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ABSTRACT

The World Wide Web creates many new challenges for
information retrieval. Information Filtering (IF) can
find good matches between the web pages and the users’
information needs. In an information filtering system,
users are associated with profiles that describe what they
need, while data are represented in the same form of
user profiles. Comparing data with profiles, the users
who are interested in the data are identified and in-
formed. Therefore, a critical issue of the information
filtering service is how to index the user profiles for
an efficient matching process. In this paper, first, we
propose a count-based tree method, to reduce the large
storage space as needed by Yan and Garcia-Molina’s
tree method. Next, by applying the technique for min-
ing association rules, we propose a large-item set-based
method, the count-major large itemset, to further reduce
the storage space. From our simulation results, the cost
of storage space of our methods is less than that of the
tree method.

Keywords: index, information filtering, personaliza-
tion, profile, web usage mining.

1. INTRODUCTION

Owing to the booming development of the WWW, it
creates many new challenges for information filtering
[2, 4, 5]. Information Filtering (IF) is an area of re-
search that develops tools for discriminating between
relevant and irrelevant information. In an information
filtering system, users first give descriptions about what
they need, i.e., user profiles, to start the services [3, 7].
A profile index is built on these profiles. A series of
incoming web pages will be put into the matching pro-
cess. Each incoming web page is represented in the same
form of the user profile. In this way, the users who are
interested in an incoming web page can be identified by
comparing the descriptions of the web page with each
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user profile [8, 9]. This concept has been applied to var-
ious information system on the Internet, e.g., SIFT [10].

A critical issue of the information filtering service is how
to index the user profiles for an efficient matching pro-
cess. Using index structure on information filtering ser-
vice, the users’ profiles can be expressed in the Boolean
model. In the Boolean model, the user specifies key-
words that he (or she) wants in documents received; a
document is similarly represented [9]. The set of key-
words appeared in the document represent its high fre-
quency in the document. In an information filtering ser-
vice, the documents are recommended to the users if all
keywords in their profiles appear in the document. We
look up the words one by one, and stop as soon as we
find a word not in the document. If all the words ap-
pear in the document, the profile matches. In [9], Yan
and Garcia-Molina have proposed four methods based
on the Boolean model. Among them, the tree structure
provides the best performance in terms of the storage
space. Instead of using the Boolean model, the users’
profiles can be expressed in the wector space model.
In the vector space model [8], users’ profiles and doc-
uments are identified by keywords. A profile is similarly
represented. For a document-profile query, a similarity
measure (such as the dot product) can be computed to
determine how “similar” the two are.

Since the matching process in the Boolean model, in
general, is much simpler and requires less time than that
in the vector space model, in this paper, we adopt the
Boolean model. Based on the tree method proposed by
Yan and Garcia-Molina [9], there are many duplications
of keywords appearing in the tree structure. It needs
large storage space to store the information, although
the matching process is simple. Therefore, in this paper,
first, we propose a count-based tree method, which takes
the count of each keyword into consideration, to reduce
the large storage space as needed by the tree method
[9]. Next, by applying one of the techniques for mining
association rules, the Apriors algorithm [1], we propose a
new method. Basically, an association rule is that given
a database of sales transactions, it is desirable to discover
the important associations among items such that the
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Table 1: Example 1 of profiles

Profile | Keywords
P bcdeghi
Py abcefgij
Ps abcdehij
Py cdefgh
Ps acdfgij

presence of some items in a transaction will imply the
presence of other items in the same transaction. In the
method, we make use of the concept of the large itemset
which is used in mining association rules, where a large
itemset is represented by a set of items appearing in a
sufficient number of transactions. The method is called
the count-major large itemset method. In this method,
we first cluster profiles with similar interests into the
same group [6, 11]. Next, for each cluster, we apply the
mining association rules techniques to help us construct
the index structure. From our simulation results, the
cost of storage space of our methods is less than that of
the tree method.

The rest of the paper is organized as follows. Section 2
presents a survey of the tree method. Section 3 presents
the count-based tree method. Section 4 presents the
proposed large-itemset-based method. In Section 5, we
study the performance. Finally, Section 6 states the
conclusions.

2. YAN AND GARCIA-MOLINA’S TREE
METHOD

In Yan and Garcia-Molina’s tree method [9], a tree de-
rived from a set of profiles is called an indez tree. In such
a tree, the internal node keeps a keyword and the leaf
node records a profile. The root is a pseudo node. For
the profiles shown in Table 1, Figure 1 shows the related
index structure for the tree method. As shown in Figure
1, the internal nodes in a tree structure can be shared
by their descendants. Moreover, the same keyword may
appear in several internal nodes; while a profile can only
appear in one leaf node. In the index tree, each profile P;
is represented by a path starting from the pseudo root
node, passes a consecutive sequence of internal nodes,
and ends at a leaf node. The keywords on the internal
nodes passed by this path, are the same as the keywords
specified in P;. Therefore, a profile can be inserted by
traversing and creating the corresponding path. To find
the matches for a web page, a traversal of the index tree
from the root has to be conducted. That is, all the paths,
which may cover a set of profiles, have to be examined.
If the keyword in an internal node is not contained in
the set of keywords extracted from a web page, all the
paths containing this internal node will not cover any
matched profiles.
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Figure 1: The data structure for the tree method

3. THE COUNT-BASED TREE METHOD

Take the profiles shown in Table 1 as an example, the
tree method [9] stores 33 keywords (including the root)
as shown in Figure 1. To reduce the large storage space
as needed by the tree method [9], we take the count
of each keyword into consideration. Before construct-
ing the count-based tree, we count the number of each
keyword in those profiles. Moreover, those keywords are
sorted in the descending order of their corresponding
counts. For the profiles shown in Table 1, the order of
those keywords is [c, d, e, 9,7, a,b, f, h, j] and the related
counts are 5, 4, 4 4, 4, 3, 3, 3, 3, and 3, respectively.
Next, we sort the keywords in each profile according to
the new order of keywords, resulting in the new pro-
files shown in Table 2. Then, according to those profiles
shown in Table 2, based on the same steps in construct-
ing the index tree [9], we construct the count-based tree
shown in Figure 2, which needs only 27 keywords, as
compared with 33 keywords based on the tree method.

4. THE LARGE-ITEMSET-BASED
METHOD

In this section, first, we give a survey of the Apriori
algorithm. Then, we present the method based on the
technique of mining association rules: the count-major
large itemset method.

A Survey of the Apriori Algorithm

In the Apriori algorithm [1], a set of items is called an
itemset and k-itemset is an itemset that has k items.
The algorithm calculates the support s of the itemset in
the transaction set D, if s% of transactions in D contain
it. An itemset is large if its support is above some user-
defined minimum support threshold.

In the Apriori algorithm, it constructs a candidate set of
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Figure 2: The data structure for the count-based
tree method

Table 2: Example 1 of profile 1 after sorted

Profile | Keywords
P cdegibh
Py cegiabfj
Ps cdeiabhj
Py cdegfh
P cdgiafj

large itemsets, counts the number of occurrence of each
candidate itemset, and then determines large itemsets
based on a pre-determined minimum support. The Can-
didate k-itemsets (Ct) is generated by a cross product of
the Large (k — 1)-itemsets (Lk_1) with itself. The large
k-itemsets (Ly) consist of only the candidate k-itemsets
with sufficient support; that is, the count of the occur-
rence of k-itemsets in the transaction database is no less
than a threshold, the minimum support. This process
is repeated until no new candidate itemsets is generated.

Each profile can be regarded as a transaction, and each
keyword can be regarded as an item. Therefore, our
input, the profiles as shown in Table 1, can be re-
garded as the transaction database in which Profile and
Keywords are replaced with T'ransaction and Items,
respectively. Given the minimum support = 80% (i.e.,
count >= 5 * 0.8), the resulting large itemset for the
input shown in Table 1 contains L1 = {{c}, {d}, {e},

]{cgi, 2{z}}, and Ly = {{c,d}, {c, e}, {c, 9}, {c,i}}, where

The Count-Major Large Itemset Method

Although we adopt the concept of the Apriori algorithm,
we modify the way to choose the minimum support,
which is predetermined and static during the process of
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the original Apriori algorithm. In our revised Apriori al-
gorithm, the minimum support is dynamically decided,
which is the sum of the support of each candidate itemset
divided by the number of the candidate itemsets. That
is, the formula of the minimum support is as follows:
ZLZ?' the support of Ci/|Cn|, where Cy, is represented
the candidate itemset in the n’th round. We use an ex-
ample given in Figure 3 to illustrate the way to decide
the support. In Figure 3, the minimum support for C;
is calculated as follows: Support = (1+3+3+3+3) / 5
= 2.6. Therefore, we have L1 = { {B}, {C}, {D}, {E}
}

In the Apriori algorithm, if the minimum support is too
small, there may be too many candidate itemsets be-
coming the large itemsets, which takes much time to get
the large itemsets. Therefore, we let the minimum sup-
port be dynamically decided, since we just want to get
the large itemset that has the largest support among
all large itemsets. Moreover, instead of using the item-
set with the largest length k, in our method, the final
result is called the Largest-Common-Keywords (LCK).
The policies for getting the LCK are as follows:

1. If the maximum support of elements in L, is
smaller than that in L,_1, we choose the element
with the maximum support in L,,_; to be the LCK.
For example, in Figure 3, because the maximum
support of elements in L, is smaller than the max-
imum support of elements in L;, we can randomly
choose one element from Li. Therefore, in this case,
we do not need to generate C3 from L.

2. If the maximum support of elements in L, is equal
to that in L,_1, we choose the element with the
maximum support in L, to be the LCK.

By using our revised Apriori algorithm (denoted by func-
tion RevisedlAlg), we can get the LCK from all profiles
first. After getting the LCK, we divide those profiles
into two parts according to the result of the LCK. One
part contains the LCK and the other part does not con-
tain the LC K. Next, those profiles in the two parts keep
on getting the LCK by using function RevisedlAlg, re-
spectively. We can use each result of the LCK to con-
struct the tree. This process is repeated until no key-
words are in the profiles. Take the profile shown in Table
1 as an example, it stores 24 keywords as shown in Fig-
ure 4.

Next, our complete algorithm is shown in Figure 5. Form
the root of the tree, our input data is PSet which con-
tains those profiles ({P;, s = 1 --- n}). The root of the
tree is a pseudo node. If the size of PSet is larger than
1, we use function Revised1Alg (line 8) in procedure
Count-Major. On the other hand, if the size of PSet
is equal to 1, we add the keywords in the profile (K Set)
and the identifier of profile P; to the tree (lines 31 to 37).
After getting the LCK of the input data PSet, we divide
those profiles into two parts. One part that is named
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Figure 3: An example to get the LCK

Figure 4: The data structure for the count-major
large itemset method

newPSetl contains the LCK, and the other part that
is named newPSet2 does not contain the LCK. For the
newPSetl part, we will remove LCK from those pro-
files which contain LCK. If newPSetl and newPset2
are not ¢, each of them will do the same thing as PSet
until all profiles are inserted into the tree.

Let’s use an example shown in Table 1 to illustrate those
steps for constructing the count-major large itemset tree.
By using our function Revised1Alg, we can get the LCK
= {c} at the first time, since we have L1 = {c} with
support = 5 and Ly = {cd} with support = 4.

After getting the LCK {c}, we add {c} to the tree by
using procedure Insert (line 10). Next, we check each
of the profiles in PSet, whether it contains the LCK
{c} (lines 11 to 21). Since all the profiles contain the
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01  procedure Count-Major(PSet, root);
02  begin

03 temp = root;

04 newPSetl := ¢;

05 newPSet2 := ¢;

06 if (|[PSet| > 1)

07 begin

08 LCK := Revisedl Alg(PSet);

09 root := root.child;

10 Insert(LCK, root);

11 fori =1ton do

12 begin

13 if (LCK € P;)

14 begin

15 P, := P, - LCK;

16 if (there are no keywords in P;) then
Insert(i, root.child)

17 else newPSetl := newP Setl U P;;

18 end

19 else

20 newPSet2 := newPSet2 U P;;

21 end;

22 if (jlnewPSet2| = 1)

23 begin

24 root2 := temp.child;

25 K Set := the elements in P; in newPset2;

26 Insert(K Set, root2);

27 Insert(i, root2.child);

28 newPSet2 = ¢;

29 end;

30 end

31 else if ( |[PSet| = 1)

32 begin

33 root := root.child;

34 K Set := the elements in P; in PSet;

35 Insert(K Set, root);

36 Insert(i, root.child);

37 end;

38 if (newPSetl # ¢) then
Count-Major(newPSetl, root);
39 if (newPSet2 # ¢) then
Count-Magjor(newPSet2, temp);
40 end;

Figure 5: Procedure Count-Major for the count-
major large itemset method
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Figure 6: The third step: (a) the profile P, does not
contain the LCK = {d}; (b) those profiles contain
the LCK = {d}.

Table 3: Parameters and their settings

Parameter | Value

500, 1000, 1500, 2000

50, 100, 150, 200

3,4,5,6,7

0%, 20%, 40%, 60%, 80%, 100%

Qx5 =

LCK {c}, all the profiles remove the keyword {c} as
shown in the left part of Figure 6 and are recorded in
the newPSetl part. Moreover, the newP Set2 part is ¢.

Because newPSetl is not ¢, we call procedure Count —
Major again. For this time, we get the LCK = {d},
since we have Ly = {d} with support =4 and Ly = {ai}
with support = 3. Similar to the previous step, we insert
the LCK {d} to the tree by using procedure Insert and
divide those profiles into two parts, one part does not
contain the LCK {d} as shown in Figure 6-(a), and the
other part contains the LCK {d} as shown in Figure
6-(b).

Because there is only one profile P, in newPSet2, we
insert the keywords in P> and the identifier of P> to
the tree. After that, newPSet2 is empty (lines 22 to
29). Next, we continue to handle the profiles that are
represented by newPSetl as shown in the lower part of
Figure 6-(b). Similar to the previous step, we get the
LCK {e,h}.

5. PERFORMANCE

In this section, we compare our proposed methods with
the tree method by simulation.

The Simulation Model

In this section, we generated synthetic profiles to eval-
uate the performance [9]. Four parameters are used in
the generation of the synthetic profiles: N, D, K, and
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Table 4: A comparison of the number of keywords

(under the base case)

Methods The number of keywords
tree 1571
count-based tree 849
count-major large itemset 811

Table 5: A comparison of the number of keywords

(under the change of N)

Methods / N 500 | 1000 | 1500 | 2000
tree 890 | 1571 | 1979 | 2558
count-based tree 480 849 1163 | 1436
count-major large itemset | 470 811 1117 | 1361

@, where N = the number of profiles, D = the number
of keywords, K = the length of the profile, and @ = the
probability of the similarity among profiles. To simplify
the study of the effect of the profile size on performance,
all profiles have the same length; that is, K is fixed for
all profiles. The keywords that all profiles choose are
composed of the set of D keywords. Therefore, key-
words in the first profile are chosen randomly from the
set of D keywords. The first profile is called the “base
profile”. In our assumption, the users with similarity
interests are clustered into the same group. Therefore,
in order to model the similarity among profiles, the sim-
ilarity parameter @) controls how similar the new profile
and the base profile are. That is, for each word in the
new profile, there is a probability () that it is the same
as the corresponding word in the base profile. If it is not,
then the keyword in the new profile is picked at random
from the set of D keywords. There are no duplicated
keywords in the profile. Hence, by varying @ from 0 to
1, we can control the similarity among the profiles. If
Q@ is 0, the keywords in all profiles are randomly chosen
from the set of D keywords.

Simulation Results

In our simulation, four parameters and their default set-
tings are listed in Table 3. We will change only one of
four parameters at one time. First, we define a base case
with N = 1000, D =100, K =5, and Q = 80 %. Accord-
ing to those parameters in the base case, a comparison
of the number of keywords in the tree method and our
methods for 100 executions on the average is shown in
Table 4. From this result, we show that the tree method
[9] needs more storage space to store the keywords than
our methods. In the base case, the count-major large
itemset method uses the smallest storage space to store
the keywords among those methods. On the average,
our methods can reduce about 45% number of keywords
as compared with the tree method.
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Table 6: A comparison of the number of keywords
(under the change of D)

Methods / D 50 100 150 200
tree 1112 1571 1493 1719
count-based tree 713 849 877 948
count-major large itemset 676 811 855 927

Table 7: A comparison of the number of keywords
(under the change of K)

Methods / K 3 4 5 6 7

tree 523 | 845 | 1571 | 1835 | 2601
count-based tree 396 | 622 | 849 1085 | 1342
count-major large itemset | 384 | 600 | 811 1050 | 1300

Next, we study the impact of four parameters, N, D,
K, and @, on the performance. The results are shown
in Tables 5, 6, 7, and 8, respectively. In all the cases,
the count-major large itemset method needs the smallest
storage space among these methods. As N, D, or K is
increased, the number of keywords is increased in all the
methods. As @ is increased, the number of keywords
is decreased in all the methods. That is, the larger the
similarity among the profiles is, the more the common
keywords among the profiles are. So, the storage space
to store the keywords is reduced when the similarity is
large. In particular, when @ = 100% in which each of
the profiles is the same as each other, all those methods
store 6 keywords.

6. CONCLUSIONS

In this paper, we have proposed the count-based tree
method and the large-itemset-based method to improve
the storage space as needed by Yan and Garcia-Molina’s
tree method for indexing uses’ profiles. We adopt the
idea of the Apriori algorithm to get the large itemset.
However, we modify the way to decide the minimum
support and the goal in the Apriori algorithm. After
getting the large itemset by using our revised Apriori
algorithm, we can construct the index structure. From
our simulation, we have shown that our methods need
smaller storage space to store the keywords than the

Table 8: A comparison of the number of keywords
(under the change of Q)

Methods / Q 0% | 20% | 40% | 60% | 80%
tree 3783 | 3654 | 3345 | 2361 | 1571
count-based tree 3719 | 3298 | 2631 | 1754 | 849
count-major large itemset | 3383 | 3038 | 2428 | 1637 | 811
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tree method. How to construct the index structure in
the case of the on-line processing is a future research
topic.
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