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ABSTRACT

Recently, multiple classifier systems (MCS) have been

used for practical applications to improve classification ac-

curacy. Self-generating neural networks (SGNN) are one

of the suitable base-classifiers for MCS because of their

simple setting and fast learning. However, the computa-

tion cost of the MCS increases in proportion to the num-

ber of SGNN. In this paper, we propose an efficient prun-

ing method for the structure of the SGNN in the MCS.

We compare the pruned MCS with two sampling methods.

Experiments have been conducted to compare the pruned

MCS with an unpruned MCS, the MCS based on C4.5,

and k-nearest neighbor method. The results show that

the pruned MCS can improve its classification accuracy

as well as reducing the computation cost.

Keywords: emergent computing, on-line pruning, self-

organization, ensemble learning, classification

1. INTRODUCTION

Classifiers need to find hidden information in the given

large data effectively and classify unknown data as accu-

rately as possible [1]. Recently, to improve the classifi-

cation accuracy, multiple classifier systems (MCS) such

as neural network ensembles, bagging, and boosting have

been used for practical data mining applications [2, 3].

In general, the base classifiers of the MCS use traditional

models such as neural networks (backpropagation network

and radial basis function network) [4] and decision trees

(CART and C4.5) [5].

Neural networks have great advantages of adaptability,

flexibility, and universal nonlinear input-output mapping

capability. However, to apply these neural networks, it is

necessary to determine the network structure and some

parameters by human experts, and it is quite difficult to

choose the right network structure suitable for a particular

application at hand. Moreover, they require a long train-

ing time to learn the input-output relation of the given

data. These drawbacks prevent neural networks being

the base classifier of the MCS for practical applications.

Self-generating neural networks (SGNN) [6] have simple

network design and high speed learning. SGNN are an ex-

tension of the self-organizing maps (SOM) of Kohonen [7]

and utilize the competitive learning which is implemented

as a self-generating neural tree (SGNT). The abilities of

SGNN make it suitable for the base classifier of the MCS.

In order to improve in the accuracy of SGNN, we pro-

posed ensemble self-generating neural networks (ESGNN)

for classification [8] as one of the MCS. Although the ac-

curacy of ESGNN improves by using various SGNN, the

computation cost, that is, the computation time and the

memory capacity increases in proportion to the increase

in number of SGNN in the MCS.

In this paper, we propose an efficient pruning method

for reducing the computational cost for ESGNN. This

method is constructed from two stages. First, we intro-

duce an on-line pruning algorithm to reduce the compu-

tation cost by using class labels in learning. Second, we

optimize the structure of the SGNT in the MCS to im-

prove the generalization capability by pruning the tedious

leaves after learning. In the optimization stage, we intro-

duce a threshold value as a pruning parameter to decide

which subtree’s leaves to prune and estimate with 10-fold

cross-validation [9]. After the optimization, the MCS can

improve its classification accuracy as well as reducing the

computation cost. We use two sampling methods for the

optimizing MCS; shuffling and bagging. Shuffling uses all

the training data by changing randomly the order of the

training data on each classifier. Bagging [10] is a resam-

pling technique which permits the overlap of the data. We

investigate the improvement performance of the pruned

MCS by comparing it with the MCS based on C4.5 [11]

using ten problems in the UCI repository [12]. Moreover,

we compare the pruned MCS with k-nearest neighbor (k-

NN) [13] to investigate the computational cost and the

classification accuracy. The optimized MCS demonstrates

higher classification accuracy and faster processing speed

than k-NN on average.
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2. PRUNING ESGNN

In this section, we describe how to prune tedious leaves

in the MCS. We implement the pruning method as two

stages. First, we mention the on-line pruning method

in learning of SGNN. Second, we show the optimization

method in constructing the MCS. Finally, we show a sim-

ple example of the pruning method for a two dimensional

classification problem.

Self-Generating Neural Networks
SGNN are based on SOM and implemented as a SGNT ar-

chitecture. The SGNT can be constructed directly from

the given training data without any intervening human

effort. The SGNT algorithm is defined as a tree construc-

tion problem of how to construct a tree structure from

the given data which consist of multiple attributes under

the condition that the final leaves correspond to the given

data.

Before we describe the SGNT algorithm, we denote some

notations.

• input data vector: ei ∈ IRm.

• root, leaf, and node in the SGNT: nj .

• weight vector of nj : wj ∈ IRm.

• the number of the leaves in nj : cj .

• distance measure: d(ei,wj).

• winner leaf for ei in the SGNT: nwin.

The SGNT algorithm is a hierarchical clustering algo-

rithm. The pseudo C code of the SGNT algorithm is

given as follows:

Algorithm (SGNT Generation)

Input:

A set of training examples E = {e_i}, i = 1, ... , N.

A distance measure d(e_i,w_j).

Program Code:

copy(n_1,e_1);

for (i = 2, j = 2; i <= N; i++) {

n_win = choose(e_i, n_1);

if (leaf(n_win)) {

copy(n_j, w_win);

connect(n_j, n_win);

j++;

}

copy(n_j, e_i);

connect(n_j, n_win);

j++;

prune(n_win);

}

Output:

Constructed SGNT by E.

In the above algorithm, several sub procedures are used.

TABLE I shows the sub procedures of the SGNT algo-

rithm and their specifications.

In order to decide the winner leaf nwin in the sub pro-

cedure choose(e i,n 1), competitive learning is used. If

TABLE I Sub procedures of the SGNT algorithm

Sub procedure Specification
copy(nj , ei/wwin) Create nj , copy ei/wwin as wj in nj .
choose(ei, n1) Decide nwin for ei.
leaf(nwin) Check nwin whether nwin is a leaf or not.
connect(nj , nwin) Connect nj as a child leaf of nwin.
prune(nwin) Prune leaves if leaves have a same class.

              T  

 ...SGNT
    1

SGNT
    2

SGNT
    K

Input

Combiner
   Σ

     o 1      o 2      o K

Output
    o 

Fig.1 An MCS which is constructed from K SGNTs.

The test dataset T is entered each SGNT, the output oi

is computed as the output of the winner leaf for the

input data, and the MCS’s output is decided by voting

outputs of K SGNTs

an nj includes the nwin as its descendant in the SGNT,

the weight wjk (k = 1, 2, . . . , m) of the nj is updated as

follows:

wjk ← wjk +
1

cj
· (eik − wjk), 1 ≤ k ≤ m. (1)

After all training data are inserted into the SGNT as the

leaves, the leaves have each class label as the outputs and

the weights of each node are the averages of the corre-

sponding weights of all its leaves. The whole network of

the SGNT reflects the given feature space by its topology.

For more details concerning how to construct and per-

form the SGNT, see [6]. Note, to optimize the structure

of the SGNT effectively, we remove the threshold value of

the original SGNT algorithm in [6] to control the number

of leaves based on the distance because of the trade-off

between the memory capacity and the classification accu-

racy. In order to avoid the above problem, we introduce a

new pruning method in the sub procedure prune(n win).

We use the class label to prune leaves. For leaves con-

nected to the nwin, if those leaves have the same class

label, then the parent node of those leaves is given the

class label and these leaves are pruned.

Optimization of the Multiple Classifier System
The SGNT has the capability of high speed processing.

However, the accuracy of the SGNT is inferior to the con-

ventional approaches, such as nearest neighbor, because

the SGNT has no guarantee to reach the nearest leaf for

unknown data. Hence, we construct an MCS by taking

the majority of plural SGNT’s outputs to improve the

accuracy (Figure 1).

Although the accuracy of the MCS is superior or com-

parable to the accuracy of conventional approaches, the
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1 begin initialize j = the height of the SGNT
2 do for each subtree’s leaves in the height j

3 if the ratio of the most class ≥ α,
4 then merge all leaves to parent node
5 if all subtrees are traversed in the height j,
6 then j ← j − 1
7 until j = 0
8 end.

Fig.2 The merge phase

1 begin initialize α = 0.5
2 do for each α

3 evaluate the merge phase with 10-fold CV
4 if the best classification accuracy is ob-
tained,
5 then record the α as the optimal value
6 α ← α + 0.05
7 until α = 1
8 end.

Fig.3 The evaluation phase

computational cost increases in proportion to the increase

in the number of SGNTs in the MCS. In particular, the

huge memory requirement prevents the use of MCS for

large datasets even with latest computers.

In order to improve the classification accuracy, we pro-

pose an optimization method of the MCS for classifica-

tion. This method has two parts, the merge phase and

the evaluation phase. The merge phase is performed as a

pruning algorithm to reduce dense leaves (Figure 2). This

phase uses the class information and a threshold value α

to decide which subtree’s leaves to prune or not. For

leaves that have the same parent node, if the proportion

of the most common class is greater than or equal to the

threshold value α, then these leaves are pruned and the

parent node is given the most common class.

The optimum threshold values α of the given problems

are different from each other. The evaluation phase is

performed to choose the best threshold value by intro-

ducing 10-fold cross validation (CV). Figure 3 shows this

evaluation phase.

An Example of the Pruning Method
We show an example of the pruning algorithm in Figure 4.

This is a two-dimensional classification problem with two

equal circular Gaussian distributions that have an over-

lap. The shaded plane is the decision region of class 0

and the other plane is the decision region of class 1 by

the SGNT. The dotted line is the ideal decision boundary.

The number of training samples is 200 (class0: 100,class1:

100) (Figure 4(a)). The unpruned SGNT is given in Fig-

ure 4(b). In this case, 200 leaves and 120 nodes are au-

tomatically generated by the SGNT algorithm. In this

unpruned SGNT, the height is 7 and the number of units

is 320. In this, we define the unit to count the sum of

the root, nodes, and leaves of the SGNT. The root is the

node which is of height 0. The unit is used as a mea-

sure of the memory requirement in the next section. Fig-

ure 4(c) shows the pruned SGNT after the on-line prun-

ing stage. In this case, 272 units are pruned away and 48

units remain (the height is 3). The decision boundary is

the same as the unpruned SGNT. Figure 4(d) shows the

pruned SGNT after the optimization stage in α = 0.6.

In this case, 27 units are pruned away and 21 units re-

main. Moreover, the decision boundary is improved more

than the unpruned SGNT because this case can reduce

the effect of the overlapping class by pruning the SGNT.

In the above example, we use all training data to construct

the SGNT. The structure of the SGNT is changed by the

order of the training data. Hence, we can construct the

MCS from the same training data by changing the input

order. We call this approach “shuffling”.

To show how well the MCS is optimized by the pruning

algorithm, we show an example of the MCS in the same

problem used above. Figure 5(a) and Figure 5(b) show

the decision region of the MCS in α = 1 and α = 0.6,

respectively. We set the number of SGNTs K as 25. The

result of Figure 5(b) is a better estimation of the ideal

decision region than the result of Figure 5(a). We inves-

tigate the pruning method for more complex problems in

the next section.

3. EXPERIMENTAL RESULTS

We investigate the computational cost (the memory ca-

pacity and the computation time) and the classification

accuracy of MCS based on SGNN with two sampling

methods, shuffling and bagging for ten benchmark prob-

lems in the UCI repository [12]. We evaluate how the

MCS is pruned using 10-fold cross-validation for the ten

benchmark problems. In this experiment, we use a mod-

ified Euclidean distance measure for the MCS. To se-

lect the optimum threshold value α, we set the differ-

ent threshold values α which are moved from 0.5 to 1;

α = [0.5, 0.55, 0.6, . . . , 1]. We set the number of SGNT

K in the MCS as 25 and execute 100 trials by changing

the sampling order of each training set. All computations

of the MCS are performed on an IBM PC-AT machine

(CPU: Intel Pentium II 450MHz, Memory: 323MB).

TABLE II shows the average memory requirement of 100

trials for the MCS based on shuffled SGNN and the MCS

based on bagged SGNN. As the memory requirement, we

count the number of units which is the sum of the root,

nodes, and leaves of the SGNT. The memory requirement

is reduced from 55.4% to 96.2% in shuffling, and from

64.9% to 96.8% in bagging, by optimizing the MCS. It

is found that the bagged SGNT can be a higher memory

compression than the shuffled SGNN. This supports that

the pruned MCS can be effectively used for all datasets

with regard to both the computational cost and the clas-
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Fig.4 An example of the SGNT’s pruning algorithm, (a) a two dimensional classification problem with two equal circular

Gaussian distribution, (b) the structure of the unpruned SGNT, (c) the structure of the pruned SGNT (α = 1), and (d) the

structure of the pruned SGNT (α = 0.6). The shaded plane is the decision region of class 0 by the SGNT and the doted line

shows the ideal decision boundary

sification accuracy. These results are reduced 18% and

17.4% for shuffing and bagging on average than the pre-

vious results in [14].

TABLE III shows the average classification accuracy of

100 trials for the MCS with shuffling and bagging. It

is clear that over 10 datasets, both optimized MCS with

shuffled and bagged SGNT lead to more accurate or com-

parable classifiers than the unoptimized MCS. In compar-

ison with shuffling, bagging is superior or comparable to

shuffling on 6 of the 10 datasets. In short, bagging is bet-

ter than shuffling in terms of the computational cost and

the classification accuracy in the MCS.

To evaluate the pruned MCS’s performance, we compare

the pruned MCS with the MCS based on C4.5. We set

the number of classifiers K in the MCS as 25 and we

construct both MCS by bagging. TABLE IV shows the

improved performance of the pruned MCS and the MCS

based on C4.5. The results of the SGNT and the pruned

MCS are the average of 100 trials. The pruned MCS has

a better performance than the MCS based on C4.5 for 6

of the 10 datasets. Although the MCS based on C4.5 de-

grades the classification accuracy for iris, the pruned MCS

can improve the classification accuracy for all problems.

Therefore, the pruned SGNT is a good base classifier for

the MCS on the basis of both the scalability for large scale

datasets and the robust improving generalization capabil-

ity for the noisy datasets comparable to the MCS with

C4.5.

To show the advantages of the pruned MCS, we compare it

with k-NN on the same problems. In the pruned MCS, we

choose the best classification accuracy of 100 trials with

bagging. In k-NN, we choose the best accuracy where k

is 1,3,5,7,9,11,13,15,25 with 10-fold cross-validation. All

methods are compiled by using gcc with the optimization

level -O2 on the same computer.

TABLE V shows the classification accuracy, the memory

requirement, and the computation time achieved by the

pruned MCS and k-NN. Next, we show the results for

each category.

First, with regard to the classification accuracy, the

pruned MCS is superior to k-NN for 7 of the 10 datasets

and gives 1.2% improvement on average. Second, in terms

of the memory requirement, even though the pruned MCS
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Fig.5 An example of the MCS’s decision boundary (K = 25), (a) α = 1, and (b) α = 0.6. The shaded plane is the decision

region of class 0 by the MCS and the doted line shows the ideal decision boundary

includes the root and the nodes which are generated by

the SGNT generation algorithm, this is less than k-NN

for all problems. Although the memory requirement of

the pruned MCS is totally used K times in TABLE V, we

release the memory of SGNT for each trial and reuse the

memory for effective computation. Therefore, the mem-

ory requirement is suppressed by the size of the single

SGNT. Finally, in view of the computation time, although

the pruned MCS consumes the cost of K times of the

SGNT, the average computation time is faster than k-NN.

In the case of letter, in particular, the computation time of

the pruned MCS is faster than k-NN by about 3.8 times.

We need to repeat 10-fold cross validation many times to

select the optimum parameters for α and k. This evalua-

tion consumes much computation time for large datasets

such as letter. Therefore, the pruned MCS based on the

fast and compact SGNT is useful and practical for large

datasets. Moreover, the pruned MCS has the ability of

parallel computation because each classifier behaves in-

dependently. In conclusion, the pruned MCS is practical

for large-scale data mining compared with k-NN.

4. CONCLUSIONS

In this paper, we proposed an efficient pruning method

for the MCS based on SGNN and evaluated the compu-

tation cost and the accuracy. We introduced an on-line

and off-line pruning method and evaluated the pruned

MCS by 10-fold cross-validation. We investigated the dif-

ference of two sampling methods; shuffling and bagging.

Experimental results showed that the memory require-

ment reduces remarkably, and the accuracy increases by

using the pruned SGNT as the base classifier of the MCS.

Bagging is better than shuffling in view of the memory

reduction and the improvement to the classification accu-

racy. The pruned MCS comparable to the MCS based on

C4.5 and superior to k-NN. The pruned MCS is a use-

ful and practical tool to classify large datasets. In future

work, we will study an incremental learning and a parallel

and distributed processing of the MCS for large scale data

mining.
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TABLE II The average memory requirement of 100 trials for the shuffled SGNT and the bagged SGNT in the MCS

shuffled SGNT bagged SGNT
Dataset pruned unpruned ratio pruned unpruned ratio
balance-scale 133.42 846.43 15.7 113.62 860.61 13.2
breast-cancer-w 34.65 889.05 3.8 28.9 897.81 3.2
glass 125.66 295.64 42.5 104.77 297.95 35.1
ionosphere 68.32 454.16 15 54.52 472.18 11.5
iris 16.59 207.7 7.9 14.65 208.7 7
letter 7312.68 26537.91 27.5 6213.52 27052.43 22.9
liver-disorders 207.37 464.3 44.6 155.17 471.71 32.8
new-thyroid 54.41 296.52 18.3 49.6 298.4 16.6
pima-diabetes 263.06 1023.88 25.6 212.81 1045.4 20.3
wine 18.34 229.19 8 14.69 239.21 6.1
Average 823.45 3124.48 20.8 696.22 3184.44 16.8

TABLE III The average classification accuracy of 100 trials for the MCS with shuffling and bagging. The standard

deviation is given inside the bracket (×10−3)

MCS with shuffled SGNT MCS with bagged SGNT
Dataset optimized unoptimized ratio optimized unoptimized ratio
balance-scale 0.864(6.19) 0.837(7.45) +2.7 0.869(5.68) 0.848(7.93) +2.1
breast-cancer-w 0.972(1.89) 0.968(2.05) +0.4 0.972(2.45) 0.968(2.66) +0.4
glass 0.728(11.87) 0.717(11.95) +1.1 0.721(11.77) 0.716(13.73) +0.5
ionosphere 0.912(5.63) 0.882(5.53) +3 0.893(8.24) 0.868(7.79) +2.5
iris 0.964(4.05) 0.964(3.94) 0 0.965(4.83) 0.961(4.74) +0.4
letter 0.959(0.69) 0.958(0.68) +0.1 0.956(0.76) 0.956(0.75) 0
liver-disorders 0.621(12.69) 0.605(13.03) +1.6 0.624(14.88) 0.608(17.01) +1.6
new-thyroid 0.958(5.19) 0.957(5.92) +0.1 0.952(6.32) 0.949(6.76) +0.3
pima-diabetes 0.747(6.28) 0.72(8.18) +2.7 0.749(7.34) 0.730(8.71) +1.9
wine 0.964(4.08) 0.958(5.29) +0.6 0.965(4.73) 0.96(4.2) +0.5
Average 0.868 0.856 +1.2 0.866 0.856 +1

TABLE IV The improved performance of the pruned MCS and the MCS based on C4.5 with bagging

MCS based on SGNT MCS based on C4.5
Dataset SGNT MCS ratio C4.5 MCS ratio
balance-scale 0.781 0.869 +8.8 0.795 0.827 +3.2
breast-cancer-w 0.957 0.972 +1.5 0.946 0.963 +1.7
glass 0.641 0.721 +8 0.664 0.757 +9.3
ionosphere 0.853 0.894 +4.1 0.897 0.92 +2.3
iris 0.949 0.965 +1.6 0.953 0.947 −0.6
letter 0.879 0.956 +7.7 0.880 0.938 +5.8
liver-disorders 0.58 0.624 +4.4 0.635 0.736 +10.1
new-thyroid 0.935 0.952 +1.7 0.93 0.94 +1
pima-diabetes 0.699 0.749 +5 0.749 0.767 +1.8
wine 0.95 0.965 +1.5 0.927 0.949 +2.2
Average 0.822 0.866 +4.4 0.837 0.874 +3

TABLE V The classification accuracy, the memory requirement, and the computation time of ten trials for the best

pruned MCS and k-NN

classification acc. memory requirement computation time (s)
Dataset MCS k-NN MCS k-NN MCS k-NN
balance-scale 0.882 0.899 100.41 562.5 1.27 2.52
breast-cancer-w 0.977 0.973 26.7 629.1 1.69 1.31
glass 0.756 0.706 115.97 192.6 0.48 0.04
ionosphere 0.915 0.875 25.62 315.9 1.7 0.25
iris 0.973 0.960 10.9 135 0.18 0.05
letter 0.958 0.961 6273.15 18000 220.52 845.44
liver-disorders 0.666 0.647 150.28 310.5 0.77 0.6
new-thyroid 0.968 0.968 53.57 193.5 0.34 0.05
pima-diabetes 0.768 0.753 204.11 691.2 2.47 3.41
wine 0.978 0.977 12.2 160.2 0.36 0.13
Average 0.884 0.872 697.29 2119.1 22.98 85.38
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