
Stream Control Transmission Protocol as a Transport for
SIP: a case study

Giuseppe De Marcoy, Maurizio Longoz, Dario De Vito
Dipartimento di Ingegneria dell’Informazione e Ingegneria Elettrica, University of Salerno

Fisciano,84084, Italyyz {gdemarco,longo}@unisa.it
and

Salvatore Loreto
CoRiTeL

Fisciano 84084, Italy
loreto@coritel.it

ABSTRACT
The dominant signalling protocol both in future wireless and

wired networks will be the Session Initiation Protocol (SIP), as
pointed out in the 3G IP-based mobile networks specifications,
entailing a fully Internet integrated network. The use of SIP in
the IP Multimedia Subsytem (IMS) of Release 5 involves the
development of servers capable to handle a large number of
call requests. The signaling traffic associated to such requests
could explode, if an intelligent congestion control were not in-
troduced. Stream Control Transmission Protocol (SCTP) was
born to support transport of SS7 signaling messages. However,
many of the SCTP features are also useful for transport of SIP
messages, as: congestion control mechanism, good separation
among independent messages, multihoming. Indeed, adoption
of SCTP as transport of SIP signaling might prove useful in
some situations where usual transport protocols, like TCP and
UDP, suffer performance degradation.

In this paper, we analyse the general framework wherein
SIP operates and we discuss the benefits of using SCTP as
a transport for SIP, toward fair sharing of network resources.
This study is carried on in the context of the implementation
of an high-performance SIP Proxy Server. We also present
some preliminar results of an implementation of SIP over
SCTP/UDP in a real LAN environment.

Keywords: SCTP, SIP, 3GPP, transport protocols, network
emulation.

1 INTRODUCTION

SIP is a modular design: it is independent from the lower-
layer transport protocol used, and it can run over either reliable
or unreliable message or stream transport. This does not sim-
ply mean that a SIP implementation operates in the same way
whatever the transport protocol, rather it adapts itself, in partic-
ular its interface between the lower layers and the type of trans-
port protocol, according to the chosen transport layers. The

SIP protocol delivers messages reliably. This reliabilitycan be
obtained through a connected transport protocol. Originally
SIP was implemented with TCP in mind, also for the affinity
between SIP and HTTP (HTTP, in fact, only works on TCP). In
low traffic conditions UDP becomes more advantageous than
TCP and therefore has become more widely used in the com-
mercial and open source implementation of the SIP User Agent
(UA) and the Stateless Server. The design of a new transport
protocol such as SCTP within the IETF, intended to transport
telephony signaling and generally to transport message-based
protocols, has involved the evaluation of SCTP also for SIP
signaling messages. This evaluation arose because of the risk
of congestion in the points of the network handling high num-
ber of signalling messages (more than 10000 per hour), e.g.
among Proxy servers in the 3GPP architecture. The risk of
congestion has been addressed in [3] from a signalling point
of view, e.g. the Proxies acquire knowledge about a condition
of “congestion-safety” through the analysis of special fields
inserted in the Session Description Protocol (SDP) header;ac-
cordingly Proxies may accept or refuse the request of the ses-
sions. As in [3] we agree that the risk of congestion depends
on the transport protocol used between the EndPoints, being
either Proxy server or UserAgent (UA). In this article we ana-
lyze the behaviour of SIP over the different transport protocols,
focusing our attention on the case of Proxy-Proxy communica-
tion, Proxy being either a stateful or stateless server. We show
that SCTP can guarantee the condition of “congestion-safety
between Proxies.

This paper is structured as follows: Section 2 gives an
overview of the SCTP protocol. Section 3 gives a quick eval-
uation of SIP over different transport protocol for UA-Proxy
communication. In Section 4, we describe the scenario Proxy-
Proxy and we analyse some solutions of SIP transaction map-
ping into SCTP streams to enhance performance. Section 8
describes some results obtained through our SIP module im-
plementation over a Linux machine, with its kernel modified
in order to support the SCTP protocol, as described in Section

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 386

Figure 1: Description of a possible mapping of different SIP
sessions into different streams. In SCTP streams are grouped
and sent into a single association. By this way one realizes
congestion control and suitable separation among independent
messages.

7. We suppose that the reader is familiar with the fundamental
concepts of computer networks and with the basic features of
the SIP protocol.

2 SCTP OVERVIEW

SCTP is the new transport protocol for signaling messages
on IP networks; the specification core [8] is at the Proposed
Standard level in the IP standardization process . Like TCP,
SCTP offers an end-to-end, connection-oriented, reliablede-
livery transport service for applications communicating over
an IP network. It inherits many of the functions developed for
TCP, including powerful congestion control and packet loss
recovery functionalities. The most significant differences re-
gard around the support of multistreaming, partial ordering
and multihoming.

When two EndPoints communicate through SCTP, an “as-
sociation” is set between them, to guarantee the connection-
oriented nature of the protocol. SCTP comes out with a con-
cept of “stream”, as depicted in Figure 1. A stream can be
thougth of a sublayer between the transport layer and the up-
per layer. SCTP provides sequenced delivery within streams
(partial ordering), by assuming a delivery mechanism simi-
lar to TCP in every stream. Nevertheless, an SCTP associa-
tion may include several streams that are independent of each
other (multistreaming). Thus, SCTP can give an inter-stream
sequenceless delivery by which the throughput of transportcan
be improved.

Multihoming enables an SCTP host to establish an associa-
tion with another SCTP host over multiple interfaces identified
by separate IP addresses. The EndPoint can choose an optimal
or suitable path towards multi-homed destination. This feature
adds to SCTP network level a certain degree fault tolerance
capability: When one of the paths fails, SCTP can still choose
another path to replace the previous one.

Figure 2: Example of signaling flow messages for UA-Proxy
with UDP (a), Proxy–Proxy with TCP (b) and with mapping
of transactions into SCTP Streams (c).

3 USER AGENT – PROXY

This scenario usually involves small bursts of signalling in-
formation between UA and Proxy. A non-connected protocol
such as UDP is to be preferred over TCP since it avoids use-
less delays in connection establishment, due to the aggressive-
ness of retransmission management entrusted to the SIP pro-
tocol (RetrasmissionTimeOut for SIP is 500ms, RTO for TCP
is 1500ms). However, if one compares UDP versus SCTP, the
performance gain is less significant. In fact, the SCTP associ-
ation establishment is faster than the TCP connection (SCTP
Initiation Procedure relies on a 4-way handshake where DATA
can be included into the3rd and the4th message of the se-
quence; TCP can start exchanging messages only after com-
pletion of a 3-way handshake). Moreover, the initial RTO of
SCTP can be set up according to user needs. Therefore in this
scenario it is not clear in advance which of the two, between
UDP and SCTP, should be preferred. UDP is certainly faster,
and the fact that it doesn’t implement any congestion control
mechanism is not harmful for a 3GPP network where the path
between UA and Proxy is a dedicated link established dur-
ing the Packet Data Protocol context activation [8]. However,
SCTP has some useful features with regard to the transport
of Multimedia Messages and, generally, of Instant Messaging
[9], not considered here.

4 PROXY – PROXY

In the 3GPP architecture, a large amount of signaling traf-
fic is typically generated among Proxies and especially among
core network Proxies. In fact, each Proxy handles a large num-
ber of sessions and forwards signaling traffic to other Prox-
ies, e.g. the signaling traffic between P-CSCF and S-CSCF
or between two S-CSCF of a 3GPP IP Multimedia Subsystem
[4][5]. In this case we argue that UDP is definitely the worst
solution among the three, while, between SCTP and TCP, the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 87

Figure 3: Simplified 3GPP architecture

former is preferable. The advantages of SCTP over the other
two protocols are outlined in the next subparagraphs.

SIP over UDP

SIP over UDP can suffer a degradation known as “retrans-
mission storm”. We explain this phenomenon by means of a
typical situation arising in a 3GPP network. The analysis is
based on euristics, omitting mathematical details. In Figure 3,
an IP network where two SIP Proxies serve a large amount of
UA terminals is depicted. One could imagine these Proxies as
serving a specific geographical area. The transport protocol
between the Proxies is assumed to be UDP. If traffic is gen-
erated by a moderate number of sender-receivers sessions, no
significant risk of congestion arises. On the contrary, as the
number of sessions increases, the SIP retransmission mecha-
nism in conjunction with UDP is at risk of causing a flood of
retransmissions. In fact, if we assume that a fractionP0 of
the total signaling traffic� is backlogged due to the SIP timer
expiration, at the next retransmission time the situation makes
worse, as the traffic is now�(1+P0). The signaling traffic in-
creases even more if a request has to be fragmented (according
to some probabilistic model) into several packets. As in draft
[3], we agree that “It is not unreasonable to assume that there
may be tens of thousands of UAs on each side of the network”.

5 SIP OVER TCP

A reliable transport layer as TCP undertakes the task of de-
livering the message to the next hop, so that retransmissions
are not needed at an application level. However, TCP incurs
the Head of the Line (HOL) blocking problem, as shown in
Figure 2-b. HOL blocking occurs when the signaling associ-
ated with multiple sessions is sent over a single TCP connec-
tion between two servers. By using TCP, the loss of one mes-
sage stops the immediate delivery to the SIP layer of further
messages arriving at the Proxy. Therefore all other messages
in the same flow, even if they belong to unrelated sessions, are
affected by the loss of a message in a single session.

6 SIP OVER SCTP

From the previous analyses, it is clear that SCTP can over-
come the problems of congestion and HOL. Now we analyze
procedures for transport of SIP messages over SCTP. Some of
these procedures have already been described in [4]. There

Figure 4: Example of mapping transactions into SCTP Stream
0 with flag “unordered” set

are three possible ways to use SCTP with SIP: 1) mapping of
SIP sessions into Streams; 2) mapping of SIP transactions into
Streams; 3) using Stream 0 and the unordered flag.

1. Mapping of whole SIP sessions into streams. This pro-
cedure is possible only if the involved Proxies are Call-
Stateful Proxies. (A Proxy is said “call-stateful” if it re-
tains the call-state for a dialog, from the initiating IN-
VITE to the terminating BYE request). The advantages
are the same as described in the following point, refer-
ring to the whole session and not to a single transaction.
This method presents two disadvantages. First, since SIP
Proxies in the net are more often transaction-stateful than
call-stateful, this mapping can be used only unfrequently.
Second, and more important, is a problem related to the
length of the Stream Identifier field (16 bits) in the DATA
chunk header. The SCTP Stream ID zero must be used
to send every request and every response generated by a
SIP entity, when it chooses not to use SCTP stream ID
lightweight transaction identifiers. The highest stream ID216 � 1 must not be used to send SIP traffic, because a
CANCEL request must be sent over a Stream ID equal to
the one on which the request to be cancelled was sent plus
one. (“Since Stream zero and Stream216�1 cannot be
used as transaction identifiers, there are215�1 = 32767
available Stream IDs”, [4]). This constraint on the num-
ber of SIP sessions that can be managed simultaneously
might turn into a critical limitation for the supported sig-
naling traffic, more if one considers that SIP session have
a typical duration of over one minute.

2. Mapping of SIP transactions into streams. This
method gives the chance to use a simple computational
technique to identify the membership of a message to a
transaction. In SIP the transaction identifier consists of
the header fields: To, From, Call-ID, Cseq and topmost
Via. The advantages of this mapping method is that the
transport can deliver the proper message to the proper
transaction state machine without parsing To, From, etc.
The Stream-Id provides a transaction identifier that im-
proves the performance of the receiving SIP server. In
fact when the Server sends the first message or when it
starts (depending on how one wants to configure its net-
work), it activates an association with the other server.
At the start of the association it sets the stream num-
ber to be used (typically, the maximum allowed value,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 388

namely 32767). Nevertheless, mapping of SIP transac-
tions into streams turns out to be a valid solution only
for INVITE transactions because it includes more mes-
sages than other transactions (for instance, provisional
responses and ACK messages). In fact, for transactions
based on a few messages, the load of the Proxy for the
creation of mapping (processing time and resources in
general) might easily surpass the benefits. This issue is
out of the scope of this paper and we will face it in fur-
ther studies. An other issued is that method requires that
one Stream ID value must be reserved to each transaction.
However, this should not be an important issue, due to
the moderate number of transaction per session.In sum-
mary, the mapping of transactions into streams helps in
the design of the internal architecture of a SIP server, but
otherwise is not beneficial to the network operations.

3. Sending every SIP request and response via the SCTP
Stream ID zero with the“unordered” flag set. The un-
ordered SCTP service delivers messages to the receiver
as soon as they are received from the network, regard-
less of the order they are produced by the sender. Since a
SIP client does not send a new request until the previous
transaction has finished, ordinarily SIP requests arrive or-
dered. In only two exceptional situations, SIP clients send
overlapping requests: an INVITE followed by a CAN-
CEL and an INVITE followed by a BYE. In these cases,
before sending a CANCEL (or BYE) for an INVITE, one
must wait for the 100Trying for the INVITE. Thus one
ensures that the CANCEL (or BYE) arrives always after
the INVITE. About response messages, a provisional re-
sponse arriving out of order, i.e. after the arrival of defini-
tive response, is simply ignored at SIP level (see Figure
4).

In comparing the three methods methods above, one notes
that the last one is the highest and is the only one can be used
for SCTP transport to a Stateless Proxy. Whereas the other two
methods requires Statefull Server at both ends. With Statefull
Proxy, one could ordinarily use the first method, while adopt-
ing the second method in the special case of INVITE transac-
tions. We note that all three methods are unaffected by HOL
blocking problem as we now outline. In Figure 2-c, we as-
sume that two ordered Streams (Stream Id=2, Stream Id=3) are
used according to method one. It should be clear that a loss in
one Stream does not introduce any delay on the other Stream.
Similar arguments hold for other two methods. Summing up,
sending every SIP message (either requests or responses) over
stream zero with the unordered flag set is generally the best op-
tion, under criteria of performance and simplicity. Moreover,
SIP [1] now provides a transaction identifier in the branch pa-
rameter of the Via entries. This identifier may replace at the
application level the SCTP stream ID in demultiplexing of the
SIP transactions[15]. This might affect the performances with
respect of processing time, although we have not performed
any further analysis in this respect.

7 IMPLEMENTATION OF SIP OVER SCTP

Figure 5: Structure of API layers in Linux Kernel

Figure 6: Macroclasses implemented in the SIP module

From previous consideration, SCTP should be preferred as
the transport protocol for SIP in a Proxy-Proxy, although some
increase of processing delay might be incurred due to involve-
ment of end hosts at the application level in the SCTP opera-
tion. To investigate further on such trade-off, we have imple-
mented a SIP module in C++ that can exploit SCTP in addi-
tion to UDP and TCP. As to the implementation of SCTP, we
have followed thelksctpproject [6], in which some of the au-
thors of the present paper are participating as developers.This
project is aimed at implementing SCTP inside the Linux ker-
nel. Althoughlksctpproject is not complete as yet, it is, to
the best knowledge of the authors, the most effective current
implementation of the SCTP, at least for the Linux platform in
the open source world. In Figure 5 we show the networking
structure of the Linux kernel as modified according tolksctp.
Thelksctpproject implements API’s that match those normally
used for the IP network (BSD-Berkeley socket model), which
general structure is depicted in Figure 5. This choice should
render of SCTP easier for existing applications, as substantial
changes are not required. The SCTP version of these API’s
is defined in the Internet Draft “Sockets API Extensions for
SCTP” [11]. It defines two interfaces: UDP-Style Interface
and TCP-Style Interface. Currently,lksctp only implements
the UDP-Style API, as it appears more effective in support-
ing the innovations of SCTP. The UDP-style API’s are indeed
similar to those defined for the UDP protocol. The SCTP stack
with UDP-style interface handles automatically both outbound
association setups and shutdowns. A typical server in this
model uses the following socket calls in sequence, in order

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 89

to prepare an EndPoint for servicing requests:

- socket(), bind(), listen()

- recvmsg(), sendmsg()

- close()

.The important difference between UDP and UDP-style SCTP
API’s are:

- Multihoming . An SCTP EndPoint must be associated
with multiple addresses. To this aim, a new call has been
introduced:sctp_bindx().

- Ancillary data . Two new ancillary structures have been
introduced ad hoc for SCTP to setting the number of
streams at the beginning of the association, and to dis-
tributing the data by the chunks over the streams made
available. It is also possible to set a default stream so that
ancillary data may be omitted.

- Option. This function leads to set or to get the value of
some parameters of SCTP. For example, it can modify the
value of the initial RTO (SCTP_RTOINFO option), or it
can set primary address (SCTP_SET_PRIMARY_ADDR
option).

We have tested, according to procedures described in draft
SIP-bis-09 [1] or adaptation thereof, the SIP behaviou when
running over: 1) UDP; 2) TCP. In analogue fashion, to test
SIP on SCTP, we have chosen to send and receive every re-
quest or response using Stream-ID zero with the“unordered”
flag set. In further development of the module, implemen-
tationof Mapping of SIP transactions into streams is also be
planned. The structure of macroclasses that manage the trans-
mission and the reception of SIP messages is shown in Fig-
ure 6 . The large part of the SIP state machine is imple-
mented in SipCall and SipTransaction. SipClient gets and
sends messages from and to one and the same socket layer
using functions implemented inSCTPMessageSocket,
TCPMessageSocket andUDPMessageSocket. These
three classes invoke system calls to the Linux kernel (BSD
interface) that cause the actual transmission and reception of
messages with the chosen transport protocol. The imple-
mented module supports a “non standard feature”, specific for
our tests: a request is sent with the transport protocol chosen
by the user, while a back answer is sent with the same protocol
as the request which it refers to (indicated in the topmost Via
header field of the request message).

8 RESULTS

The module outlined above was used to emulate the behav-
ior of a generic SIP Proxy, by implementing an INVITE gener-
ator, which sends messages at an user selected rate. A simple
picture of the configuration used for the tests is shown in Fig-
ure 7. A and B EndPoints are Linux o.s. machines, with Ker-
nel version 2.4.17 modified to support thelksctpproject [7].
The traffic generation software runs on C-EndPoint, aiming to
congest the network.

First, a test has been performed to measure the time interval
between the sending of an INVITE message and the arrival on

Figure 7: Test bed used to test the SIP module

2500 3000 3500 4000 4500 5000
2500

3000

3500

4000

4500

5000

5500

INVITE transmission time

10
0

T
R

Y
IN

G
 a

rr
iv

al
 ti

m
e

SCTP
TCP

Figure 8: Comparison of SIP on both SCTP and TCP when
a packet loss occurs. SCTP delivers consecutive 100 Trying
even if the 5191 Trying packet has been lost.

the same computer, at the SIP layer, of the related provisional
response 100Trying. The plot in Figure 8 shows that the SCTP
use avoids the HOL problem: The loss of a 100Trying does
not affect the ready delivery to the SIP application of the next
100Trying responses that arrive in the meantime. On the con-
trary, an hypothetical TCP loss in the same point causes the
buffering at transport layer of messages arriving before recep-
tion of the retransmission of the lost message. Second, a test
has been performed in order to verify the behavior of SIP over
UDP under heavy load of the network. The plot in Figure 8
shows that, in congested situation (as in the middle zone of
the plot), many useless INVITE retransmissions arise, which
only increase the delays, thus creating a vicious cycle in the
network. Note that in our simulation. the traffic generated by
EndPoint A and B is lower than the entire local traffic, which is
mainly generated by node C, so that the boomerang effect was
only observed in the middle zone of plot. In a real network sit-
uation wherein the path linking the two proxies is traversedby
very heavy signaling traffic, the boomerang effect of SIP over
UDP retransmissions is expected to come out more dramati-
cally. The fraction of INVITE messages incurred in retransmi-
tion with respect to the total is reported in the following table.
One can see that the higher the call generation rate, the higher
the re-transmission percentage. This is mainly due to the lack
of congestion and flow control.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 390

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800

Sequence number of INVITE

D
el

ay
 o

f 1
00

 T
ry

in
g

INVITE retransm.
Delay

Lost Packet

Figure 9: SIP over UDP: The 100 Trying arrives just after SIP
timer expiration, causing “aggressive” retransmissions.

INVITE rate Fraction of retransmitted INVITEs
20 ms 4%
18 ms 8%
13 ms 13%
10 ms 38%
8 ms 66%

REFERENCES

[1] J. Rosemberg, H. Schulzrineet al.: SIP: Session
Initiation Protocol , IETF draft, [Online]Available:
http://www.ietf.org/internet-drafts/draft-ietf-sip-
rfc2543bis-09.ps, February 27, 2002

[2] 3GPP TSG SSA,IP Multimedia Subsystem (IMS) –
Stage 2 (Release 5), TS 23.228.v5.6.0, 2002-09, [On-
line]Available:http://www.3gpp.org

[3] D. Wills, B. Campbell, SIP Extension to Assure
Congestion Safety, IETF draft, [Online]Available:
http://www.softarmor.com/wgdb/docs/draft-willis-sip-
congestsafe-00.txt, June 20, 2002

[4] 3GPP TSG CN, Signaling Flows for the IP Mul-
timedia Call Control Based on SIP and SDP–
Stage 3 (Release 5), TS 24.228 vXXXX, [On-
line]Available:/http://www.3gpp.org

[5] 3GPP TSG CN,IP Multimedia Call Control Protocol
Based on SIP and SDP– Stage 3 (Release 5), TS 24.229
vXXXX, [Online]Available:http://www.3gpp.org

[6] G. Camarillo, H. Schulzrinne, R. Kantola,Evalua-
tion of Transport Trotocols for the Session Initiation
Protocol,Network, IEEE , Vol. 17 , Issue: 5 , Sept.-Oct.
2003, pages:40 - 46

[7] G. Camarillo, H. Schulzrinne, R. Kan-
tola, Signaling Transport Protocol, [On-
line]Available: http://www.cs.columbia.edu/ library/TR-
repository/reports/reports-2002/cucs-002-02.pdf, Febru-
ary 12, 2002

[8] R. Stewart, Q. Xie, et al, Stream Control
Transmission Protocol, IETF RFC2960, [On-
line]Available:http://www.ieft.org/rfc/rfc2960.txt

[9] La Monte H.P. Yarroll, K. Knutson,Linux Ker-
nel SCTP: The Third Transport , [Online]Available:
http://old.lwn.net/2001/features/OLS/pdf/pdf/sctp.pdf

[10] lksctp, [Online]Available:sourceforge.net/projects/lksctp

[11] 3GPP TS 23.060General Packet Radio Services
(GPRS); Service description; Stage 2, [On-
line]Available:http://www.3gpp.org

[12] J. Rosemberg, C. Huitema, R. Osborne, A. Houri,A
Proposal for IM Transport , [Online]Available:
http://www.softarmor.com/wgdb/docs/draft-rosenberg-
simple-im-transport-00.txt, November 14, 2001

[13] M. Handley, V. Jacobson, C. Perkins,SDP: Session De-
scription Protocol, IETF RFC2327, [Online]Availbale:
http://www.ietf.org/rfc/rfc2327.txt, April, 1998

[14] R. Stewart, Q. Xie et al,Socket API Exten-
sion for SCTP, IETF draft, [Online]Available:
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-
sctpsocket-08.txt,April 1, 2004

[15] J. Rosemberg, H. Shulzrinne, G. Camar-
illo,The Stream Control Transmission Pro-
tocol as a Transport for the Session Initia-
tion Protocol, IETF draft, [Online]Available:
http://www.softarmor.com/wgdb/docs/draft-ietf-sip-
sctp-00.txt,August 14, 2001

[16] A.P. Markopoulou, F.A. Tobagi, M.J. Karam,
Assessment of VoIP Quality over Internet Back-
bones,Proceeding of IEEE INFOCOMM 2002, Vol. 1,
pages: 150-159, 2002

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 91

