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ABSTRACT 
 
Classical feature extraction and data projection methods have been 
extensively investigated in the pattern recognition and exploratory 
data analysis literature. Feature extraction and multivariate data 
projection allow avoiding the “curse of dimensionality”, improve 
the generalization ability of classifiers and significantly reduce the 
computational requirements of pattern classifiers. During the past 
decade a large number of artificial neural networks and learning 
algorithms have been proposed for solving feature extraction 
problems, most of them being adaptive in nature and well-suited 
for many real environments where adaptive approach is required. 
Principal Component Analysis, also called Karhunen-Loeve 
transform is a well-known statistical method for feature extraction, 
data compression and multivariate data projection and so far it has 
been broadly used in a large series of signal and image processing, 
pattern recognition and data analysis applications.  
 
Keywords: feature extraction, pattern recognition, PCA, RLS 
algorithm, Karhunen-Loeve transform, image processing, data 
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1. GENERAL VIEW ON A CERTAIN CLASS OF PCA 
LEARNING SCHEMES 

 
Clasical feature extraction and data projection methods have been 
extensively studied in the pattern recognition and exploratory data 
analysis literature. Feature selection referes to a process whereby a 
data space is transformed into a feature space that, in theory, has 
exactely the same dimesion as the original data space. However, 
the transformation is designed in such a way that a data set may be 
represented by a reduced number of effective features and yet 
retain most of the intrinsic information content of the data, that is 
the data set undergoes a dimensionality reduction. In other words, 
feature extraction is expected to allow the avoiding of the “curse 
of dimensionality”, to improve the generalization ability of 
classifiers and also to reduce the computational requirements of 
pattern classification.   
 
Principal Component Analysis, also called Karhunen-Loeve 
transform is a well-known statistical method for feature extraction, 
data compression and multivariate data projection and so far it has 
been broadly used in a large series of signal and image processing, 
pattern recognition and data analysis applications.   
 
A large number of specialized neural networks and learning 
algorithms have been proposed to perform principal component 
analysis (PCA) tasks.One of the most frequently used method in 
the study of the convergence properties corresponding to different 
stochastic learning PCA algorithms, is derived from Kushner and 

Clark [4] developments and basically proceeds by reducing the 
problem to the analysis of asymptotic stability of the trajectories of 
a dynamic system whose evolution is described in terms of  the 
ODE. The Generalized Hebbian Algorithm (GHA) extends the 
Oja’s learning rule for learning the first principal components, the 
extension being essentially based on the Hotteling deflation 
technique. Let us assume that the first m principal components 
have to be encoded as local memories ( )jW  (synaptic weights) of 

a neural system, where nm ≤≤1  and n  is the dimension of the 
input data. The computing layer consists of m units of local 
memories ( )jW , each neuron being interconnected with all 

neurons of rank greater or equal then its rank. 
 
The input is sampled from a n-dimensional stochastic process 
X(t)=[X(1)(t),  ..., X(n)(t)] stationary in the large  sense, 

( )( ) 0=tXE .Each neuron j is influenced by all neurons i, i<j and 
its input is the deflated signal at the level of the jth principal 
component. At any moment t, each neuron j, 1≥j , receives two 
inputs, the original signal X(t) and the deflated signal Xj(t) and 
computes two outputs,  

( ) ( ) ( )tXtWtY T
jj =      (1) 

( ) ( ) ( )tXtWtY j
T
jj

~~
=      (2) 

where ( ) ( ) ( ) ( )tWtYtXtX jjjj 111
~~

−−− −= , 2≥j ,  is the deflated 

signal at the level of the jth principal component, ( ) ( )tXtX =1
~

. 
The updating of the local memories is given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tWtYtXtYttWtW 1
2

1111 1 −η+=+                 (3) 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tWtYtXtYttWtW jjjjjj
2~~~

1 −η+=+            (4) 

for 2≥j . 
 
The variant of the GHA proposed by Sanger [9] simplifies the 
learning scheme by using only the output ( )tY j  for both, updating 

the synaptic memories and signal deflation. According to the 
Sanger PCA learning algorithm, the updating is given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )







−η+=+ ∑

=

j

i
iijjjj tWtYtYtXtYttWtW

1

1  (5) 

for 1≥j .  
 
The learning rates ( )tη  are constrained to fulfill the regularity 
conditions given by Kushner theorem, 
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According to the Kushner construction, the ODE describing the 
dynamics is, 

( ) ( ) ( ) ( )( ) ( )tWtSWtWtSW
dt

tdW T
1111

1 −=     (6) 

( ) ( ) ( ) ( )( ) ( )−−= tWtSWtWtSW
dt

tdW
jj

T
jj

j
 

( ) ( )( ) ( )∑
−

=

−
1

1

j

i
ij

T
i tWtSWtW     (7) 

for 2≥j , where ( ) ( )( )tXtXES T= . 
 
The APEX learning algorithm proposed by Kung and Diamantaras 
[3] generalizes the idea of lateral influences by imposing a certain 
learning process to the weights of lateral connections. The output 
of each neuron j, 2≥j , is computed from its own output and the 

effects of the outputs corresponding to all neurons i, 11 −≤≤ ji , 

weighted by the coefficients ( )ta ij , 

( ) ( ) ( ) ( ) ( )∑
−

=

−=
1

1

j

i
iij

T
jj tYtatXtWtY     (8) 

 

The learning scheme for the local memories is essentially the 
Oja’s learning rule taken for the transformed outputs jY , 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tWtYtXtYttWtW jjjjj
21 −η+=+   (9) 

The learning scheme for the weights of lateral connections is given 
by, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tatYtYtYttata ijjjiijij
21 −η+=+               (10) 

 
The ODE obtained according to the Kushner construction is, 

( ) ( ) ( ) ( )( ) ( )tWtSWtWtSW
dt

tdW T
1111

1 −=                (11) 

( ) ( ) ( ) ( ) ( )tWttatSW
dt

tdW
jj
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for 2≥j , where  
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and 
( )mφφ=Φ ,...,1  is the matrix of columns the eigen vectors of S, 

corresponding to the largest m eigen values mλλ ,...,1 . 
 
 

2. EXTENDED RLS ALGORITHM FOR PRINCIPAL 
COMPONENT ANALYSIS 

 
The adaptive extraction of the first principal component can be 

performed using an unique hidden processing unit as follows. Let 
X(t)=[X(1)(t),  ..., X(n)(t)] be the n-dimensional input signal modeled 
as a stationary stochastic process of mean 0=µ  and covariance 

matrix Σ . We denote by W1(t-1) the synaptic vector at the 
moment t and assume that the inputs are applied at the moments 
t=0,1,2,…. The neural architecture FX  → TW1

FH →
1W FY is 

depicted in Figure 1.  
 
Each of the input and respectively output layers FX, FY consists of 
n processing units and the hidden layer FH contains one neuron. If 
we denote by X(k) the input at the moment k, then the output is 
Y(k) = W1(k-1)h1(k) = W1(k-1)WT

1(k-1) X(k), where h1(k)=WT
1(k-

1) X(k) is the neural activation induced by the input. In other 
words, at each moment t, the compression of the input signal is 
performed by the linear filter (W1(t-1))T and the decompression is 
performed also linearly using the filter W1(t-1). Consequently, the 

mean error at the moment t is ( ) ( )∑
=

ε=
t

k

ktJ
1

2
1 , where 

( ) ( ) ( ) 22 kYkXk −=ε . 

 
               Y(1)(t)       ...           Y(n)(t) 
FY               •         ......                • 
 
              W1(t-1) 
FH     •  

 WT
1(t-1) 

 
FX            •          ........                  •      
  X(1)(t)      ...           X(n)(t) 
 

Figure 1 
 

The aim is to determine ( )tW1
ˆ  minimizing ( )( )tWJ 11  the overall 

error, when at each moment of time k, 1≤ k ≤ t, the decompression 
is assumed as being performed using the filter W1(t), that is,  

( )( ) =tWJ 11  

( ) ( ) ( )( ) ( ) ( ) ( )( )khtWkXkhtWkX
t

t

k

T
11

1
11

1
−−= ∑
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and  

( )
( )

( )( )
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



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Using straightforward computation, we get  

. ( ) ( ) ( )
( ) ( ) 2

11

1
1

ˆ
thth

thtX
tW

T

TT

=                 (15) 

 

Denoting by ( ) ( )
1

1

2
11

−

=








= ∑

t

k

khtP and ( ) ( ) ( )tPthtk 111 = , we get 

the adaptive version of the RLS learning algorithm (1), 
 

( )01W randomly selected 
h1(t) = WT

1(t-1)X(t) 

( ) ( ) ( )
( ) ( )11

1

1
2

1

11
1 −+

−
=

tPth
thtP

tk  

P1(t)=[1-k1(t)h1(t)]P1(t-1) 

( ) ( ) ( ) ( ) ( ) ( )[ ]1ˆ1ˆˆ
11111 −−+−= tWthtXtktWtW  

 
We assume that the first component corresponding to the input is 
unambiguous, that is the largest eigen value λ1 of the covariance 
matrix Σ is of multiplicity order 1 and let φ1 be its corresponding 
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unit eigen vector. Note that if ( ) ( )11 0 φ∉ ⊥LW  then, 

( ) ( )11 φ∉ ⊥LtW a.s. for any t, where ( ) { }11 φ=φ spanL . 
 

Theorem 1. Let ( )( ) NttW ∈1
ˆ  be the sequence generated by the 

stochastic algorithm (1).  

If ( )( ) 00 11 >φTW , then ( ) 11
ˆlim φ=

∞→
tW

t
.  

If ( )( ) 00 11 <φTW , then ( ) 11
ˆlim φ−=

∞→
tW

t
.    

 
Note that (1) is a stable scheme for a.s. learning the first 
component of the input distribution.  

 
The extension of the adaptive scheme (1) for learning the first m 
principal components can be obtained using the Hotelling 
deflation technique. 
 

Let ∑
=

φα=
n

i
ii ttX

1

)()(  be the expansion of the input signal in 

terms of the { }nφφ ,...,1 , the orthogonal basis  of the Σ  eigen 
vectors, where the corresponding eigen values are sorted in the 

decreasing order. Let ∑
−

=

φα−=
1

1

)()()(
p

i
iip ttXtd be the deflated 

signal at the level p, np ≤≤2 . Then the spectral decomposition 

of the covariance matrix pΣ  corresponding to ( )td p  is 

∑
=

φφλ
n

pi

T
iii , therefore, pλ  is the largest eigen value of pΣ  and 

pφ  is its first component. 

 
Taking into account these arguments, we arrive to a sequential 
process of learning any number of principal components. 
 
The extended RLS algorithm (2) can be expressed as follows: 

      Input: X(t) stationary stochastic process of mean 0 
and covariance matrix ∑ 

hp(t)=WT(t-1)X(t) 

( ) ( ) ( )
( ) ( )11

1
2 −+

−
=

tPth

thtP
tk

pp

pp
p  

Pp(t)=[1-kp(t)hp(t)]Pp(t-1) 

( ) ( ) ( ) ( ) ( ) ( )[ ]1ˆ1ˆˆ −−+−= tWthtXtktWtW ppppp  

The implementation of the extended RLS algorithm can be 
performed on the simple feed forward architecture depicted in 
Figure 2.  

 
 Y(1)(t) …  Y(j)(t)…     Y(n)(t) 
FY            •      …       •   …           • 
           WT 
       
FH              •  …     • (p)… •       
             
   W 
 
FX                 •   …   •   …      •      
     X(1)(t) … X(i)(t) ... X(n)(t) 

 
Figure 2. 

Theorem 2. Let ( )( )
Ntp tW

∈
ˆ  be the sequence generated by the 

stochastic algorithm (2).  

If ( )( ) 00 >φ p
T

pW , then ( ) ppt
tW φ=

∞→
ˆlim .  

If ( )( ) 00 <φ p
T

pW , then ( ) ppt
tW φ−=

∞→
ˆlim .    

 
 

3. EXPERIMENTAL REPORT ON USING THE RLS 
ALGORITHM IN COMPRESSING BINARY IMAGES AND 

GRAY LEVEL IMAGES 
 
The tests on the efficiency of the RLS algorithm were performed 
on the 10×10  matrix representations of the Latin letters. For each 
letter we considered 11 samples and the Hamming distance was 
taken as a criterion in evaluating the quality of the 
compression/decompression process. The experiments pointed out 
that the good quality can be maintained when the 
compression/decompression process involved at least the first 15 
components. Some of the results are depicted in Figure 6 and 
Figure 7 (see Appendix).  
 
Several tests were also performed on gray level images and the 
conclusions can be summarised as follows: 

• Good quality can be assured when higher compression 
rates are considered; in our tests, only about 7% of the 
signal characteristics were needed for decompression 
purposes; 

• Relative low restoration errors when at least 7% of the 
first components were involved in the 
compression/decompression process; 

• Relative noise robustness. 
 
Some of the results are presented in the pictures 3, 4 and 5 (see 
Appendix) . For each example, there are supplied the input 
prototype and the decompressed image respectively when,  

• The compression/decompression involved the first 3 
principal components of 320 for 8 input samples (Figure 
3); 

• The compression/decompression involved the first 25 
principal components of 320 for 35 input samples 
(Figure 4); 

• The compression/decompression involved the first 2 
principal components of 250 for 23 input samples 
(Figure 5). 
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5. APPENDIX 
 

The input prototype  The decompressed image 

Figure 3 
The input prototype  The decompressed image                                                   

                                        Figure 4 
The input prototype  The decompressed image   

Figure 5                     

                                                                  
The Karhunen-Loève compression 

 
Figure 6 
 

The RLS compression 

                             
                                  Figure 7 
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