
Finding Repeated Flexible Relational Words in Sequences

Nahla. EL ZANT1

and
Henry. SOLDANO1,2

1LIPN-UMR7030, Institut Galilée, Unversité Paris NORD
Avenue J.-B Clement 93430 Villetaneuse France

2Atelier de Bio-Informatique, Université Paris VI, 12 rue Cuvier 75005, Paris

ABSTRACT.
Finding regularities in sequences is an important problem in
various areas. Regularities are often words (in a strict or
somewhat flexible meaning) "repeated" in the sequence, i.e.
satisfying some constraints about their occurrence. In this paper
we deal with relational values that express what relates two
positions in a word or a sequence. Then a strict relational word
is defined as the set of relational values corresponding to all
pairs of positions within a subsequence. A relational word is
flexible if the constraint on a relational value is to belong to a
set of relational values. We present here an algorithm, called
KMRCRelat, which is derived from a previous algorithm for
identification of repeated flexible words. KMRCRelat find
either the k-length or the longest repeated flexible relational
words in a sequence or a set of sequences.

Keywords : words, motifs, patterns, sequences, relational
patterns, repetitions, data mining.

1. INTRODUCTION

Finding regularities in sequences is an important problem
in many areas. In most cases the entities forming the
sequence are described as symbols. An example of
regularity is then a word (in a strict or somewhat flexible
meaning) "repeated" in a sequence of symbols. For
instance the strict word "ab" occurs at position 1 and 3 in
the sequence "ababc". In [8,10] flexibility is obtained by
replacing the symbols in a word by predefined groups of
symbols. For instance the flexible word "{a,b}{b,c}"
occurs at position 1, 3 and also at position 4 in the
sequence "ababc" as s[4] belongs to {a,b} and s[5]
belongs to {b,c}. Now a word is stated as repeated
whenever its occurrences satisfy some constraint. For
instance "ab" is said to be 2-repeated in "ababc" since it
occurs twice. The corresponding constraint when dealing
with a set of sequences is that the word has to occur at
least once in at least q sequences (over n). Sequences can
represent, after some representation change, any kind of
sequential objects. Word-like regularities in sequences
have been widely investigated [2,7]. In the present work
we deal with cases in which items in the sequence are not
only described as symbols but also through what relates
them to the other items in the sequence. For instance let
items be events (that each have some duration) and let S
be a sequence such that the first event (with label a)
finishes before the second event (with label b). This may
be expressed as s(1)="a," s(2)="b", r(1,2) =

"finishesBefore", thus describing the relation between
items at position 1 and 2 as a relational value (see §2.2).
Complex sequences can then be easily investigated such
as the 3D-structure of a protein (i.e. a sequence of amino
acids). In the present paper we define relational patterns,
namely flexible relational words, that extend words and
flexible words. We also present an efficient algorithm to
search for repetitions of such relational patterns.

2. DEFINITIONS & NOTATIONS

In what follows we first give useful definitions and
notations when considering repeated flexible words in a
sequence, as investigated in [8,10]. Then we extend for
our purpose these definitions and notations to relational
sequences and relational flexible words.

2.1. Sequences and flexible words.

Definition 1 A n-length sequence S is composed of n
items. The item at position i has a value si belonging to
an alphabet S.

Definition 2 Given an alphabet S, a cover of S is a set of
subsets C1, C2, ..., Cp of S such that

•

†

Ci
i=1

p

U = S ,

• None of the subsets Ci is included in another.

We will denote as groups the elements of a cover. For
example, let S ={a, b, c} be the alphabet, then G =
{C1={a,b},C2={b,c}} is a cover of S.

Definition 3 A k-length flexible word M= M0 ... Mk-1 is
an element of the cover product Gk. We note |M| the
length of M.

Definition 4 Given a n-length sequence S=s1 sn Œ Sn,
and a flexible word M= M0 Mk-1 Œ Gk, we say that M
has an occurrence (or occurs) at position p in S if, for all
i Œ{0, ..., k-1}, sp+iŒ Mi.

Definition 5 A flexible word M is q-repeated in a
sequence S if and only if at least q occurrences of this
word are found in S.

Definition 6 A k-length flexible word w is maximal in a
sequence S if and only if there is no k-length flexible

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 458

word M' such that the set of occurrences of M' includes
the set of occurrences of M.

Example 1 let S = abbab, and G = {C1 = {a,b}, C2 =
{b,c}}, then M= C1-C1-C2 has an occurrence at position
1 in S since s1 = a Œ C1 and s2 = b Œ C1 and s3=b Œ C2..
Furthermore M is a 2- repeated flexible word in S since it
also occurs at position 3 in the sequence S. Finally M is
not maximal since the word M'= C1-C1-C1 occurs at
positions 1, 2 and 3 in S and so the set of occurrences of
M in S is included in the set of occurrences of M' in S.

Strict k-length words, i.e. elements of Sk, are particular
cases of flexible words with a cover made of the
singletons of S. Note that searching for flexible words
that occurs in at least k of the m sequences of a set of
sequences can be performed by first concatenating the
sequences and then searching for flexible words that are
q-repeated in the resulting sequence (provided that some
attention is paid to avoid false occurrences). For instance
flexible words are useful to find structural repetitions
within a set of protein sequences [9]. In what follows we
only discuss searching for q-repeated flexible words (and
later flexible relational words) in a sequence. When
computing and counting flexible words occurring in a
sequence, useful definitions are the following:

Definition 7 The degeneracy g represents the maximum
number of groups to which belongs an element of the
alphabet S.

For example let S ={a, c, g, t} and let C1={a, c}, C2={c,
g} and C3={c, t}, then g=3 (because c belongs to 3
groups).

Definition 8 The k-prefix Prefk(M) of a flexible word M is
the flexible word that corresponds to the k first positions
of M (k ≤ n-1). In the same way the k-suffix Suffk(M) of M
corresponds to the k last positions of M.

For example the 2-prefix of M=C1-C2-C1 is C1-C2 and
the 2-suffix of M is C2-C1.

2.2. Sequences and relational flexible words.

We will now also consider what relates the items at
positions i and j in a sequence:

In what follows each pair (i,j) of items (with i<j) of a
sequence has a value ri,j (that we call a relational value)
belonging to a relational alphabet SR. We represent here
the relational values of a sequence as a set of delay
vectors {Rd} where for each vector Rd, Rd[i] contains the
relational value ri,i+d. R0[i] simply is the non relational
value si.

Example Let SR= {rb, rs, ra}.The relational information
about the 3-length sequence S is represented for instance
as:
R2

 = rs
R1

 = rb - ra
R0

 = S = a - a - b
This means that the relation r1,2 between position 1 and 2
has the value rb, that r1,3= rs, and that r2,3= ra.

For instance let items of the sequence S be events that
each have some duration and let us suppose that ri,j= rb
means that event at position i finishes before event at
position j, that ri,j= rs means that the event at position i
finishes at the same time as the event at position j, and
that ri,j= ra means that the event at position i finishes
after the event at position j. Non-relational values a, b
simply are labels of the events. Then the previous
sequence S is such that: the first event has label a ,
finishes before the second event, and finishes at the same
time as the third one. The second event has label a and
finishes after the third one. The third event has label b. S
corresponds then to the following configuration of the
events:

- a------------------------------------.-end
- a---.-end
- b----------------.-end

Note that this information can be inferred from the
beginning and ending times of the events. So here the
relational values can be computed whenever necessary
and do not need to be stored. In what follows we suppose
that when considering a sequence S we either have access
or we can compute all the corresponding delay vectors
Rd.
We will now define what is a flexible relational word.
We will denote as a relational cover, a cover GR= {Cr1,
...,Crt} of the relational alphabet SR.

For instance let SR= {rb, rs, ra} be the relational
alphabet, then GR= {Cr1={rb, rs}, Cr2= {rs, ra}} is a
relational cover.
As we have previously defined the relational
representation of a sequence as a structured set of non
relational values si and relational values ri,j, we define a
relational flexible word M as a structured set of elements
of the cover G and of the relational cover GR.

Definition 9 A k-length flexible relational word M is
defined as:
M= { Mi Œ G / 0 £ i £ k-1} » { Mi,j Œ GR / 0 £ i £ k-1 and
i < j} and is structured as follows:

M0,k-1

M0,k-2 M1,k-1

....
M0,1 M1,2 ... Mk-2,k-1

M = M0 M1 ... Mk-2 Mk-1

Definition 10 The flexible relational word M has an
occurrence at position p in a (relational) sequence S if
the non relational part of M has an occurrence at
position p and each relational value rp+i,p+j of S belongs
to the corresponding relational group Mi,j.

Example Let S= abbab be a sequence, G= {C1={a, b},
C2={b, c}} and GR= {Cr1={{ra, rb}, Cr2={rb, rc}}, let
M be the following flexible 3-length relational word:

Cr2

Cr1 Cr2

M = C1 C1 C2

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 59

And let r1,2= ra, r2,3= rb, r3,4= rb, r4,5= rc, r1,3= rc, r2,4= ra,
r3,5= rb. Then M has occurrences at position 1 (see table
1) and position 3 in S.

r1,3 Œ M0,2 = Cr2
r1,2 Œ M0,1= Cr1 r2,3 Œ M1,2 = Cr2
s1 Œ M0 = C1 s2 Œ M1 = C1 s3 Œ M2 =C2

Table 1. Occurrence of the flexible relational word M
at position 1 in S.

Definitions of length, q-repetition, k-prefix and k-suffix
of a flexible relational word are unchanged with respect
to their definitions for flexible word.

Example let M be the following 3-length flexible
relational word:

Cr1
Cr2 Cr2
C1 C2 C1,

then:
 Cr2 Cr2

Prefk(M) = C1 C2, and Suffk(M) = C2 C1

The relational degeneracy gR represents the maximum
number of groups to which belongs an element of SR.
Example Let R ={a, c, g, t} and let Cr1= {a, c}, Cr2= {c,
g} and Cr3={t}, then gR= 2 (because c is an element of
two relational groups).

What we present here is an extension of KMRC, denoted
as KMRCRelat, that finds the q-repeated k-length flexible
relational words in a sequence.. We first recall KMRC.

3. KMR AND KMRC

KMR has been proposed by Karp, Miller and Rosenberg
[6] as a O(N.logk) algorithm for finding exact repeated k-
length words in a N-length sequence. The KMRC
algorithm [10] is an extension of KMR that search for
repeated k-length flexible words. In [10] groups are
associated to a similarity relation and intended as
maximal cliques of symbols. Two k-length substrings S1
and S2 are then considered as similar if the two symbols
located at the same position in the two substrings are
similar, i.e. if S1 and S2 represent two occurrences of a
same flexible word. Later, in [8], flexible words are
generalized by allowing any cover. Furthermore more
flexibility was introduced by allowing errors in
occurrences. The original KMRC algorithm is based on
the following lemma:

Lemma 1: Let M be a k-length flexible word, let S be a n-
length sequence, and let k' be such that k/2 ≤k'≤k-1, then:

i is occurrence of M in S if and only if:
• i is an occurrence of Prefk’(M) in S,
• i+k’is an occurrence of Suffk’(M)in S

KMRC is iterative. In an iteration Lemma 1 is used with
no overlapping, i.e. with k'=k/2, to compute the set of q-

repeated 2k-length flexible words using the current set of
q-repeated k-length flexible words..

Worst case complexity of computing q-repeated k-length
flexible words is O(N.gk.log(k)). However KMRC returns
flexible words that are maximal (see Definition 6) and
worst-case complexity grows to O(N.g2k.k. log(k))
because of the inclusion tests to perform at each iteration.
Note however that practical CPU time and memory is
much lower when computing maximal words and that
KMRC does not handle and store words but sets of
occurrences that we further refer to as extents.

4. KMRCRelat

In this section we present the algorithm KMRCRelat that
extends KMRC to relational flexible words. KMRCRelat
finds all q-repeated flexible relational words in a
sequence S. Indeed KMRC corresponds to the case of
KMRCRelat where there is only one relational group in
the relational cover GR: all relational values are then
considered as similar and so each flexible word has the
same occurrences in S as the unique corresponding
relational word. Note that, as KMRC, KMRCRelat search
for maximal words and only deals with their extents.

4.1. KMRCRelat: inputs and outputs

KMRCRelat inputs : -
- An alphabet of symbols S together with an alphabet

SR of relational values.
- A cover G of S and a cover GR of SR to describe

flexible relational words.
- The size k of the words and the quorum q of their

occurrences. Optionally k is undefined and longest q-
repeated words are searched for.

The representation of the input sequence, i.e. the set of
delay vectors R0=S, R1, ... ,Rn , is dynamically computed
or accessed whenever necessary during the execution of
KMRCRelat.

KMRCRelat outputs : The set of all k-length q-repeated
relational flexible words, represented as their sets of
occurrences in S. Note that only maximal words (i.e.
maximal extents) are returned.

4.2. Theoretical bases of KMRCRelat.

KMRCRelat relies on a variant of Lemma 1 for relational
words. Let us consider a (k+1)-length flexible relational
words M . Let p be an occurrence of M . Therefore p is
also an occurrence of its k-prefix MP and (p+1) is an
occurrence of its k-suffix MS. Conversely if p is an
occurrence of MP and (p+1) is an occurrence of MS,, then
to ensure that p is an occurrence of M we only have to
check whether the value relating p to p+k in S belongs to
the relational group M0, k (see figure 1):

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 460

 M0,k
 M0,k-1 M1,k
 M0,k-2 M1,k-1

....
 M0,1 M1,2 ... Mk-2,k-1 Mk-1,k
M = M0 M1 ... Mk-2 Mk-1 Mk

Figure 1 Reconstructing M from its k-prefix (plain line)
and its k-suffix (dashed line).

We obtain then the following lemma :
Lemma 2: p is an occurrence of the (k+1)-length flexible
relational word M if and only if:

• p is an occurrence of Prefk(M),
• p+1 is an occurrence of Suffk(M) and
• rp,p+k Œ M0, k

4.3. KMRCRelat steps

KMRCRelat is an iterative algorithm. The initialization
consists in computing the q-repeated 1-length flexible
words. The nth iteration computes the (n+1)-length q-
repeated relational flexible words using the n-length q-
repeated relational flexible words as suggested by
Lemma 2. As in KMRC, the set of q-repeated n-length
flexible words is represented as both a vector V where
V[i] contains the flexible words (represented as numbers)
occurring at position i in S, and a list P of stacks which
element P[#j] contains the extent, i.e. the set of
occurrences, of the #jth flexible word. In what follows the
size of the list P is the number of flexible words to
represent. Furthermore KMRCRelat uses a vector W
where W[i] contains at the nth iteration all the relational
groups containing the relational value ri,i+n found in S.

We will examplify KMRCRelat on the following
example: :
Example.
let S = {a, b, c}, G={ C1={a, b}, C2={b, c}},
SR= {r1, r2, r3}}, GR= {Cr1={r1, r2}, Cr2={r2, r3}}
S=

and
R1= r1, r2, r1, r2, r1, r1, r3
As in this example we only compute 2-length relational
flexible words, delay vectors Rd for d>1 are useless for
our purpose.

At the beginning of the algorithm, q-repeated 1-length
flexible words are computed by initializing the vector V.
In our example there are two 1-length extents numbered
as #1 (C1) and #2 (C2). V is therefore as follows:

bŒC2=#2 #2

aŒC1=#1 #1 bŒC1=#1 #1 #1 #1 #1 #2

 1 2 3 4 5 6 7 8
and the corresponding list of stacks P is :

We now describe the different steps of the nth iteration
building the (n+1)-length q-repeated relational flexible
words from the n-length q-repeated relational flexible
words. Building the 2-length words from the 1-length
words of our previous example will be used to illustrate
the iteration.

Steps 1 and 2 are similar to the corresponding steps in
KMRC except that in KMRC n-prefixes and n-suffixes
do not overlap, thus resulting in (2.n)-length flexible
word.

Step 1: Compute the list P corresponding to the vector V.
Both P and V represent the set of n-lengths q-repeated
flexible relational word. Each place in the list P contains
a set of occurrences, i.e. an extent. When n=1 each place
in the list P corresponds to a group of G.

Step 2: Compute the occurrences of the (k+1)-length q-
repeated words satisfying the condition 1) and 2) of
lemma 2. These occurrences will be pushed into the
elements of a list Q of stacks. The size of Q is the same
as the size of the list P and its elements are initially empty
stacks. More precisely, for each occurrence i in P[#j] we
consider the extents in V[i+1]. For each extent #e in
V[i+1] we add i to Q[#e]. The list Q of our example for
n=1 is presented in figure 2. Note that the separator ";"
indicates that an extent P[#j] in P has been exhausted.

Figure 2:The list of stacks Q.
The first extent in Q is {1, 2, …, 6} and represents the
occurrences of M= C1-C1, the second extent {3, 6}
represents the occurrences of M= C2 C1 and the third
one {2 ,5 , 7}corresponds to M= C1 C2.

Extents are further filtered in order to eliminate all
extents that do not respect the quorum q. For example, if
q= 3, the second extent {3,6} is deleted.
At the end of this step the list Q contains all the extents
obtained by overlapping two n-length flexible words that
occur at contiguous positions as specified in Lemma 2.

Step 3: Compute the vector W . For this purpose
KMRCRelat have to access or compute the delay vector
Rn (Rn[i] contains the relational values ri,i+n between the
positions i and i+n in S). In W each relational group is
represented as an integer. Regarding our example, at the
first iteration W[i] contains the information regarding the
relation between positions i and i+1. The vector W of our
example is presented in figure 3.

1 2 3 4 5 6 7

r2Œ#2 #2

r1Œ#1 r2Œ#1 #1 #1 #1 #1 #2

Figure 3: The vector W#2

#1 7 6 5 4 3 2 1

8 6 3

_#2

_#1 1 2 3 4 5 6 ;3, 6

2 5 7;

a a b a a b a c

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 61

Step 4: Add the third constraint of Lemma 2, i.e. the
relational one, to extents computed in step 3. This step is
similar to step 2. The resulting extents will be represented
in a list of stacks Qrelat whose size is the number of
relational groups in GR, and whose elements are initially
empty. The algorithm uses W and Q in order to construct
Qrelat. More precisely, for each occurrence i of the #kth

extent in Q, and for each relational group #c in W[i] we
add i to QRelat[#c]. Here again the separator ";"
indicates that the #kth extent in Q has been exhausted. The
list Qrelat of our example is presented in figure 4 (here
#c = Cr1 or Cr2).

Figure 4: The list of stacks Qrelat.

The extent {2, 7}, for instance, corresponds then to the
following relational flexible word:

Cr2

M= C1 C2,
and has been obtained from the extent {2,5,7}
representing the flexible word C1-C2 by adding the
constraint rp,p+1ŒCr2.

Step 5: Eliminate non-maximal extents and extents
smaller than q, then renumber the remaining extents, and
return the vector V representing the (n+1)-length q-
repeated flexible relational words. Now V[i] represents
the (n+1)-length q-repeated flexible relational words that
occurs at position i. V can now be used as an input for a
new iteration. In our example the next step 1 results in the
following list P.

The algorithm stops when it has computed all the k-
length (or all the longest) q-repeated flexible relational
words.

4.4. Complexity issues.

Concerning worst case time complexity, KRMCRelat, (in
the same way as KMR, KMRC and related algorithms)
relies on the following observation: a naive generate and

test algorithm that evaluates the

†

O(| G |k . | GR |k
2
) k -

length flexible relational words in a N-length sequence S

have to compute

†

O(N. | G |k . | GR |k
2
) occurrence tests.

As |G| and |GR| may be large, the computational cost is
high even for small words. However, the total number of
occurrences of k-length flexible relational words in S is

bounded by

†

O(N. | g |k . | gR |k
2
) . As a consequence,

when considering non-flexible (i.e. strict) words, we have
g= gR=1 and so there are only O(N) such occurrences in
i. In the "strict" case, KMRCRelat is then

†

O(N.k) .

However when degeneracy numbers g and gR increase,
the corresponding flexibility results in a much higher
number of occurrences to handle within extents. Spatial
complexity is then also high: because of the breadth first
nature of KMRCRelat, all k-length extents are stored at
the same time in memory. This allows the selection of
"maximal" k-length words that in practical cases is very
efficient and meaningful, but can also result in serious
storage difficulties. We do not further discuss here the
overall complexity of KMRCRelat. Simply note that it
heavily depends on the cost of the inclusion tests (step 5)
but that elimination of non-maximal words is here
unavoidable. From our experiments we simply observe
that as long as we restrict to small relational words (k <
25) or limit flexibility (small values of g and gR) the huge
amount of extents that are handled result in a rather small
number of "maximal" k-length flexible relational words.
More experiments have to be performed to discuss the
practical behavior of KMRCRelat.

5. KMRCRELAT APPLICATIONS

KMRCRelat can be applied to find repeated flexible
relational words in various kind of sequences. A toy
example is given in §2.2 when considering sequences of
events where relational values concern the relative
positions of events. A similar situation concern secondary
structures in RNA sequences (the RNA sequence is then
considered as a set of helices, i.e. a set of subsequences
that can be embedded or can overlap). In [1], an ad-hoc
algorithm is used to compute strict relational words
representing secondary structures that are shared by a set
of RNA sequences. A promising area is the search for
repeated motifs in mono or multidimensional signals or
series. In this section we discuss how flexible relational
words can represents geometric motifs in sequences of
points described in a 3D space. The underlying
application is the search for repetitions within 3D-
structures of proteins. A relational value in this case
represents a distance between two points. A sequence of
n points is so described using the set of the n(n-1)/2
internal distances between its elements. Such descriptions
have been previously used in [4] to find structural motifs
in the 3D-structure of a protein that are repeated in a set
of target 3D-structures. In figure 5 we find the description
of the subsequences p1-p2-p3-p4 and p6-p7-p8-p9 in a 9-
length sequence S. The distances are represented as labels
of the edges relating the nodes associated to the points. In
figure 6 the same information is represented as two
relational subsequences (in this example, points have no
labels and so non-relational value {si} are omitted).

Here we consider that prior discretization of distances has
been performed. The alphabet of relational values is then
SR ={1,3, .., }. A relational group here is an ordered
subset Crj = {j, ... , j +d} where d represents a tolerance:
two internal distances ri,i+b and ri’ , i ’+b are then
considered as similar if they belongs to a same group i.e.
if | ri,i+b) - r(i’,i’+b) | ≤ d. Let us consider in our

P :
2 7

1 2 3 4 5 6

_Cr2

_Cr1 1 2 3 4 5 6 ; 2 5

2 4 ; 2 7

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 462

example that d=3, then we find occurrences of the 4-
length relational flexible repeated word M represented in
figure 7 at positions 1 and 6 in S. These occurrences
correspond to the subsequences represented in figure 6.

Figure 5: A numeric structural sequence S defined as a
sequence of 3-D points.

Figure 6:Relational representation of two subsequences
in S.

Figure7: M: relational word.
A work is in progress to evaluate results obtained in
searching for repeated 3D structural motifs on proteins
backbones when using KMRCRelat and internal
distances based descriptions. The results are compared to
those obtained with GOK [9,5] that uses KMRC together
with a non-relational representation of the protein
backbone as a sequence of pair of angles. The theoretical
superiority of the relational approach relies here on
avoiding a possible addition of angle errors when
defining 3D-substructures as similar.

6. CONCLUSION AND PERSPECTIVES

In this paper, we have introduced flexible relational
words together with an efficient breadth first algorithm
that search for repeated flexible relational words in a
relational sequence. The algorithm extends a previous
algorithm designed for flexible non-relational words, and
is easily extended to search for repetitions in a set of
relational sequences. The notion of relational object or
pattern is not new: all first order representations in
machine learning and data mining deals with relational
objects and patterns. Less attention has been paid to the
particular case of relational representation of sequences.
Various patterns of interest have however been

investigated: for instance structured models [2] or
chronicles [3] both represent a relational pattern built
from several non-relational words (or symbols) together
with constraints on their occurrences on the sequence.
The point of view presented in the current work is to
consider particular relational patterns that extends the
notion of "word", i.e. a pattern in which 1) all successors
of a starting position are constrained 2) the constraint is
complete, with some flexibility, with respect to the
relational description. As in the case of non-relational
words, further extensions could add more flexibility as
allowing for errors and gaps when defining occurrences
of a relational word. The method is currently under
investigation for various kinds of sequential data.
Particular attention is paid to the type of patterns and
relational descriptions that result useful when dealing
with sequential data.

References

 [1] Bouthinon D., Soldano H. (1999):A new method to predict
the consensus secondary structure of a set of unaligned
RNA sequences. BioInformatics, Vol.15, n°10, pp. 72-80,
1999, Oxford University Press

[2] Crochemore M. and Sagot M.-F.(2002), "Motifs in
sequences: localization and extraction", in A. Konopka et
al. (eds.), Handbook of Computational Chemistry,

Marcel Dekker Inc., 2002, in press.
[3] Dousson C.and Vu Duong T.:(1999) Discovering Chronicles

with Numerical Time Constraints from Alarm Logs for
Monitoring Dynamic Systems. proceedings of IJCAI :
620-626 .

[4] Escalier V.,Pothier J., Soldano H.,and Viari A. (1998)
"Pairwise and multiple identification of three-dimensional
common substructures in proteins." J. Computational
Biology, Vol. 5, n° 1, 41-56

[5] Jean, P., Pothier, J., Dansette, P., Mansuy, D. and Viari, A.
(1997)." Automated multiple analysis of protein structures:
application to homology modeling of cytochromes P450",
Proteins: Structure, Function, and Genetics, 28, 1-16

[6] Karp, R.M. ; Miller, R.E. ; Rosenberg, A.L. (1972) : "Rapid
identification of repeated patterns in strings, Trees and
arrays", 4th ACM Symposium. Theory of computing,
pages 125-136.

[7] Mannila, H., Toivonen, H and Verkamo. A. I., (1997)
"Discovery of frequent episodes in event sequences" .Data
Mining and Knowledge Discovery, 1(3), 259-289, 1997.

[8] Sagot M F., Viari and Soldano H.(1997) "Multiple
sequence comparison: a peptide matching approach",
Theor. Comp. Sci. 180 115-137

[9] Sagot M. F., Pothier J., Viari A., Soldano H. (1995):
"Finding Flexible patterns In A Text – An Application To
3D Molecular Matching". Cabios, 11:59-70..

[10] Soldano, H., Viari, A. and Champesme, M. (1995)
"Searching for flexible repeated patterns using a non-
transitive similarity relation." Pattern Recog. Lett., 16,
243-246.

r1,4 = 4
r1,3 = 3 r2,4 = 3
r1,2 = 3 r2,3 = 4 r3,4 =3

r6,9 = 6
r6,8 = 3 r7,9 = 5
r6,7 = 5 r7,8 = 4 r8,9 =2

p1

p2

p4
p8

p7p6

p9
p5

p3

 3 3 5

 4
 4

 3

 3

 4

 4

 2

 4

 6

Cr3
Cr1 Cr2
Cr2 Cr1 Cr1

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 63

