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ABSTRACT

We introduce  a  formal  framework  for  the  refactorization  of 
complete information systems, i. e. the data model and the data 
itself.  Within  this  framework  model  transformations  are 
uniquely extended to the data level and result in data migrations 
that  protects  the  information  contained  in  the  data.  The 
framework is described using general and abstract  notions of 
category  theory.  Two  concrete  instances  of  this  framework 
show the applicability of the abstract concept to concrete object 
models. In the first instance, we only handle addition, renaming 
and removal  of model objects.  The second instance can also 
handle  folding  and  unfolding  within  object  compositions. 
Finally, we discuss how an instance of the framework should 
look like that is able to handle inheritance structures as well.
Keywords:  Refactoring,  Migration,  Graph  transformation, 
Pullback complement

1. INTRODUCTION

The only constant thing is change. This is especially true for the 
information  and  communication  business.  Currently, 
information systems in many companies are subject to change. 
This is mainly due to the technological progress connected to 
the Internet which enables completely new sorts of electronic 
business. Thus, we see big efforts to re-engineer the technical 
basis on the one hand and to improve the business processes 
and information models on the other hand [1].
This  development  has  been  reflected  in  the  research  and 
development community in the last years. Agile and Extreme 
Programming  Techniques  [2] [3] [4] aim  at  supporting  the 
ongoing  reengineering  processes  by providing  refactorization 
methods, techniques, patterns  [5][6] and tools  [7]. These tools 
enable consistent global changes of a whole software system, 
for  example  to  introduce  some  design  patterns  which  are 
necessary for the system to take the next evolution step. This 
puts the flexibility into the development process that is needed 
to keep a system up-to-date (without any over-specifications at 
the  beginning  of  the  development)  and  to  realize  changing 
requirements quickly.
For the time being, the agile techniques are mainly restricted to 
the  improvement  and  change  of  software  systems within  the 
development phase. There are only few attempts to apply the 
methods to running information systems and to extend the agile 
perspective  to  the  maintenance  and  production  phase  of  a 
software system's life cycle [8] [9]. The main obstacle for agile 
techniques here is existing data. The bigger the database, the 
larger the problems. If a model of a running information system 
is changed, we are faced with one central question: “What shall 
we do with the data conforming to the old model?” Up to now, 
we hear two major answers: 

1. Leave the data as it is and map the new model to the old one 
using  for  example  some  object-relational-mapping  tools 
[10].1

2. Migrate  the  data  from the  old  model  to  the  new one  by 
crafting corresponding migration scripts and performing the 
(long-running) data migration at night or on the weekend. 

Both solutions possess big disadvantages. The first one leads to 
complex mappings if applied several times. This complexity is 
very  likely  to  produce  performance  problems and  reduce  the 
development speed of the engineering team in the long run.2 The 
second solution requires long production breaks and consumes a 
lot of development and test time for software (migration scripts) 
that is thrown away after success. 
We  propose  another  approach,  namely  the  generation  of  the 
necessary data  migration  directly  from model  refactorizations, 
compare also [11]. The actual migration can be performed for the 
whole database at  once as in  the  second  approach above.  We 
save the development costs in this scenario. If the migration can 
be performed on demand3 for single records – only if a record is 
touched which has not been migrated yet – we are also able to 
avoid production breaks. The research and development program 
necessary to elaborate the theoretical basis and a corresponding 
tool support for this approach is ambitious. We are just starting it 
within a project supported by the FHDW Hanover. 
One central issue is the  correctness of the induced migrations. 
We can only benefit from this approach if we can trust  in the 
produced  migrations  without  any  further  tests.  Therefore,  we 
present a theoretical framework in this paper, which
1. is able to represent models and instances in a uniform meta-

model,
2. comes  equipped  with  a  suitable  notion  of  semantics-

preserving model refactorization,
3. provides  refactorization-induced  correct  transformations  of 

the instances (migrations), and
4. proves its  applicability  by satisfying necessary and  natural 

properties for refactorizations and migrations. 
The  general  and  abstract  framework,  which  is  presented  in 
section 2, is built on category theory [12]. In this theory, we not 
only  have  a  very general  notion  of  structured  object.  By  the 
notion of  morphism, we also get a natural way of representing 
(1) typings of instance objects in model objects as well  as (2) 
model changes and instance migrations.  Even and just  on this 

1 An older and worse version of this approach is: Leave the data-
model as it is and redefine the meaning of the data within the model, 
for example by using comma-separated multi-value fields in a single 
string column.

2 The longer this approach is applied, the bigger the problems to 
switch to the second one. 

3 Comparable to load-on-demand-techniques for instantiating objects 
from relational database rows.
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very  abstract  level,  we  can  determine  the  properties  any 
reasonable  refactorization  framework  shall  possess.  We 
demonstrate  this  by  evaluating  the  properties  for 
refactorizations  to  possess  a  consistent  notion  of  sequential 
composition.
Section  3  and  4  provide  instances  of  the  framework,  where 
objects  are  graphs  and  morphisms  are  some  sort  of  graph-
structure-preserving mappings as being outlined in the theory 
of algebraic graph transformation [13].4  
Section 3 provides an instance of the framework that can handle 
addition,  renaming,  and  deletion  of  model  objects  only.  The 
formal description is straightforward. 
Section  4  introduces  a  model  that  can  handle  splitting  and 
gluing of model objects within composition structures. Here it 
is possible to redirect associations as long the source and the 
target remain in the same composition structure. The complex 
construction  in  this  section  demonstrate  the  increase  of 
complexity if we want to extend refactorizations from models to 
whole information systems. 
Finally, we sketch in section 5 how inheritance structures (like 
for example in the UML-class-models [14]) and their evolution 
can be handled within this framework.
All proofs in this paper are only sketched since space is limited. 
For detailed proofs see [15].

2. CATEGORICAL FRAMEWORK

Category theory is appropriate for our purposes for two reasons. 
First we can express the typing of some data D in a model M by 
a morphism  t : DM .  The morphism assigns to  each data 
element  its  type.  Second we need  to  express  refactorizations 
between models and migrations between typed data. Since we 
are  not  only  interested  in  the  model  states  before  and  after 
refactorization but in the refactorization process itself, it is also 
a good choice to represent a model refactorization from model 
M to  model  N by morphisms: M 

l
K 

r
N .  The  pair  (l,  r) 

represents  an  arbitrary  relation  between  M and  N and  can 
model:
1. Deletion of model objects, i. e. l is not surjective,
2. Addition of model objects, i. e. r is not surjective,
3. Renaming of model objects,  i. e.  l and  r are bijective but 

not identities,
4. Splitting of model objects, i. e. l is not injective, and
5. Gluing of model objects, i. e. r is not injective.
Since we do not  require  the same properties  for typings and 
refactorizations  in  general,  we  distinguish  a  special  class  of 
morphisms for each purpose. 
Given a typed database t : DM  and a model refactorization 
M 

l
K 

r
N ,  we want to canonically construct  the induced 

migration to some typed database  u: E N . As a first step, 
we can use the  pullback construction of  t and  l,  which shall 
result in a typed database  v : FK . In the second step, we 
need  to  construct  a  pullback  complement  of  v and  r. 
Unfortunately, such a pullback complement is not guaranteed to 
exist nor need be unique if it exists. Thus we have to require the 
unique existence of some special pullback complements for our 
framework.

4 Graphs or some generalization of graphs can be and have been 
used to generalize object-oriented and entity-relationship models.

Definition 1 (Migration Framework). A migration framework 
is a category C together with two subcategories  T and  R which 
have  the  same objects  as  C.  The  morphisms  in  T are  called 
typings and the morphisms in  R are called  modifications.  The 
system (C, T, R) is subject to the following requirements:
(A1) C and R have pullbacks and pullbacks in R are pullbacks in 

C as well.
(A2) Pullbacks in C preserve epimorphisms.
(A3) If  l ' :F D , v: F K  is the pullback of the pair of 

morphisms  t : DM ∈T  and  l :K M ∈R ,  then 
l '∈R and v∈T .

(A4) Each morphism pair v :FK∈T ,r :K N∈R  has 
a  unique  (up  to  isomorphism)  pullback  complement 
r ' : F E ,u :E N  5,  such  that  r' is  epimorphism 

and  r '∈R  and  u∈T .  Such a pullback complement is 
called initial pullback complement.

Definition  2  (Migration).  Let  (C,  T,  R)  be  a  migration 
framework.  A  model refactorization is  a pair  of  R-morphisms 
l :KM ,r: KN  .  The  application of  a  model 

refactorization  R=l: KM ,r: KN   to  a  typing 
t : DM ∈T  is  defined  by  the 

migration diagram to the right,  where 
(1)  is  pullback  of  l and  t,  and  (2)  is 
initial pullback complement of r and v. 
The result is u.
Note that  v is typing due to axiom A3 
of the migration framework. Therefore, 
axiom A4 guarantees  the  existence of 
the initial pullback complement diagram (2).
Proposition 3 (Uniqueness of Migration). The system u that is 
the  result  of  migrating  the  system  t by  refactorization  R is 
uniquely determined up to isomorphism.  Therefore we can write 
Rt=u .

Proof. Direct  consequence  of  the  axioms  of  a  migration 
framework and the construction of a migration.
The axioms of a migration framework are strong enough to show 
that  the  result  of  applying  the  sequential  composition  of  two 
model  refactorizations  coincides  with  the  system  which  we 
obtain if we apply the two  refactorizations sequentially. The rest 
of this section is dedicated to this result.
Definition  4  (Sequential  Composition).  The  sequential 
composition  R2 °R1=l1 ° p1: J  M , r2° p2: J  P  of two 
refactorizations  R1=l1: K M , r1: K N   and 
R2=l 2: H N , r2 :H P  is  defined  by  the  pullback 

object  p1 : J K , p2 :J H   of r1 and l2 , see below:

Note  that  the  sequential  composition  is  well-defined  due  to 
axiom A1 of migration frameworks.

5 A
b ' D 

a ' C  is pullback complement of A
a B

b C  if (a,b') is 
pullback of (b,a').

M NK

D EF

r

u    v    

r'l'

l

t  (1) (2)

Fig. 1: Sequential composition
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Theorem  5  (Sequential  Composition).  If  the  sequential 
composition   R2 °R1  of two refactorizations  is defined,  we 
have  R2 °R1t =R2R1t  .

Proof Sketch. Consider the following diagram, which depicts 
R2 °R1t  as well as R2R1t  :

Let us first consider  R2R1t  .  This migration sequence is 
given  by  the  four  squares  (MKFD),  (KNEF),  (NHCE),  and 
(HPBC).  The  morphisms  (p1,p2)  are  given  as  pullback 
morphisms  by  the  construction  of  R2 °R1 .  We  construct 
(p1',p2') as pullback of (r1',l2'). The morphism u2 is the universal 
completion of the diagram into the pullback object J. Now, the 
squares (KJIF) and (JHCI) become pullbacks as well. Since r1' 
is epi, p2' is epi as well by axiom A2. Thus, (JHCI) is initial 
pullback complement of u2 and p2. By uniqueness (Def. 1, A4) 
and the fact that epimorphisms compose, (w, r2'  o p2') is initial 
pullback complement of (u2, r2 o p2). Since pullbacks compose, 
(u2, l1' o p1') is pullback of (t, l1 o p1). This together shows that 
R2 °R1  migrates t to w as well.

Theorem  5  and  its  consequences  are  necessary  for  any 
reasonable migration framework:
1. Several refactorization steps can be composed.  Instead of 

performing many simple migration steps sequentially, the 
result can be obtained by a single more complex migration. 

2. Vice  versa,  complex migrations  can  be decomposed  into 
more elementary steps. (This might be a topic for further 
research, finding atomic migrations.)

3. This can be the basis for some sort of migration scripts. A 
sequence of migration steps performed to one information 
system can be “recorded” in a composition. After that it can 
be “replayed” in a single step to another system.

4. Sequential composition can be improved if we omit inverse 
atomic steps in two consecutive refactorizations.

5. Sequential composition does not result in effects that can 
not be observed using the component steps.

There are several other results which can be obtained on this 
very abstract level and hold for any instance of the framework.6 
In the rest of the paper, we demonstrate that there are instances 

6 Another example is vertical composition: If we stack migrations 
vertically, we obtain a simple migration as well, compare [15].

that  are  interesting  from the  theoretical  as  well  as  from the 
practical point of view.  

3. ADDITION, RENAMING, AND REMOVAL

In  this  section,  we provide  the  first  instance of  the  migration 
framework in the sense of definition 1. The basis,  also for the 
instance in the next section, is the following category of simple 
graphs.
Definition 6 (Graph). The category G of graphs is the algebraic 
category w. r. t. the following signature:

Sorts: Object 
Opns: source, target: Object → Object .

This is  a simple form of graphs where  we do  not  distinguish 
between  nodes  and  edges.  In  such  a  graph,  nodes  can  be 
characterized as objects  n such that source(n)  =  n = target(n). 
Graphs  and  graph  morphisms  of  this  type  provide  more 
flexibility  in  the  refactorization/migration  context  we  are 
considering here, for example: if two nodes x and y are mapped 
to the same node z, it is possible that a morphism maps an edge e 
with source(e) = x and target(e) = y to z as well. 
Definition 7  (Graph as a migration framework ARR).  The 
migration framework  ARR is given by the following system of 
categories  ARR =  (G,G,GI),  where  GI is  G restricted  to 
monomorphisms only.
Note that all axioms of a migration framework are satisfied.  G, 
like all  algebraic  categories,  has  all  limits.  Pullbacks preserve 
monomorphisms.  Thus  A1  and  A3  are  satisfied.  There  is  a 
forgetful functor V:  G → Set and epimorphisms coincide with 
retractions  in  Set.  Since  V  preserves  limits  and  pullbacks 
preserve retractions, pullbacks in G preserve epimorphisms (A2). 
To show axiom A4, let a:A → B and b:B → C be given and b be 
injective.  We construct  the initial  pullback complement as (A, 
idA,  b   o  a).  That  this  results  in  a  pullback diagram is  easily 
checked.  Since b is mono,  in any initial  pullback complement 
(X, c:A → X, d:X → C), c must be mono. The morphism c being 
mono and epi gives an isomorphism. Hence, X is isomorphic to 
A, as desired. 
The instance ARR allows to delete model objects (left-hand side 
of the refactorization is not  epi).  The corresponding migration 
deletes all instances of the removed model object. Model objects 
can also be added (right-hand side of the refactorization is not 
epi).  The  corresponding  migration  does  not  generate  any 
instances at all and leaves the instance sets of the added model 
objects empty. The possibility of renaming is always given, since 
neither the left-hand nor the right-hand side of a refactorization 
is required to be an inclusion. 
The  nice  properties  of  ARR can  be  re-obtained  on  the 
categorical  level,  if we allow arbitrary morphisms for the left-
hand sides of refactorizations, but stick to injective morphisms 
on the right-hand side. Then we get the possibility of copying 
objects during the migration.  But  we do not  have any inverse 
operation, that glues together several copies of the same object. 
This seems not  reasonable from the application point  of view, 
especially  because  we  do  not  possess  any  operation  that 
compensates or undoes wrong copy processes.
But  non-injective  morphisms  as  right-hand  sides  of  refac-
torizations must be handled with care. In the general case, we do 
not have initial pullback complements as the following counter-
example  demonstrates.  The  right-hand  side  being  an 

Fig. 2: Migration sequence
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epimorphism  is  not  sufficient  as  some  authors  erroneously 
argue [17].7 
Example  8  (Ambiguous  Pullback  Complements).  In  the 
situation depicted in Fig. 3, epimorphism f and morphism g do 
not possess an initial pullback complement in G, since (g,f1*) is 
pullback of (f, g1*) and (g,f2*) is pullback of (f,g2*) but D1 and 
D2 are not isomorphic:
There seems to be no chance to avoid this type of ambiguity, if 
we  do  not  put  additional  requirements  on   the  “vertical” 
morphisms  g,  g1*  and  g2*,  the  typings  in  our  case.  These 
properties  shall  single  out  a  unique  choice  for  the  pullback 
complement extension of g. This approach has been prepared 
by axiom A4 of definition 1 and is elaborated in the following 
section.

4. COPYING AND MERGING

Example  8  demonstrates  that  arbitray  gluing  in  a  refactor-
ization's  right-hand  side  introduces  ambiguity  for  the  in-
stantiation of the gluing in the induced migration. This type of 
ambiguity  cannot  be  accepted  in  a  reasonable  migration 
framework.  There  seems  to  be  no  way  of  controlling  this 
ambiguity, if we put requirements on the modifications only. If 
we use restrictions for the typings there might be a chance to 
single out a unique gluing on the migration level. 
This idea can be made more concrete using example 8 again: If 
we knew, that gluing is only permitted within components and 
the object 21 together with object 31 resp. 22 together with 32 

form components in graph A, we can guess that (f2*,g2*) is the 
right  pullback  complement.  On  the  other  hand,  if  the 
components in graph A are given by {21,32} and  {22,31}, the 
right choice is (f1*,g1*). These informal ideas of “components”, 
“intra-component-gluing”,  and  typings  that  “respect 
components” are made precise in the rest of this section.

7 See also [16] for a discussion of pullback complements of graphs.

Definition  9  (Component  Graph).  A  component  graph
G ,P , i   consists of a graph G, a system of part sets P, and a 

family  of  embeddings i=i p : p→G p∈P ,  such  that  the 
following two requirements are met:

1. (GObject, i) is the sum of  P, written G ,i=∑P . 

2. If x ~ y, source(x) ~ source(y) and target(x) ~ target(y), where 
x ~  y if  x and  y are in the same part, which means that  x = 
ip(x') and y = ip(y') for some p ∈ P. 

A  morphism   f G , f P: G , P , iH , Q , j  is  a 
morphism  f G :GH  on  graphs  together  with  a  family 

f P= f p: p →q p∈Q p∈P  of mappings, such that

3.  f G °i p= jq p ° f p p∈P . 

The  category  CG consists  of  all  component  graphs  and  their 
morphisms.                                                              ■   
Remarks. 
For any component graph  G ,P ,i , P is a decomposition of 
the carrier set Gobject (up to isomorphism). 
Each  component  graph  morphism  maps  components  in  the 
domain to components in the co-domain. 
The  abstract  concept  of  components,  presented  here,  is  often 
realized  by some special  sort  of associations:  objects  p and  q 
belong to the same component if there is a path of  symmetric 
one-to-one associations from p to q.
Definition  10  (CG  as  a  migration  framework  CM).  The 
category CG of component graphs can be turned into a migration 
framework CM = (CG, CGT, CGR), if 

1. for  all  typings  f G , f P  in  CGT, fP is  a  family  of 
isomorphisms and

2. for  all  modifications  f G , f P: G , P , i H , Q , j   in 
CGR,  fP  is  a family  of  epimorphisms  and  i p , f p  is 
pullback of  f G , j q p  for each part p in G. 

Remarks.  Requirement  (1)  for  typings,  on  the  one  hand, 
guarantees  that  any  component  in  a  model  is  completely 
instantiated in any instance, and that two objects that map to the 
same  model  object  are  identical  or  in  different  components. 
Requirement  (2)  for modifications,  on the other hand,  realizes 
the idea that gluing can only occur within components, since it 
states that two model objects that are mapped to the same object 
by a modification must be in the same component.
The  axioms  A1,  A2,  and  A3  for  migration  frameworks  are 
satisfied  by  CM due  to  corresponding  properties  of  the 
underlying categories of graphs and sets. To show axiom A4, we 
provide  an  explicit  construction  of  the  initial  pullback 
complement in the required situation.
Construction 11 (Pullback complements in CM). Let a typing 
tG , tP: F ,P , i G ,Q , j   and  a  modification 
rG , rP: G ,Q , jH ,R , k   be given. Then we construct 

the  pullback  complement   I ,S , l ,  the  modification 
rG ' , r P ' :F , P ,i  I , S , l  ,  and  the  typing 
tG ' , tP ' : I , S , l H , R , k  for  each  part  p in  P  as 

follows: 
1. pS=r t  p   is a copy of the part r t  p ∈R ,

2. r ' p: p pS : :=r° t , and

Fig. 3: Ambiguous pullback complements
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3. t ' p S
: pS rt p: :=id r t  p  .

Now let 

4. the carrier I=∑
p∈P

pS , 

5. r ' :F  I=∑
p∈P

r ' p , and 

6. t ' : IH=∑
p∈P

t ' p S .

The operation structure on I can be defined by:
7. sourceI(x) = r'(sourceF(y)), where x = r'(y) and
8. targetI(x) = r'(targetF(y)), where x = r'(y).
It is well-defined due to definition 9 (2). By this definiton  r' 
becomes  a  graph  morphism. By  construction,  we  have 
t ' °r '=r ° t . Thus, t' is a graph morphism and a typing since 

it is the sum of identities. The morphism r' is epi on each part 
and  as  a  graph  morphism  by  construction,  and  –  again  by 
construction – the inverse image of each part in I is a part in F. 
Therefore, r' is a modification. 
Proposition  12  (Pullback  complements  in  CM).  The 
construction  11  provides  essentially  unique  initial  pullback 
complements.
Proof Sketch.  The constructed square commutes. That it is a 
pullback,  can  be easily checked  using  the  part  structures  on 
each graph and the fact that t' is a sum of part identities and the 
kernel of  r is contained in the decomposition  Q on  G.  Using 
this fact again and that  t is a sum of isomorphisms, we obtain 
that  the  kernel  of  r  in  every  pullback  complement
r: FJ ,t :J H  ,  in  which  t  is  a typing,  coincides 

with the kernel of  r'. Thus, the constructed square is the only 
(up to isomorphism) initial pullback complement.
Although  CM allows  copying8 and  gluing  of  objects  only 
within  the  same  component,  it  provides  some  interesting 
features for our purposes of information system refactorization, 
as the following example shows.
Example 13 (Redirection of associations). Consider the model 
refactorization in the picture below:

All three graphs have 3 components; the non-trivial component 
in each graph (that has more than one element) is highlighted. 
Using  this  refactorization  in  a  migration  redirects  all 
associations of type “7” from the source of “6” to the target of 
“6”. It uses an intermediate vertex “2”, that is introduced by the 
left-hand side “l” as an unfolding and removed again by the 
right-hand side “r” by a corresponding folding. This example 

8 Note that all copies of an object are put into the same component 
as the original object, since also the left-hand sides of 
refactorizations must be modifications. Thus, every copy process 
can be made undone by an inverse modification.

shows,  that  we  are  able  to  redirect  association  sources  and 
targets in CM as long as we stay in the same component.

5. CONCLUSIONS: HANDLING INHERITANCE

The formal framework we have developed in this paper is able to 
handle  a  broad  spectrum of  model  refactorizations:  Addition, 
deletion,  and  renaming  of  arbitrary  model  objects  as  well  as 
foldings and unfoldings of model objects  which belong to the 
same  component.  We  have  shown  that  all  refactorizations 
consisting of these types of “elementary actions” induce a unique 
and consistent migration of existing instances from the old to the 
new model. 
In order to be applicable to real-world object-oriented systems, 
however,  it  should  be able  to  handle  inheritance structures  as 
well.  Inheritance  is  some  sort  of  static  composition  between 
objects: an object of class c can be considered to be composed of 
a  set  of  (sub-)objects,  namely  one  object  for  each  direct  or 
indirect ancestor class c' of c.9 All these objects are created at the 
same time the most special object is created. And they are also 
destroyed  at  the  same  time.  Hence,  we  can  model  them  as 
explicit parts in a component graph on the instance level in our 
framework .
But these components are not components in the sense of typings 
in  CM. It is not the case, that the  complete inheritance tree of 
classes needs to be instantiated, if one class is. In general, each 
object is a proper subpart of the complete inheritance tree of its 
class, only. Our approach is not able to handle those incomplete 
parts. Many examples show that pullback complements (axiom 
4) are not guaranteed to exist in this situation.
We,  therefore,  have  to  use  a  trick  to  handle  inheritance.  We 
always instantiate complete inheritance graphs, when an object is 
created  and  keep  the  information  about  the  most  special  real 
object in the resulting part (of real and extra objects). Then we 
distinguish  two  views  on  the  system:  (1)  the  refactorization  
perspective and  (2)  the  operational  perspective.  In  the  first 
perspective,  all  objects  are  visible  and  our  framework  is 
applicable. The second perspective blends out all extra objects in 
order to keep the system's state consistent from the operational 
point of view.10    
With these additional arrangements, the formal model presented 
in this paper seems fit for practical applications.
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