

Hierarchical Patterns: A Way to Organize (Analysis) Patterns

Lubor SESERA
Softec, Ltd.

Kutuzovova 23, 831 03 Bratislava, Slovakia

ABSTRACT

The paper addresses the issue of categorization and
generalization in software patterns. It focuses on the realm of
analysis (conceptual) patterns in which the problem is more
noticeable when compared to design patterns. The paper
introduces hierarchical analysis patterns as a means for
categorization and balancing generality and real-world
usefulness. A three level hierarchy of analysis patterns is
presented. It is documented using real-world examples. Finally,
there is a rational that hierarchization might be useful for other
kinds of software patterns as well.

Keywords: Analysis Patterns, Hierarchical Analysis Patterns,
Design Patterns, Generalization, Insurance.

1. INTRODUCTION

Software patterns are an established realm of software
engineering. Many times software patterns are considered
identical to design patterns due to the famous book of Gang of
Four [5]. However, design patterns focus on one aspect of
software development only, design micro-architecture in
particular. There exist other kinds of software patterns such as
analysis (conceptual) patterns, architecture patterns,
programming patterns (idioms), process patterns, project
management patterns, anti-patterns, etc. This paper addresses
analysis patterns. Analysis patterns are used in the analysis
phase of software development to build a conceptual model of a
system.

One of the key issues of software patterns is categorization that
would lead to a widely accepted system of patterns. In design
patterns this is partially compensated for by the ‘bible’ book of
Gang of Four. In analysis patterns the situation is fairly
different. There exists neither an accepted system of patterns
nor a ‘bible’. Three main analysis patterns books [2], [3], [4]
and some papers have been published; however, none of them
has gained a position comparable to the Design Patterns book.
Apart from [3], they do not even claim to build an extensive
system of patterns. Worse, patterns created by distinct authors
are distinct in their ‘nature’, which is why such patterns are
difficult to compare and combine. In [8] we needed several
dimensions to compare them. In particular, we used
abstraction/generalization, flexibility and granularity
dimensions. The key difference is in the approach to
generalization.

This paper introduces hierarchical analysis patterns as a means
to categorize and combine analysis patterns. In the next section
a three level hierarchy of analysis patterns is proposed starting
with the most general level. It is demonstrated using real-world

examples. In Section 3 horizontal relationships are discussed.
Finally, there is a rational that hierarchization might not be
constrained to analysis patterns only but it can be useful for
other kinds of software patterns as well.

2. HIERARCHY OF ANALYSIS PATTERNS

Analysis patterns have to cope with two opposing forces:

1. Generality. When patterns are more general they are also
more reusable and high reusability has been declared the
main goal of patterns.

2. Usefulness. Real-world usefulness of patterns decreases
with generality as patterns are not only less understandable
but, especially, they omit a lot of ‘details’.

So far analysis patterns and systems of analysis patterns are
‘flat’. As there is no general agreement how to balance those
forces, distinct authors ‘balance’ them differently. For instance,
Peter Coad’s patterns [2], are very general and simple, David
Hay’s patterns [3], are constrained to the realm of traditional
enterprise systems, and Wolfgang Keller’s patterns [6] are
restricted just to the insurance industry. Alongside, there are
Martin Fowler’s patterns [4] as pearls of abstraction process that
are difficult to combine even among themselves.

Our point of view is that this tension is inherent in analysis
patterns and there is little chance it can be balanced by the
proper level in a flat system. Rather, the issue should be solved
by introducing levels of analysis patterns where each level
provides the proper generality and abstraction1 with regard to its
objective. A more general level gives a framework for a more
specialized level. It can be used when the specialized level has
not been created yet. On the other hand, the specialized level
can provide a rather specific guideline for an analyst building a
conceptual model of a real-world system. Our hierarchy of
analysis patterns is shown in Figure 1. It consists of three
fundamental levels. However, if needed, any level can be
decomposed further to its sublevels.

There is a question how to build the most general level. The
answer might not be in patterns published but in the more
general ISA framework of Zachman [11]. Any complete system
should include aspects of Who, What, How, Why, Where and
When. Although (at least so far) analysis patterns are data model
patterns only, they should include these aspects on a small
scale. In particular, four main packages of general analysis

1 To be precise, the generality and abstraction concepts are not
the same (see e.g. [10]). For simplicity, here we omit subtle
discrepancies.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 37ISSN: 1690-4524

 General Analysis Patterns

Specialized Analysis Patterns

 Domain Patterns

Figure 1 Hierarchical levels

patterns should be built: Parties (Who), Objects (What),
Operations (How) and Accountabilities (Why). Aspects of
location (Where) and time (When) are inherent parts of the
main packages. It is quite interesting that these packages are not
far from David Hay’s [3] ‘anchors for data models’2 if they are
generalized above the enterprise systems realm. (For instance,
instead of Hay’s concept of Contract, Fowler’s more general
concept of Accountability [4] has been used.) In [3] also the
basic content of the packages can be found.

The top-level patterns can be specialized in various ways. In
Figure 2 our specialization for a class of financial information
systems is sketched out. Here, Accountabilities are elaborated to
Obligations3, Claims, Payments and other packages. Similarly,
Objects are specialized to Accounts and Operations are
specialized to Accounting Transactions. Analysis patterns of
this level can be utilized for a wide range of domains associated
with financial information systems.

The diagram in Figure 2 also shows two examples of the third
level that are specialization of the previous level. Both are from
the insurance industry. The first example addresses companies
with self-employed brokers selling insurance products while the
second example addresses insurance companies. For instance, in
the insurance brokerage Claims are refined to Brokers’
Provisions while in insurance Claims are refined to Insurance
Claims. A simple example how the specialized model of the
insurance contract (policy) with its premium prescriptions fits
the more general model of obligation and its claims can be
found in [7].

There are other examples of analysis patterns of the third level
known to us and not shown in Figure 2. They include domains
of both traditional private companies and public/government
institutions. Examples of the former are bank products (e.g.
bank cards) and factoring; examples of the latter are social
insurance, health insurance and state benefits. Some of them
have been published4 in [8], [7] and [9]. Although, many times

2 Parties, Things of the Enterprise, Procedures and Activities,
Contracts.
3 Obligation is our concept from [7] that is more general than
the concept of Contract. It includes also other types of
obligations than traditional business contracts.
4 Although they are not in the form of hierarchical patterns.

public and government institutions use other types of
obligations rather than contracts (e.g. applications or
registrations) the ‘nature of business’ is similar to private
companies and the same second level concepts can be utilized.
For instance, in the realm of state benefits Obligations are
specialized to Applications and Claims to claimable state
Benefits.

There are types of the second and the third levels other than for
financial systems. For instance, one can consider Hay’s patterns
for Work Orders. General Work Orders from [3] are patterns of
the second level of hierarchy. They can be seen as specialized
Accountabilities5 associated with Parties and Operations. These
patterns can be specialized for example to maintenance work
orders for road maintenance or gas pipelines maintenance [8],
emergency work orders in gas networks or work orders in
manufacturing [9]. As it was shown in [9] road maintenance and
gas pipelines maintenance are so similar in their nature that a
sublevel (maintenance of a service network) of the second level
of the hierarchy can be created. Analogously, other sublevels of
the specialized analysis patterns can be built.

3. HORIZONTAL RELATIONSHIPS

There exist horizontal relationships among packages and
analysis patterns on each of the levels described in the previous
section.

In Figure 3 relationships among pattern packages of the first
hierarchical level are shown. The relationships represent UML
dependency relationships. It is clearly visible that Parties and
Objects are fundamental packages while Accountabilities is the
supplementary package.

The Operations package can play an alternative role6 which
may be either:

1. Subjects of Accountabilities (e.g. a service to a party, work
order activities, etc.) or

2. Operations performed with Accountabilities (e.g. change of
a contract, credit card transactions, etc.).

Figure 4 shows an example of the third level relationships,
brokers’ provisions in particular. These relationships follow the
relationships of the first and the second levels: Provisions (i.e.
Claims) are dependent on Contracts (i.e. Obligations), while
Contracts (as specialized Accountabilities) are dependent on
Brokers (specialized Parties). The system, such as those we
have developed for some brokerage companies, is based on
accounting transactions. That is why Payments are dependent
on Brokers’ Accounting based on calculated Brokers’
Provisions. Alternatively, if accounting were not used, Brokers’
Payments would be the supplementary package of Brokers’
Provisions.

5 Originally in [3] there are no associations between Contracts
and Work Orders and Work Orders are part of the Procedures
and Activities anchor.
6 An alternative might be to include the first option to the
Object package. In this way ‘objects’ would mean ‘roles’, i.e.
not only tangible and conceptual objects but activities and
parties as well. This is, however, quite confusing for
practitioners.

38 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

Figure 2 Examples of hierarchical patterns

4. RATIONAL

In this paper hierarchical analysis patterns have been
introduced. We believe, however, that hierarchization of
patterns is not restricted to analysis patterns only. For example,
some of the J2EE patterns [1] might be seen as specialization of
Gang of Four’s [5] and other ‘general’ design patterns. For
instance, Composite View is the special case of the Composite
pattern; Session Façade is the special case of Façade. This is,
however, a challenge for future research.

REFERENCES

[1] Alur, D., J. Crupi, D. Malks. Core J2EE Patterns: Best
Practices and Design Strategies, Prentice Hall, 2001.

[2] Coad, P. Object Models: Strategies, Patterns and
Applications. Yourdon Press, 1997.

[3] Hay, D. Data Model Patterns: Conventions of
Thought, New-York: Dorset House, 1996.

[4] Fowler, M. Analysis Patterns: Reusable Object
Models, Reading, MA: Addison-Wesley, 1997.

[5] Gamma, E., R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley,
1995.

[6] Keller, W. Some Patterns for Insurance Systems,
PLoP’98, also at: http://ourworld.compuserve.
com/homepages/WofgangWKeller/

[7] Sesera, L. A Recurring Fulfillment Analysis Pattern,
Pattern Languages of Programs Conference, 2000.
http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/
proceedings.html

[8] Sesera, L. Analysis Patterns, (invited talk.) in:
SOFSEM’2000, Lecture Notes in Computer Science
series, Vol. 1963. Springer Verlag, 2000.

[9] Sesera, L., A. Micovsky, J. Cerven, J. Data Modeling in
Examples, Grada, 2001 (in Czech).

General Analysis Patterns

Parties Objects

Specialized Analysis Patterns
for Financial IS

Clients Accounts

Insurance

Accountabilities

Insurance
Brokerage

Obligations

Brokers
& Clients

Claims

Brokers'
Accounts

Operations

Insurance
Policies

Payments

Brokers'
Contracts

Insurance
Claims

Accounting
Transactions

Brokers'
Provisions

Insurance
Claim Payments

Brokers'
Payments

Brokers'
Accounting

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 39ISSN: 1690-4524

[10] Smolarova, M., P. Navrat, M.Bielikova. Abstracting
and Generalising with Design Patterns, Advances in
Computer and Information Sciences ’98, IOS Press,
1998.

[11] Sowa, J.F., J.A. Zachman. Extending and Formalizing
the Framework for Information Systems
Architecture, IBM Systems Journal, 1992.

Parties

Accountabilities

Objects Operations

Figure 3 Relationships among pattern packages of the first
level

Brokers
& Clients

Brokers'
Contracts

Brokers'
Provisions

Brokers'
Payments

Brokers'
Accounting

Brokers'
Accounts

Figure 4 Relationships among Brokers’ provisions packages

40 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

	P217348

