
Refactoring Information Systems

– A Formal Framework –
M. Löwe, H. König, M. Peters, and Ch. Schulz

FHDW Hanover, Freundallee 15
D-30173 Hanover, Germany

ABSTRACT

We introduce a formal framework for the refactorization of
complete information systems, i. e. the data model and the data
itself. Within this framework model transformations are
uniquely extended to the data level and result in data migrations
that protects the information contained in the data. The
framework is described using general and abstract notions of
category theory. Two concrete instances of this framework
show the applicability of the abstract concept to concrete object
models. In the first instance, we only handle addition, renaming
and removal of model objects. The second instance can also
handle folding and unfolding within object compositions.
Finally, we discuss how an instance of the framework should
look like that is able to handle inheritance structures as well.
Keywords: Refactoring, Migration, Graph transformation,
Pullback complement

1. INTRODUCTION

The only constant thing is change. This is especially true for the
information and communication business. Currently,
information systems in many companies are subject to change.
This is mainly due to the technological progress connected to
the Internet which enables completely new sorts of electronic
business. Thus, we see big efforts to re-engineer the technical
basis on the one hand and to improve the business processes
and information models on the other hand [1].
This development has been reflected in the research and
development community in the last years. Agile and Extreme
Programming Techniques [2] [3] [4] aim at supporting the
ongoing reengineering processes by providing refactorization
methods, techniques, patterns [5][6] and tools [7]. These tools
enable consistent global changes of a whole software system,
for example to introduce some design patterns which are
necessary for the system to take the next evolution step. This
puts the flexibility into the development process that is needed
to keep a system up-to-date (without any over-specifications at
the beginning of the development) and to realize changing
requirements quickly.
For the time being, the agile techniques are mainly restricted to
the improvement and change of software systems within the
development phase. There are only few attempts to apply the
methods to running information systems and to extend the agile
perspective to the maintenance and production phase of a
software system's life cycle [8] [9]. The main obstacle for agile
techniques here is existing data. The bigger the database, the
larger the problems. If a model of a running information system
is changed, we are faced with one central question: “What shall
we do with the data conforming to the old model?” Up to now,
we hear two major answers:

1. Leave the data as it is and map the new model to the old one
using for example some object-relational-mapping tools
[10].1

2. Migrate the data from the old model to the new one by
crafting corresponding migration scripts and performing the
(long-running) data migration at night or on the weekend.

Both solutions possess big disadvantages. The first one leads to
complex mappings if applied several times. This complexity is
very likely to produce performance problems and reduce the
development speed of the engineering team in the long run.2 The
second solution requires long production breaks and consumes a
lot of development and test time for software (migration scripts)
that is thrown away after success.
We propose another approach, namely the generation of the
necessary data migration directly from model refactorizations,
compare also [11]. The actual migration can be performed for the
whole database at once as in the second approach above. We
save the development costs in this scenario. If the migration can
be performed on demand3 for single records – only if a record is
touched which has not been migrated yet – we are also able to
avoid production breaks. The research and development program
necessary to elaborate the theoretical basis and a corresponding
tool support for this approach is ambitious. We are just starting it
within a project supported by the FHDW Hanover.
One central issue is the correctness of the induced migrations.
We can only benefit from this approach if we can trust in the
produced migrations without any further tests. Therefore, we
present a theoretical framework in this paper, which
1. is able to represent models and instances in a uniform meta-

model,
2. comes equipped with a suitable notion of semantics-

preserving model refactorization,
3. provides refactorization-induced correct transformations of

the instances (migrations), and
4. proves its applicability by satisfying necessary and natural

properties for refactorizations and migrations.
The general and abstract framework, which is presented in
section 2, is built on category theory [12]. In this theory, we not
only have a very general notion of structured object. By the
notion of morphism, we also get a natural way of representing
(1) typings of instance objects in model objects as well as (2)
model changes and instance migrations. Even and just on this

1 An older and worse version of this approach is: Leave the data-
model as it is and redefine the meaning of the data within the model,
for example by using comma-separated multi-value fields in a single
string column.

2 The longer this approach is applied, the bigger the problems to
switch to the second one.

3 Comparable to load-on-demand-techniques for instantiating objects
from relational database rows.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 266 ISSN: 1690-4524

very abstract level, we can determine the properties any
reasonable refactorization framework shall possess. We
demonstrate this by evaluating the properties for
refactorizations to possess a consistent notion of sequential
composition.
Section 3 and 4 provide instances of the framework, where
objects are graphs and morphisms are some sort of graph-
structure-preserving mappings as being outlined in the theory
of algebraic graph transformation [13].4
Section 3 provides an instance of the framework that can handle
addition, renaming, and deletion of model objects only. The
formal description is straightforward.
Section 4 introduces a model that can handle splitting and
gluing of model objects within composition structures. Here it
is possible to redirect associations as long the source and the
target remain in the same composition structure. The complex
construction in this section demonstrate the increase of
complexity if we want to extend refactorizations from models to
whole information systems.
Finally, we sketch in section 5 how inheritance structures (like
for example in the UML-class-models [14]) and their evolution
can be handled within this framework.
All proofs in this paper are only sketched since space is limited.
For detailed proofs see [15].

2. CATEGORICAL FRAMEWORK

Category theory is appropriate for our purposes for two reasons.
First we can express the typing of some data D in a model M by
a morphism t : DM . The morphism assigns to each data
element its type. Second we need to express refactorizations
between models and migrations between typed data. Since we
are not only interested in the model states before and after
refactorization but in the refactorization process itself, it is also
a good choice to represent a model refactorization from model
M to model N by morphisms: M 

l
K 

r
N . The pair (l, r)

represents an arbitrary relation between M and N and can
model:
1. Deletion of model objects, i. e. l is not surjective,
2. Addition of model objects, i. e. r is not surjective,
3. Renaming of model objects, i. e. l and r are bijective but

not identities,
4. Splitting of model objects, i. e. l is not injective, and
5. Gluing of model objects, i. e. r is not injective.
Since we do not require the same properties for typings and
refactorizations in general, we distinguish a special class of
morphisms for each purpose.
Given a typed database t : DM and a model refactorization
M 

l
K 

r
N , we want to canonically construct the induced

migration to some typed database u: E N . As a first step,
we can use the pullback construction of t and l, which shall
result in a typed database v : FK . In the second step, we
need to construct a pullback complement of v and r.
Unfortunately, such a pullback complement is not guaranteed to
exist nor need be unique if it exists. Thus we have to require the
unique existence of some special pullback complements for our
framework.

4 Graphs or some generalization of graphs can be and have been
used to generalize object-oriented and entity-relationship models.

Definition 1 (Migration Framework). A migration framework
is a category C together with two subcategories T and R which
have the same objects as C. The morphisms in T are called
typings and the morphisms in R are called modifications. The
system (C, T, R) is subject to the following requirements:
(A1) C and R have pullbacks and pullbacks in R are pullbacks in

C as well.
(A2) Pullbacks in C preserve epimorphisms.
(A3) If l ' :F D , v: F K is the pullback of the pair of

morphisms t : DM ∈T and l :K M ∈R , then
l '∈R and v∈T .

(A4) Each morphism pair v :FK∈T ,r :K N∈R has
a unique (up to isomorphism) pullback complement
r ' : F E ,u :E N  5, such that r' is epimorphism

and r '∈R and u∈T . Such a pullback complement is
called initial pullback complement.

Definition 2 (Migration). Let (C, T, R) be a migration
framework. A model refactorization is a pair of R-morphisms
l :KM ,r: KN  . The application of a model

refactorization R=l: KM ,r: KN  to a typing
t : DM ∈T is defined by the

migration diagram to the right, where
(1) is pullback of l and t, and (2) is
initial pullback complement of r and v.
The result is u.
Note that v is typing due to axiom A3
of the migration framework. Therefore,
axiom A4 guarantees the existence of
the initial pullback complement diagram (2).
Proposition 3 (Uniqueness of Migration). The system u that is
the result of migrating the system t by refactorization R is
uniquely determined up to isomorphism. Therefore we can write
Rt=u .

Proof. Direct consequence of the axioms of a migration
framework and the construction of a migration.
The axioms of a migration framework are strong enough to show
that the result of applying the sequential composition of two
model refactorizations coincides with the system which we
obtain if we apply the two refactorizations sequentially. The rest
of this section is dedicated to this result.
Definition 4 (Sequential Composition). The sequential
composition R2 °R1=l1 ° p1: J  M , r2° p2: J  P of two
refactorizations R1=l1: K M , r1: K N  and
R2=l 2: H N , r2 :H P is defined by the pullback

object  p1 : J K , p2 :J H  of r1 and l2 , see below:

Note that the sequential composition is well-defined due to
axiom A1 of migration frameworks.

5 A
b ' D 

a ' C is pullback complement of A
a B

b C if (a,b') is
pullback of (b,a').

M NK

D EF

r

u v

r'l'

l

t (1) (2)

Fig. 1: Sequential composition

M
N

K r
1

l
1

PH
r

2
l
2

J
 p

2
 p

1

(PB)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 67ISSN: 1690-4524

Theorem 5 (Sequential Composition). If the sequential
composition R2 °R1 of two refactorizations is defined, we
have R2 °R1t =R2R1t  .

Proof Sketch. Consider the following diagram, which depicts
R2 °R1t as well as R2R1t  :

Let us first consider R2R1t  . This migration sequence is
given by the four squares (MKFD), (KNEF), (NHCE), and
(HPBC). The morphisms (p1,p2) are given as pullback
morphisms by the construction of R2 °R1 . We construct
(p1',p2') as pullback of (r1',l2'). The morphism u2 is the universal
completion of the diagram into the pullback object J. Now, the
squares (KJIF) and (JHCI) become pullbacks as well. Since r1'
is epi, p2' is epi as well by axiom A2. Thus, (JHCI) is initial
pullback complement of u2 and p2. By uniqueness (Def. 1, A4)
and the fact that epimorphisms compose, (w, r2' o p2') is initial
pullback complement of (u2, r2 o p2). Since pullbacks compose,
(u2, l1' o p1') is pullback of (t, l1 o p1). This together shows that
R2 °R1 migrates t to w as well.

Theorem 5 and its consequences are necessary for any
reasonable migration framework:
1. Several refactorization steps can be composed. Instead of

performing many simple migration steps sequentially, the
result can be obtained by a single more complex migration.

2. Vice versa, complex migrations can be decomposed into
more elementary steps. (This might be a topic for further
research, finding atomic migrations.)

3. This can be the basis for some sort of migration scripts. A
sequence of migration steps performed to one information
system can be “recorded” in a composition. After that it can
be “replayed” in a single step to another system.

4. Sequential composition can be improved if we omit inverse
atomic steps in two consecutive refactorizations.

5. Sequential composition does not result in effects that can
not be observed using the component steps.

There are several other results which can be obtained on this
very abstract level and hold for any instance of the framework.6
In the rest of the paper, we demonstrate that there are instances

6 Another example is vertical composition: If we stack migrations
vertically, we obtain a simple migration as well, compare [15].

that are interesting from the theoretical as well as from the
practical point of view.

3. ADDITION, RENAMING, AND REMOVAL

In this section, we provide the first instance of the migration
framework in the sense of definition 1. The basis, also for the
instance in the next section, is the following category of simple
graphs.
Definition 6 (Graph). The category G of graphs is the algebraic
category w. r. t. the following signature:

Sorts: Object
Opns: source, target: Object → Object .

This is a simple form of graphs where we do not distinguish
between nodes and edges. In such a graph, nodes can be
characterized as objects n such that source(n) = n = target(n).
Graphs and graph morphisms of this type provide more
flexibility in the refactorization/migration context we are
considering here, for example: if two nodes x and y are mapped
to the same node z, it is possible that a morphism maps an edge e
with source(e) = x and target(e) = y to z as well.
Definition 7 (Graph as a migration framework ARR). The
migration framework ARR is given by the following system of
categories ARR = (G,G,GI), where GI is G restricted to
monomorphisms only.
Note that all axioms of a migration framework are satisfied. G,
like all algebraic categories, has all limits. Pullbacks preserve
monomorphisms. Thus A1 and A3 are satisfied. There is a
forgetful functor V: G → Set and epimorphisms coincide with
retractions in Set. Since V preserves limits and pullbacks
preserve retractions, pullbacks in G preserve epimorphisms (A2).
To show axiom A4, let a:A → B and b:B → C be given and b be
injective. We construct the initial pullback complement as (A,
idA, b o a). That this results in a pullback diagram is easily
checked. Since b is mono, in any initial pullback complement
(X, c:A → X, d:X → C), c must be mono. The morphism c being
mono and epi gives an isomorphism. Hence, X is isomorphic to
A, as desired.
The instance ARR allows to delete model objects (left-hand side
of the refactorization is not epi). The corresponding migration
deletes all instances of the removed model object. Model objects
can also be added (right-hand side of the refactorization is not
epi). The corresponding migration does not generate any
instances at all and leaves the instance sets of the added model
objects empty. The possibility of renaming is always given, since
neither the left-hand nor the right-hand side of a refactorization
is required to be an inclusion.
The nice properties of ARR can be re-obtained on the
categorical level, if we allow arbitrary morphisms for the left-
hand sides of refactorizations, but stick to injective morphisms
on the right-hand side. Then we get the possibility of copying
objects during the migration. But we do not have any inverse
operation, that glues together several copies of the same object.
This seems not reasonable from the application point of view,
especially because we do not possess any operation that
compensates or undoes wrong copy processes.
But non-injective morphisms as right-hand sides of refac-
torizations must be handled with care. In the general case, we do
not have initial pullback complements as the following counter-
example demonstrates. The right-hand side being an

Fig. 2: Migration sequence

J

 M K

 N

 P H
l
1

p
1

 p

2

r

1

l
2

r
2

 D F

 I

 E

B C
l
1
'

 p
1
' p

2
'

r
1
'

 l
2
'

r
2
'

t v
1

 u
2

u
1

v
2
 w

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 268 ISSN: 1690-4524

epimorphism is not sufficient as some authors erroneously
argue [17].7
Example 8 (Ambiguous Pullback Complements). In the
situation depicted in Fig. 3, epimorphism f and morphism g do
not possess an initial pullback complement in G, since (g,f1*) is
pullback of (f, g1*) and (g,f2*) is pullback of (f,g2*) but D1 and
D2 are not isomorphic:
There seems to be no chance to avoid this type of ambiguity, if
we do not put additional requirements on the “vertical”
morphisms g, g1* and g2*, the typings in our case. These
properties shall single out a unique choice for the pullback
complement extension of g. This approach has been prepared
by axiom A4 of definition 1 and is elaborated in the following
section.

4. COPYING AND MERGING

Example 8 demonstrates that arbitray gluing in a refactor-
ization's right-hand side introduces ambiguity for the in-
stantiation of the gluing in the induced migration. This type of
ambiguity cannot be accepted in a reasonable migration
framework. There seems to be no way of controlling this
ambiguity, if we put requirements on the modifications only. If
we use restrictions for the typings there might be a chance to
single out a unique gluing on the migration level.
This idea can be made more concrete using example 8 again: If
we knew, that gluing is only permitted within components and
the object 21 together with object 31 resp. 22 together with 32

form components in graph A, we can guess that (f2*,g2*) is the
right pullback complement. On the other hand, if the
components in graph A are given by {21,32} and {22,31}, the
right choice is (f1*,g1*). These informal ideas of “components”,
“intra-component-gluing”, and typings that “respect
components” are made precise in the rest of this section.

7 See also [16] for a discussion of pullback complements of graphs.

Definition 9 (Component Graph). A component graph
G ,P , i  consists of a graph G, a system of part sets P, and a

family of embeddings i=i p : p→G p∈P , such that the
following two requirements are met:

1. (GObject, i) is the sum of P, written G ,i=∑P .

2. If x ~ y, source(x) ~ source(y) and target(x) ~ target(y), where
x ~ y if x and y are in the same part, which means that x =
ip(x') and y = ip(y') for some p ∈ P.

A morphism  f G , f P: G , P , iH , Q , j is a
morphism f G :GH on graphs together with a family

f P= f p: p →q p∈Q p∈P of mappings, such that

3.  f G °i p= jq p ° f p p∈P .

The category CG consists of all component graphs and their
morphisms. ■
Remarks.
For any component graph G ,P ,i , P is a decomposition of
the carrier set Gobject (up to isomorphism).
Each component graph morphism maps components in the
domain to components in the co-domain.
The abstract concept of components, presented here, is often
realized by some special sort of associations: objects p and q
belong to the same component if there is a path of symmetric
one-to-one associations from p to q.
Definition 10 (CG as a migration framework CM). The
category CG of component graphs can be turned into a migration
framework CM = (CG, CGT, CGR), if

1. for all typings  f G , f P in CGT, fP is a family of
isomorphisms and

2. for all modifications  f G , f P: G , P , i H , Q , j  in
CGR, fP is a family of epimorphisms and i p , f p is
pullback of  f G , j q p for each part p in G.

Remarks. Requirement (1) for typings, on the one hand,
guarantees that any component in a model is completely
instantiated in any instance, and that two objects that map to the
same model object are identical or in different components.
Requirement (2) for modifications, on the other hand, realizes
the idea that gluing can only occur within components, since it
states that two model objects that are mapped to the same object
by a modification must be in the same component.
The axioms A1, A2, and A3 for migration frameworks are
satisfied by CM due to corresponding properties of the
underlying categories of graphs and sets. To show axiom A4, we
provide an explicit construction of the initial pullback
complement in the required situation.
Construction 11 (Pullback complements in CM). Let a typing
tG , tP: F ,P , i G ,Q , j  and a modification
rG , rP: G ,Q , jH ,R , k  be given. Then we construct

the pullback complement I ,S , l , the modification
rG ' , r P ' :F , P ,i  I , S , l  , and the typing
tG ' , tP ' : I , S , l H , R , k for each part p in P as

follows:
1. pS=r t  p  is a copy of the part r t  p ∈R ,

2. r ' p: p pS : :=r° t , and

Fig. 3: Ambiguous pullback complements

1

2 3

1

2,3

1

2
1

3
1

f

f
1
*

f
2 *

2
2 3

2

1

2
1
,3

2
2

2
,3

1

1

2
1
,3

1 2
2
,3

2

g
1 *

g
2 *

A

B C

D
1

D
2

g

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 69ISSN: 1690-4524

3. t ' p S
: pS rt p: :=id r t  p  .

Now let

4. the carrier I=∑
p∈P

pS ,

5. r ' :F  I=∑
p∈P

r ' p , and

6. t ' : IH=∑
p∈P

t ' p S .

The operation structure on I can be defined by:
7. sourceI(x) = r'(sourceF(y)), where x = r'(y) and
8. targetI(x) = r'(targetF(y)), where x = r'(y).
It is well-defined due to definition 9 (2). By this definiton r'
becomes a graph morphism. By construction, we have
t ' °r '=r ° t . Thus, t' is a graph morphism and a typing since

it is the sum of identities. The morphism r' is epi on each part
and as a graph morphism by construction, and – again by
construction – the inverse image of each part in I is a part in F.
Therefore, r' is a modification.
Proposition 12 (Pullback complements in CM). The
construction 11 provides essentially unique initial pullback
complements.
Proof Sketch. The constructed square commutes. That it is a
pullback, can be easily checked using the part structures on
each graph and the fact that t' is a sum of part identities and the
kernel of r is contained in the decomposition Q on G. Using
this fact again and that t is a sum of isomorphisms, we obtain
that the kernel of r in every pullback complement
r: FJ ,t :J H  , in which t is a typing, coincides

with the kernel of r'. Thus, the constructed square is the only
(up to isomorphism) initial pullback complement.
Although CM allows copying8 and gluing of objects only
within the same component, it provides some interesting
features for our purposes of information system refactorization,
as the following example shows.
Example 13 (Redirection of associations). Consider the model
refactorization in the picture below:

All three graphs have 3 components; the non-trivial component
in each graph (that has more than one element) is highlighted.
Using this refactorization in a migration redirects all
associations of type “7” from the source of “6” to the target of
“6”. It uses an intermediate vertex “2”, that is introduced by the
left-hand side “l” as an unfolding and removed again by the
right-hand side “r” by a corresponding folding. This example

8 Note that all copies of an object are put into the same component
as the original object, since also the left-hand sides of
refactorizations must be modifications. Thus, every copy process
can be made undone by an inverse modification.

shows, that we are able to redirect association sources and
targets in CM as long as we stay in the same component.

5. CONCLUSIONS: HANDLING INHERITANCE

The formal framework we have developed in this paper is able to
handle a broad spectrum of model refactorizations: Addition,
deletion, and renaming of arbitrary model objects as well as
foldings and unfoldings of model objects which belong to the
same component. We have shown that all refactorizations
consisting of these types of “elementary actions” induce a unique
and consistent migration of existing instances from the old to the
new model.
In order to be applicable to real-world object-oriented systems,
however, it should be able to handle inheritance structures as
well. Inheritance is some sort of static composition between
objects: an object of class c can be considered to be composed of
a set of (sub-)objects, namely one object for each direct or
indirect ancestor class c' of c.9 All these objects are created at the
same time the most special object is created. And they are also
destroyed at the same time. Hence, we can model them as
explicit parts in a component graph on the instance level in our
framework .
But these components are not components in the sense of typings
in CM. It is not the case, that the complete inheritance tree of
classes needs to be instantiated, if one class is. In general, each
object is a proper subpart of the complete inheritance tree of its
class, only. Our approach is not able to handle those incomplete
parts. Many examples show that pullback complements (axiom
4) are not guaranteed to exist in this situation.
We, therefore, have to use a trick to handle inheritance. We
always instantiate complete inheritance graphs, when an object is
created and keep the information about the most special real
object in the resulting part (of real and extra objects). Then we
distinguish two views on the system: (1) the refactorization
perspective and (2) the operational perspective. In the first
perspective, all objects are visible and our framework is
applicable. The second perspective blends out all extra objects in
order to keep the system's state consistent from the operational
point of view.10
With these additional arrangements, the formal model presented
in this paper seems fit for practical applications.

REFERENCES

[1] Havey, M., Essential Business Process Modeling, 2005.
[2] Martin, R. C., Agile Software Development, Principles,

Patterns, and Practices , 2002.
[3] Beck, K., Extreme Programming Explained, 2000.
[4] Beck, K., Test-driven Development by Example, 2002.
[5] Fowler, M., Refactoring: Improving the Design of Existing

Code , 1999.
[6] Kerievsky, J. , Refactoring to Patterns, 2004.
[7] D’Anjou, J et al, The Java Developer’s Guide to Eclipse,

2005.
[8] Ambler, S. W., Agile Database Techniques, 2003.
[9] Ambler, S. W., Refactoring Databases : Evolutionary

Database Design , 2006.

9 This interpretation is often used when object models are mapped to
relational database systems using the “one table per class”-strategy.
This strategy provides one relational table for each class and maps
each inheritance association to a foreign key relation from the
special to the general class.

10 Note that the model is stable under the operational perspective!

Fig. 4: Redirection of associations

1

2

4

5

6

3 7

1

2,4,5

6 3

 7

1,2,6

4

5 3

 7

rl

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 270 ISSN: 1690-4524

[10] Bauer, Ch., King, G. , Hibernate in Action , 2004.
[11] Löwe, M., Evolution Patterns – A Graphical Framework

for Software Redesign, ISAS'99, 1999
[12] Adamek, J., Herrlich, H., Strecker G. E., Abstract and

Concrete Categories - the Joy of Cats, 2006,
http://katmat.math.uni-bremen.de/acc/acc.pdf

[13] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.,
Fundamentals of Algebraic Graph Transformation, 2006.

[14] Larman, C., Applying UML and Patterns, 2005.
[15] König, H., Löwe, M., Peters, M., Schulz, Ch., A Formal

Framework for Information System Refactorization,
FHDW Hanover, Freundallee 15, D-30173 Hanover, 2006
(in German).

[16] Bauderon, M., Jacquet, H., Pullback as a generic graph
rewriting mechanism, Applied Categorical Structures
Vol.9(1), 2001.

[17] Meisen, J., Pullbacks in Regular Categories, Canad. Math.
Bull. Vol.16(2), 1973.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 71ISSN: 1690-4524

	P320658

