 
challenging tasks. 
 

5. CONCLUSIONS 
 
This paper lays out basic concepts to advance composability 
through progress in theory, methodology, and technology. 
While simulation science is founded on powerful foundations, 
there is still need for improvement to facilitate addressing 
emergent challenges of reuse and composability. As such, we 
delineate the requirements and characteristics of a 
composability infrastructure. We argue that, unlike ad hoc 
solutions to composability, advancements in simulation theory 
and methodology along with their support in the development 
of next generation infrastructures could provide a sound basis. 
 
The separation of composition protocols from the simulation 
infrastructure constitutes the primary contribution of the 
proposed strategy. The proposed level of indirection via an 
agent organization aims to decouple the simulation system 
from the intricate details of instantiation and interoperation of a 
family of models to avoid explicit assumptions and to facilitate 
seamless (run-time) reconfiguration with alternative ensembles. 
This way, the agent organization abstracts the simulation 
instantiation and interoperation process. There are two major 
principles underlying the proposed strategy that makes it useful 
for the improvement of composability. First, the agent 
organization encapsulates the knowledge about the 
interoperation administration, alignment, transformation, and 
management functions. Second, it hides the details about which 
simulation services are discovered, located, and instantiated as 
the simulation unfolds. As such, it has the potential to make a 
federated simulation system independent of how federates are 
created, composed, and represented. While many of the 
conflicts that exist between disparate simulations can be 
resolved via man-in-the-loop simulations, providing such an 
agent technology can help operators focus on mission-critical 
activities as opposed to routine interoperability problems. 
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