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ABSTRACT 
 

The correct design of complex hardware continues to challenge 
engineers. Bugs in a design that are not uncovered in early 
design stages can be extremely expensive. Simulation is a 
predominantly used tool to validate a design in industry. 
Formal verification overcomes the weakness of exhaustive 
simulation by applying mathematical methodologies to validate 
a design. The work described here focuses upon a technique 
that integrates the best characteristics of both simulation and 
formal verification methods to provide an effective design 
validation tool, referred as Integrated Design Validation (IDV). 
The novelty in this approach consists of three components,  
circuit complexity analysis, partitioning based on design 
hierarchy, and coverage analysis. The circuit complexity 
analyzer and partitioning decompose a large design into sub-
components and feed sub-components to different verification 
and/or simulation tools based upon known existing strengths of 
modern verification and simulation tools. The coverage 
analysis unit computes the coverage of design validation and 
improves the coverage by further partitioning. Various 
simulation and verification tools comprising IDV are evaluated 
and an example is used to illustrate the overall validation 
process. The overall process successfully validates the example 
to a high coverage rate within a short time. The experimental 
result shows that our approach is a very promising design 
validation method.  
 
Keywords: Formal Verification, Simulation, Digital Circuit 
Design 
 
 

1. INTRODUCTION  
 
Design validation is the process of finding design errors in a 
model of an electronic Integrated Circuit (IC) before it is 
manufactured.  IC designers rely heavily upon simulation 
techniques; however, the size of ICs continues to increase in 
terms of the number of transistors per chip resulting in 
diminished validation effectiveness when using simulation 
only.  More recently, formal verification methods have been 
developed that utilize specialized models of ICs and then 
mathematically reason about them to prove design correctness 
in an automated way.  While some formal verification methods 
are beginning to appear in commercial tools, most formal 
methods are limited to relatively small ICs or small sub-circuits 
of large ICs.  The work described here focuses upon the 
creation of a new technique that integrates the best 
characteristics of both simulation and formal verification 
methods to provide a new and effective IC design validation 
CAD tool.  
 

We describe an integrated approach to design validation that 
takes advantage of current technology in the areas of 
simulation (for both critical timing and fault simulation), and 
formal verification resulting in a practical verification engine 
with reasonable runtime called the Integrated Design 
Validation (IDV) system.   

 
 

2. METHODOLOGY 
 

The IDV system utilizes existing simulation and verification 
techniques in an efficient manner of integration to provide a 
comprehensive tool for design specification compliance.  The 
latest results in all areas of verification [3, 6 11, 12] simulation 
[9, 2], and test [5] are used to provide  a design compliance tool 
that is extremely effective as is illustrated with the example 
described in a later section of this paper. 
 
The novelty in this approach is in the use of circuit complexity 
analysis and partitioning to decompose a large design into sub-
components and validate the sub-components using different 
tools based upon known existing strengths of modern 
verification and simulation tools, new coverage analysis 
methods that compute the degree of design validation, using the 
result of coverage analysis as an indication for further 
validation iterations, and integration of these techniques with 
existing simulation and formal verification techniques.  There 
have been recent attempts to tightly combine two different 
verification tools [4, 7], most notably SAT solvers and BDD 
approaches for equivalence checking [8]; however, to our 
knowledge, no overall verification/simulation engine with 
significant analysis before design validation occurs has been 
produced. 
 
The overall structure of the Integrated Design Validation (IDV) 
system is shown in the block diagram of Figure 1.  A primary 
focus is on the complexity analysis, partitioning, and coverage 
analysis blocks, that are used to determine the most effective 
use of simulation or verification tools. 

2.1 Complexity Analyzer 
 
The complexity analyzer estimates the complexity of an RTL 
or netlist design based on existing methods for 
controller/datapath extraction. 
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Figure 1 Architecture of the IDV 

 
Integration with the partitioner is crucial for this function. The 
extracted control and datapath portions of the circuitry are 
analyzed for applicability of various techniques.  One simple 
method is to send the same partitions of a circuit to more than 
one validation technique.  As an example, a portion of a 
datapath is sent to both a SAT-based equivalence checker and a 
BDD-based equivalence checker.  It is known that if a BDD-
based approach is going to be effective, it will likely execute 
very rapidly.  Thus, we can initiate multiple verification 
“threads” for a given portion of a circuit and let the thread 
producing a result first “win”.  If some amount of preset 
computational resource is reached with no result, then the sub-
circuit is sent to the simulator. 
 
In terms of automating the simulator, an interesting approach 
was presented in [14] where the focus was the automated 
generation of 1) an input generator, 2) a coverage metric and, 
3) an output correctness checker.  These three simulation “aids” 
were generated from a formal specification of module interface 
protocols.  The input generator produced input sequences based 
on what the interface protocol allows and the output checker 
compared the output to what the protocol defined as correct, 
The coverage metric quantified coverage by exploiting the fact 
that the protocol defines the set of all possible interface events.   
We are utilizing an approach similar to this one in IDV. 

 
2.2 Design Partitioning 

 
One of the biggest hurdles in applying formal techniques is to 
correctly identify the target circuits.  
 
Although a lot of work has been accomplished with respect to 
partitioning for logic and physical level synthesis, there is not 
as much for design validation and simulation.  In [10] a 
methodology for automatically extracting controllers from an 
RTL-HDL specification is described. This work introduces an 
algorithm for automatically separating the datapath and 
controller described at the RTL level by locating general 

patterns of FSMs in a Process-Module (PM) graph 
representation of the design.  A PM graph is defined to be a 
directed graph where each node represents a sequential process, 
a concurrent dataflow statement, or a module instantiation in 
both VHDL and Verilog. In such a representation, the 
hierarchy is preserved and each module contains its own PM 
graph.   Because a FSM’s next states always functionally 
depend on their current state, signals stemming from state-
registers will loop back after some combinational paths.  
Finding the FSMs in the HDL is based on finding such loops in 
the PM graph.  Some loops found, however, may have a valid 
pattern topologically but not be part of a FSM.  To deal with 
such instances, the checking of functional dependency follows 
the loop search to determine if the loop is a valid part of the 
FSM.   The extraction process is divided into 4 phases, most of 
which are traversal procedures resembling a Depth-First Search 
of the PM graph.  All steps are of linear complexity  

 
Another technique allows for abstracting away large portions of 
the datapath circuitry leaving the controllers intact [13].  This 
technique uses a methodology for abstracting away portions of 
the datapath and reducing the bit-width size of some elements 
while preserving the control structure.  This process, referred to 
as a spatial abstraction, reduces the state space of the system 
under consideration and allows for complete verification with 
model checking.  The fundamental concept is to identify the 
data path storage elements that do not contribute to the control 
flow of the design and reduce their size to a single bit. Next, 
using interval computations, the range of values that can be 
assumed by all the storage elements is determined.  The 
abstraction procedure consists of 1) partitioning the design into 
a module call graph -a collection of modules as a list, 2) 
classifying the variables as control, data, or mixed 3) 
initializing the variables with respect to their classification and 
size and 4) Interval Propagation.  Experimental results show a 
drastic reduction in states and CPU time for verification. 
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Based on the factor that designers usually partition their design 
into multiple RTL blocks (these blocks usually mirror the 
floor-planned design).  Methods that exploit such an inherent 
design hierarchy have been used in the past such as the jMocha 
tool [1]. 
 
In IDV, design partitioning is mainly done manually with 
assistant of PM graph mentioned previously and design 
hierarchy. IDV Uses PM graph as a starting point and further 
partitions are accomplished manually by using finer grained 
designer-defined partitions that occur naturally in the hierarchy 
of the HDL code describing the system under validation.  
 

 
2.3 Coverage Analysis 
 
Some work has been accomplished in terms of coverage 
analysis particularly with respect to evaluating the 
effectiveness of simulation-based validation.  An overview of 
design validation coverage methods is given in [16] that 
classify existing metrics in terms of code coverage, metrics 
based on circuit structure, metrics defined on finite state 
machines, functional coverage, error models, observability, and 
metrics applied to specifications.   
 
Currently, we are focusing on vector coverage based on three 
factors: a) the coverage rate of the components related to the 
output when they are simulated or verified at the block level, b) 
the contributions or importance of each component related to 
the output, c) the vector coverage of the system-level 
simulation and the interconnection error. The first two points 
are easy to understand. The third point is related to the system 
level simulation and interconnection errors. Even if all related 
components are fully verified, the coverage for an output may 
not reach a perfect level of 100% since the interconnections 
may cause errors. System level simulation can be used to detect 
the presence of possible interconnection errors. The more 
interconnections, the more errors are possible. Also, the more 
system level simulation that is accomplished, the less possible 
interconnection errors present in a design. 

 
 

3. VERIFICATION AND SIMULATION TOOLS  
COMPRISING IDV 

 
To integrate the tools and make them complement each other is 
our goal. Various tools have been developed for formal 
verification and simulation. Choosing the right tools will set up 
the base for the success of our system.  

 
3.1 Symbolic Trajectory Evaluation (STE) 
 
STE is an approach similar to model checking that verifies 
circuits with very large state spaces. It is more sensitive to the 
property being checked instead of the size of the circuit when 
compared to model checking. The STE package we use is from 
the Intel Strategic Research Laboratory called Forte. It also 
supports a simple yet effective compositional theory besides 
STE. Two important properties of STE are: 
 

a. It is suitable for verifying designs of circuits at the gate or 
switch level  

 
b. STE provides accurate models of timing, which is 

reflected in the types of properties checked for. 

 
STE originated from the idea of multi-level and ternary-valued 
logic symbolic simulation. It is a formal verification method 
that is close to traditional simulation. One of the distinguishing 
features of STE is that the state space is represented as lattice. 
The partial order of the lattice represents an information 
ordering or abstraction relation between states. The higher up it 
goes in the information ordering, the more information it has. 
The computational advantage of this is that, given the 
appropriate logical framework, if a property is proved to hold 
for a state in the lattice, it holds for all states above it in the 
lattice. Another important fact is that circuits have natural 
representations as lattices, and the use of the information 
ordering allows us to easily abstract out the necessary 
information for property checking [17]. 
 
The properties to be checked are represented using temporal 
logic (TL). TL is usually propositional or first-order logic 
augmented with temporal modal operators that allow reasoning 
about how the truth values of assertions change over time. TL 
can express safety and liveness properties, such as “property p 
holds at all times” or “if p holds at some instant in time, q must 
eventually hold at some later time.” Properties of this sort can 
be employed to specify desired properties of systems.  As an 
example, consider a traffic signal control system with 
properties “the signals at both directions should never be green 
at the same time” and “the signal at one direction will 
eventually be green”. 
 
The properties that STE focuses on are a restricted TL that 
offers only the next-time operator [19], which is called 
trajectory formula. A trajectory assertion has the form A  C, 
where A and C are trajectory formulas, named as antecedent 
and consequent respectively. Informally, a trajectory assertion 
holds for a circuit M iff each sequence of states of M that 
satisfies the antecedent A also satisfies the consequent C. 
Typically, A specifies constraints on how the inputs of a circuit 
are driven, while C asserts the expected results on the output 
nodes [18]. For example, the formula (read_enable=1 ∧  addr 

 out = Next(M[addr]) asserts that if signal read_enable is 
asserted and address is specified, the output of memory is the 
value stored at address in the next cycle. 

 
3.2 Symbolic Model Checking  
 
TL as introduced in the above section can be used as a 
framework for the specification of the temporal properties of a 
design in forms other than a trajectory assertion. Computational 
TL (CTL) is a propositional logic of branching time. It is based 
on propositional logic and uses a discrete model of time where, 
at each instant, time may split into more than one possible 
future event. Thus, it forms a tree structure. A powerful 
algorithm to determine whether or not a given design satisfies a 
CTL is referred to as model checking [22]. In model-checking 
techniques, the entire state transition graph needs to be 
constructed either explicitly or implicitly using a symbolic 
representation.  
 
Reduced Ordered Binary Decision Diagrams (ROBDDs) [23] 
provide a powerful symbolic representation for Boolean 
functions. A Binary Decision Diagram (BDD) is a rooted, 
directed acyclic graph. There are two types of nodes in the 
graph: terminal and non-terminal nodes.  The terminal node is 
labeled with either the constant 0 or constant 1 and has no 
outgoing edges. Each non-terminal node is associated with one 
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binary variable and has two outgoing edges labeled as T (Then) 
and E (Else) respectively, which correspond to the two possible 
valuations of the node’s variable. ROBDD has the additional 
property that no variable appears more than once, and the 
variables appear in the same order on every path. ROBDD is a 
canonical representation for Boolean functions. A popular form 
of the model checking algorithm utilizes BDDs for state and 
transition function representation and is referred to as symbolic 
model checking. McMillan first formulated this approach and 
implemented the SMV method [24]. However, BDD-based 
model checkers can cause memory explosion since BDD sizes 
may exceed memory limits in large designs. The symbolic 
model checking tool used in IDV is VIS (Verification 
Interacting with Synthesis).   
 
VIS is a verification package developed jointly at the 
University of California at Berkeley, the University of 
Colorado at Boulder, and more recently, at the University of 
Texas, Austin [21].  VIS is able to synthesize finite state 
systems and/or verify properties of such systems, which have 
been specified hierarchically as a collection of interacting finite 
state machines. VIS utilizes the BDD package developed by the 
University of Colorado at Boulder, named CUDD [20]. VIS 
and CUDD has been used extensively in academia for symbolic 
model checking.  
 
STE and VIS are both capable of model checking. They differ 
in the following aspects:  
 

Properties: VIS can verify more properties since it uses CTL 
while the trajectory formulas supported by STE are less 
expressive.   

 
Capacity: STE can handle bigger circuits in terms of latches 

and bit cells (over 1000 latches). VIS usually exceeds memory 
capacity when there are more than 200 latches. STE trades 
expression power for capacity.  

 
BDD Memory:  The underlying mechanism for VIS is a 

compact symbolic representation in term of BDDs representing 
the circuit model. The underlying engine for STE is symbolic 
simulation where the size of the internal BDDs are related more 
to the properties being verified instead of the circuit model.   

 
Application: Based on the above differences, we can 

conclude that VIS is better in control dominated designs while 
STE is more suitable for memory dominated circuits. Actually, 
STE has been used extensively in property checking for 
memory.  

 
3.3 Digital Logic Simulation 
 
Speed5 is Tegas-like, 5-value multi-modal, assignable-delay, 
five-valued simulator [15]. It performs gate-level and 
functional-level simulation. Nominal and critical timing 
(min/max) delays are used in the simulation. Speed5 also has a 
fault simulation ability by fault model generation and insertion 
of those models into the simulated circuit. Fault models that are 
provided are stuck-at, shorts, transient fault models, and 
multiple faults. Performance is improved by parallel simulation 
of faults where a specified number of faults are simulated in 
one pass. The number of faults per simulation is determined 
from indistinguishable fault classes, fault blocking 
characteristics and the desired diagnostic resolution. 

 

3.4 Automatic Equivalence Checking 
 
Equivalence checking methods have led to significant success 
in industry. Two designs are functionally equivalent if they 
produce identical output sequences for all valid input sequences 
(i.e. a gate-level design matches its desired behavior as 
specified at the Register Transfer Language (RTL) level). 
Because of the computational complexity of formal 
equivalence checking, a design methodology typically adopts 
specific rules to make the problem tractable for large designs. 
In practice, the specification and implementation of a design 
often have a large degree of structural similarity in terms of 
internal nets that implement the same function. For example, 
equivalence checking can check if the designs have 
corresponding latches. Once the correspondence between 
latches of a reference design and an implementation has been 
discovered, equivalence checking is just a matter of showing 
that corresponding latches have the same next-state function. 
This has proven to be very valuable in validating that an 
implemented gate-level design matches its desired behavior as 
specified at the RTL level. 
 
The equivalence checker developed in our group, SMU-EQ 
[11] performs quite well on large designs. The core part of the 
equivalence checking tool is image computation during state 
space traversal where conjunctive scheduling is very important 
in order to reduce BDD size during intermediate computations. 
In our approach, a genetic-based approach is developed to 
minimize total lifetime and active lifetime at the same time. 
Experimental results show that SMU-EQ is very effective. We 
have also incorporated a SAT engine into our equivalence 
checker to make it more robust and to handle larger designs.  
This allows SMU-EQ to operate using SAT when it is 
impractical to represent the entire transition relations with 
collections of BDDs.  

 
3.5 SMU Functional Simulator 
 
Our group also developed a functional simulator that is used for 
system level simulation. At the system level, we are more 
interested in the interconnection of modules instead of the 
internal function of separate modules. The functionalities of 
these modules are fully verified by VIS, STE, SMU-EQ, or 
simulated by Speed5 before the functional simulator is 
invoked.  

 
Based upon the tool sets just described, the prototype version 
of IDV being described here is given by the diagram in Figure 
2.  

 

 
Figure 2 Prototype IDV Tool 
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4. VERIFICATION PROCESS 
 

The IDV system is a constraint-based system. Constraints 
specify the system’s operation such as what validation method 
will be used for each design module, the properties to be 
verified, and so on.  
 
Figure 3 shows a validation flow chart for the IDV system. The 
circuit is parsed as a netlist either in blif or structural RTL 
format. The next block is the partitioning portion. The design 
hierarchy information is utilized for partitioning. This is 
reasonable since most current designs are created in a 
hierarchical format. After partitioning, based on the result of 
complexity analysis, all modules and corresponding constraints 
are supplied as input to appropriate validation engines for 
verification and/or simulation. The general rules are listed as 
follows: 
 

a. VIS deals with complex properties presented in CTL and 
control logic.  

 
b. STE deals with simple TL and control logic, and also all 

properties related to memory. 
 

c. SMU-EQ deals with datapaths that will not cause memory 
explosion problems. 

 
d. The Speed5 simulator is used to validate multipliers or 

other complex components not suitable for formal methods. 
 

e. Functional simulation/system-level simulation is used as 
the last step for validating the interconnections of the 
components. 

 
After the sub-modules are validated separately, the functional 
simulator is applied to simulate the system with the main focus 
on system interconnections. The coverage analyzer provides a 
degree of confidence metric for the design validation. When the 
coverage value is low, the components that are simulated in 
previous stages are further partitioned into smaller modules. 
The coverage for further partitioned component can be 
improved with formal verification methods or more simulation. 
The increased coverage on such components improves the 
overall coverage for the entire design.   
 
In the following, we use an example to show the entire 
processing flow of the IDV system. The example we use is 
quite simple but contains all the necessary modules exercise the 
various verification and simulation methods incorporated into 
IDV. The example used here is an arithmetic inverse circuit 
that produces the inverse of an 8-bit unsigned integer, B, using 
the Newton-Raphson iteration equation: 

2
1 2i i ix x Bx+ = −  

 
A block diagram of the example digital system is shown in 
Figure 4. The system operates as follows: the initial value of 

0x  is an estimate that is stored in a ROM lookup table for the 
arithmetic inverse of 1/B where B is the input unsigned 8-bit 
value. The 3-bit address is generated from the most significant 
bits of the integer B to get the initial value from the ROM. 
Then the value is input to the portion of the circuit that 
implements the above Newton-Raphson iteration equation, 
named newtraph in order to refine the approximation to the 
desired accuracy. The result of computation is fedback and 

iterates 5 times to produce an estimate of 1/B accurate to 6-bits 
before the result is output. The iteration and initial 
approximation selection operations are handled by the block 
labeled controller.  
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Figure 3 Processing Flow of IDV System 

 
 

 
Figure 4 Inverse Circuit Block Diagram 

 
The example circuit design includes a memory unit (ROM), a 
datapath (2 multipliers and 1 adder), control logic (a counter 
and synchronous sequential circuit controller), and some other 
datapath components such as an address generator, latch, and 
multiplexer. For such a design, the properties to be checked are 
as follows: 
 

a. Liveness property: load=1  AX:2(AF(busy=0)): Along 
all controller state-space paths in the future, there will be a state 
that busy=0 and it will be asserted for at least the next 2 states. 
The signal load =1 means an unsigned integer B is to be loaded 
for calculating the arithmetic inverse. The signal busy is 
asserted while the circuit is in the process of calculating the 
inverse and it is deasserted when the circuit is idle or the 
previous calculation is completed. This property indicates that 
if an integer is loaded for inverse calculation, it must finish the 
calculation sometime in the future and will not loop endlessly 
(busy will never be 0). This is a liveness property since it 
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indicates the constraint that circuit will finish a computation in 
a finite amount of time. 
 

b. Safety property: load=1  Next(busy=1): If the signal 
load is asserted, then the signal busy has to be asserted in the 
next cycle. As we indicated previously, busy is asserted when 
the circuit is performing a calculation for the prior request. So 
this property ensures that if an integer is loaded, the calculation 
will be started in the next cycle. 
 

c. Property related to the Memory Operation: RE=1 ∧  addr 
 RAM_out = Next(M[addr]): The signal RE indicates read 

enable for ROM. The property can be interpreted as: if read 
enable for ROM is asserted and a valid address is given, the 
output of the ROM in next cycle should be the value stored at 
that address.  
 

d. Also, most importantly, is the overall functionality. This 
means that the multiplier, adder, counter, and all other 
components should work properly separately and when 
connected together. 
 

 
4.1 Complexity Analyzer  
 
The complexity analyzer is mainly focused on: 
 

a. Analyzing the properties checked and assigning them to 
different verification tools. Complex properties specified in 
CTL are assigned to VIS while properties specified as 
Trajectory Formulas are assigned to STE. Given the above 
example, property a is quite complicated and is not appropriate 
for an STE approach thus VIS is used. While property b can be 
verified via either VIS or STE, in such cases, we prefer using 
STE since STE can be more efficient. Also, all properties 
related to memory operations are assigned to the STE tool for 
formal verification since STE usually performs better for such 
components and the related properties can generally be 
expressed as trajectory formulas. 
 
Deciding to use a SAT-based approach or BDD-based 
approach for equivalence checking based on the number of 
variables. A SAT-based approach can be more time consuming 
but can handle large designs where BDD-based approaches 
may lead to a memory explosion problem.  BDD-based 
approaches are used when possible since they usually result in 
faster runtimes. Thus, if the number of variables is over a user-
defined threshold, the IDV tool uses a SAT-based EQ method, 
otherwise the BDD-based approach is used.    
 

b. Extracting components/modules/processes and 
information about their interconnection topology. This 
information is used for partitioning and system level functional 
simulation. A Process-Module Graph (PMG) is constructed 
that describes the hierarchy of the design under validation. 
Each node in the PMG represents a component/module/process 
and each edge corresponds to the interconnections of these 
components. The process-module graph for the above example 
is shown in Figure 5. 

 
4.2 Partitioning 
 
Design hierarchy explored in the previous stage is analyzed 
further in this stage. We initially explore coarse-grain partitions 
and continuously increase the granularity of the partitions until 

the desired coverage goal is reached. This step is completed 
with the assistance of a PMG and the design hierarchy. Given 
the above example, the top-level consists of three parts, 
controller, ROM, and datapath.  These three parts are extracted 
and assigned to different tools for verification or simulation. 
The controller is assigned to a property checking and 
reachability analysis tool, the datapath is assigned to an 
equivalence checker or simulator, and the memory unit is 
assigned to STE for property checking.   
 
 

 
 

Figure 5 PMG Representation of  the Example Design 
Hierarchy  

 
4.3 Verification or Simulation process 
 
After complexity analysis and partitioning are completed, the 
subcircuits undergo verification and/or simulation according to 
the process as depicted in the flowchart in Figure 3.  
 
Given the 3 components of the inverse circuit example, we 
show results that use different tools in Table 1. The results give 
a sense of the required computational time for tools. These 
results were obtained using a Pentium-4 PC with 512MB of 
Memory running Microsoft WindowsXP under the cygwin 
UNIX emulation environment. 
 

Table 1 Verification/Simulation result 
Component Properties Tools Result Time 

a VIS T 0.1s Controller 
b STE T 0.08s 

Memory c STE T 0.3s 
Newtraph 10% Speed work 0.9s 
Functional 1% Func. Sim work 5s 

                                                     
4.4 Coverage Analysis 
 
Different coverage metrics have been proposed in different tool 
sets. We are currently focusing on vector coverage and plan to 
expand to other coverage metrics. The vector coverage of an 
output is based on:  
 

a. the coverage rate of the components related to the output 
when they are simulated or verified at the block level 
 

b. the contributions or importance of each component related 
to the output 
 

c. the vector coverage of the system-level simulation and the 
interconnection error 

 
Detailed descriptions for the above three points are 
demonstrated as follows. The first point can be described as 
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follows. For each output of the design, not all components 
contribute such as the output signal busy which is only related 
to the controller component. If an output is related to the n 
components C1 … Cn, each component has a corresponding 
normalized coverage value R1 … Rn when they are verified or 
simulated at the block level. Ri is 1 (i.e. 100%) if the 
component has been fully verified or a value (0,1)iR ∈  that 
corresponds to the percentage of all possible vectors simulated. 
The coverage for an output will increase as the coverage for 
each related component increases. However, even if all related 
components are fully verified ( 1iR = ), the coverage for the 
output may not reach a perfect level of 100% since the 
interconnection may cause an error such as the case where two 
interconnections are reversely connected. 
 
Also, not all components related to an output have the same 
contribution. For example, the output z is related to all three 
components and it is the direct output of the datapath which in 
turn relates to the other two components. The contribution or 
“weight” of the component Ci to the output is denoted as wi. 
Currently, IDV allows for two ways to determine the value wi: 
(1) designers manually assign the weight value, (2) an 
automatic method based on the input distribution of the directly 
related component is computed by IDV. An example is used to 
demonstrate the automated method. For the inverse circuit 
example, the directly related component datapath has three 
inputs. One of the three inputs is provided by the circuit inputs, 
one of them is from the controller component, and one of them 
is obtained from the ROM component. The contribution of 
each component is proportional to the input distribution. The 
contribution of the component datapath is 1/ 3 , the 
contribution of the component controller is 1/ 3 , and the 
contribution of the component controller is 1/ 3 .  
 
The third point is related to the system level simulation and 
interconnection errors. Even if all related components are fully 
verified, the coverage for an output may not reach a perfect 
level of 100% since the interconnections may cause errors. 
System level simulation can be used to detect the presence of 
possible interconnection errors. The number of possible 
interconnection errors is related to the number of 
interconnections. The more interconnections, the more errors 
are possible. Also, the more system level simulation that is 
accomplished, the less possible interconnection errors present 
in a design. Based on this description, a graph of the 
relationship between possible interconnection errors and the 
coverage at the system level is shown in Figure 6 where the 
parameter p  indicates the dropping rate of interconnection 
errors with respect to the coverage at system level simulation.  
 
Figure 6 shows the change in coverage of the system level 
simulation and presence of possible interconnection errors. 
When no system level simulation is performed, all possible 
interconnection errors are normalized to one. The possible 
interconnection errors presented in the system decrease as the 
coverage of system level simulation increases. Various slopes 
in Figure 6 show the different decreasing rates of the possible 
interconnection errors which is referred to as the dropping rate, 
p . No interconnection error is present in a design once 100% 

coverage is reached at the system level simulation. The 
dropping rate p is related to the number of interconnections 
and present in the interconnection architecture. The smaller p  
is, the faster possible interconnection errors are detected via  

system-level or functional simulation. The function in Figure 6 
is referred to as the dropping function and denoted as ( , )d s p  
where the parameter s  is the vector coverage at the system 
level simulation. Currently ( , )d s p  is calculated as  

1/(1 )p pd s= −                                    (1) 

where p  is determined by   
 

number of interconnections
total inputs

. 

Here only the number of interconnections is considered and the 
interconnection architecture is ignored. 
 

 Figure 6 Interconnection Errors versus Coverage of System 
Level Simulation 

 
An alternative way of describing ( , )d s p  is that it defines 

the distance between the perfect situation (no interconnection 
error) and the imperfect situation due to interconnection errors. 
1 ( , )d s p−  represents the confidence an output gains for 
interconnections with s  system level simulations. If ( , )d s p  is 
given, the coverage of an output can be calculated as 

(1 ( , )) R d s p× − considering interconnection errors. In an 
optimistic analysis, interconnection error is ignored. Thus, the 
coverage for components is adjusted with and without 
considering interconnection errors. The adjusted coverage rate 
is referred to as R′  and is calculated as an interval value 

 
[ , ]low highR P P′ =                                  (2) 

 where (1 ( , )) , low highP R d s p P R= × − = . 
 

Based on the previous analysis, the total coverage rate for the 
output can be written as: 

 
1 1 2 2 ...o n nP w R w R w R′= + + +                   (3) 

 
We will show how to use the above equation to calculate the 
coverage rate of the given example, there are two outputs, busy 
and 1/B. Among three components, Controller and ROM are 
fully verified and their coverage rates are 1cR =  and 1mR =  
respectively. While the component newtraph, is simulated with 
10% of total vectors being tested yields 0.1dR = .  
 
The output Busy is only related to the component controller 
and also the input load. Since the component controller totally 
controls the functionally of Busy, we have 1cw = . Applying 
Eq. (3), we obtain: 
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1 1 1busy c c c cP w R w R′= = = × = =100% 
indicating  that the output Busy has been fully verified. 
 

The output 1/B is related to all three components. 1/B is the 
direct output of the datapath component which accepts inputs 
from the system level input B , the output of the ROM 
component and the outputs of the controller component. Using 
this automatic method based on the input distribution, the 
contribution of the component controller is the contribution of 
the component datapath is 1/3 0.33dw = = , and the 
contribution of the ROM component is also 1/3 0.33mw = = . 
Next, the coverage for the datapath component is updated.  

 
In the system-level simulation, 10% of the input values 
(vectors) for B  have been simulated ( 0.1BI = ). Among the 
three inputs for the datapath component, two of them come 
from the interconnected components yielding 2 /3p = . 
According to Eq. (1), the dropping function ( , )d s p  is written 

as 
2 3

3 2(1 )d s= − . Substituting BI  with s  in the formula 
yields 0.70d = . This shows that with 10% of system 
simulation values of B, a 30% overall coverage confidence is 
obtained with the system interconnections accounted for.  
 
The simulated vectors of the datapath component at the block 
level are 20%. Thus the adjusted coverage for the datapath is  
in the interval [0.06,0.2]dR′ =  according to Eq. (2). 
 
Then the coverage for the output 1/B is calculated as  
 

1/

0.33 1 0.33 1 0.33 [0.06,0.2]
[0.69,0.74]

B c c m m n dP w R w R w R′= + +

= × + × × + ×
=

 

 
The coverage of the output 1/B with the initial partition is in the 
interval  [0.69 0.74]. This coverage can be further improved by 
partitioning refinement and iteration in the IDV system. 
 
4.5 IDV Iterative Refinement 
 
When the coverage is too low, IDV iterates over more fine-
grained partitions of the previously simulated components. In 
the above example, newtraph is the only component simulated. 
When IDV iterates and the component newtraph is 
repartitioned, it is found that it hierarchically consists of three 
smaller modules; two multipliers and one adder. The IDV tool 
formally verifies one of these three smaller modules. The 
equivalence checking tool is used to formally verify the adder 
and the two multipliers are simulated. After simulation, the 
coverage of the multiplier  components is calculated using the 
method described above. Equal weight is assigned to the three 
components, 1 2 1/ 3mult mult adderw w w= = = . Since the adder 
is fully verified ( 1adderR = ) and the other two components 
have been simulated at the same rate as before yielding 

1 2 0.3mult multR R= = . Thus applying Eq. 3 yields:  
 

1 1 2 2

1/ 3 (0.3 0.3 1) 0.53
d mult mult mult mult adder adderR w R w R w R= + +

= × + + =
 

 

The result is that the coverage of the component, newtraph, has 
been improved from 20% to 53% by refining the partitioning. 
The coverage rate of component, newtraph, is increased by 
refinement. 
 

[0.16,0.53]R′ =  
 
and the coverage rate of the output  1/B, is 
 

1/

0.33 1 0.33 1 0.33 [0.16,0.53]
[0.72,0.84]

B c c m m n dP w R w R w R′= + +

= × + × × + ×
=

 

 
We can see that the coverage rate of the output is improved by 
partitioning refinement and IDV iteration.   
 

 
5. CONCLUSION 

 
The prototype IDV tool described here integrates various 
formal verification and simulation methodologies into a single 
design validation framework.  The architecture of IDV is such 
that new verification and simulation tools can be easily 
integrated allowing for more choices of component validation.  
IDV has been applied to an example circuit design consisting 
of components that are well suited for both simulation and 
formal verification and the process of computing overall 
system coverage has been described with improvements 
obtained through iteration.  This approach allows designers to 
trade-off IDV runtime for overall system coverage.  This is one 
of the first approaches for loose coupling of validation 
techniques and the example has shown that this approach is 
successful. 
 
 

6. REFERENCES 
 
 [1] R. Alur, et al., “Mocha: A Model Checking Tool that 

Exploits Design Structure,” Proc. of the IEEE 
Inter.ational Conference on Software Engineering, 
2001 

[2] A. Aziz, et al., “Hybrid Verification Using Saturated 
Simulation,” Proc. of the DAC, 1998, pp. 615-618 

[3] R. Bloem, et  al., “Symbolic Guided Search for CTL 
Model Checking,” Proc. of the DAC, 2000 

[4] J. Burch, et al. “Tight Integration of Combinational 
Verification Methods,” Proc. of the ICCAD, pp. 570-576, 
2000 

[5] A. Chandra et. al., “AVPGEN – A Test Generator for 
Architecture Validation,” IEEE Tran. VLSI, Vol 3, No 2, 
June 1995 

[6] S. G. Govindaraju, D. L. Dill, and J. P. Bergmann, 
“Improved Approximate Reachability using Auxiliary 
State Variables,” Proc. of the DAC, June 1999, pp. 312-
316 

[7] S. Hazelhurst, et al.. “A Hybrid Verification Approach : 
Getting Deep into the Design,” Proc. of the DAC, 2002 

[8]  A. Kuehlmann, M. Ganai and V. Paruthi, “Circuit-based 
Boolean Reasoning,” Proc. of the DAC, pp. 232-237, 
2001 

[9]   K. Kang and S.A. Szygenda, “Accurate Logic Simulation 
by Overcoming the Unknown Value Propagation 
Problem”, Simulation Journal, Vol. 79, Issue2, February 
2003 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 2 29ISSN: 1690-4524



[10] C.-N. J. Liu and J.-Y. Jou, “An Automatic Controller 
Extractor for HDL Descriptions at the RTL,” IEEE 
Design & Test of Computers, pp. 72-77, July-September 
2000 

[11] L. Li, M.A. Thornton, and S.A. Szygenda, “A Genetic 
Approach for Conjunction Scheduling in Symbolic 
Equivalence Checking,” IEEE Computer Society 
Annual Symposium on VLSI, pp. 32-36, February 2004 

[12] R. Marcyzynski, M.A. Thornton, and S.A. Szygenda, 
“Test Vector Generation and Classification Using 
Symbolic FSM Traversals,” International Symposium 
on Circuits and Systems,  pp. V-309 – V-312, May 2004 

[13] V. Paruthi, N. Mansouri and R. Vemuri, “Automatic Data 
Path Abstraction for Verification of Large Scale Designs,” 
Proc. of the ICCD, pp. 192-194, 1998 

[14] K. Shimizu and D. L. Dill, “Using Formal Specifications 
for Functional Validation of Hardware Designs,” IEEE 
Design & Test of Computers, pp. 96-106, July-August 
2002 

[15] S. Szygenda, “The Simulation Automation System, Using 
Automatic Program generation, for Hierarchical Digital 
Simulation Systems,” Proc. of the European Simulation 
Conference, 1990  

[16] S. Tasiran and K. Keutzer, “Coverage Metrics for 
Functional Validation of Hardware Designs,” IEEE 
Design & Test of Computers, pp. 36-45, July-August 
2001 

[17] S. Hazelhurst and C-J Seger, “Symbolic Trajectory 
Evaluation.” In T. Kropf, editor, Formal Hardware 
Verification, ch. 1, pp 3-78, Springer Verlag; New York, 
1997 

[18] Christoph Kern and Mark Greenstreet “Formal verification 
in hardware design: a survey,” ACM Trans. on Design 
Automation of Electronic Systems, Vol. 4, Iss. 2, pp: 
123-193, 1999  

[19] Carl Seger,  And Randy Bryant, “Formal verification by 
symbolic evaluation of partially- ordered trajectories,” 
Formal Methods System Design, Vol. 6, Iss. 2, pp: 147-
189, 1995 

[20] F. Somenzi et al. CUDD: University of Colorado Decision 
Diagram Package. http://vlsi.colorado.edu/~fabio/CUDD/ 

[21] R. Brayton et al. VIS: A system for verification and 
synthesis. http://vlsi.colorado.edu/vis/ 

[22] E., Clarke, E., Emerson, and A. Sistla. “Automatic 
verification of finite-state concurrent systems using 
temporal logic specifications.” ACM Trans. Program. 
Language System, Vol. 8, Iss. 2, pp: 244–263, 1986 

[23] R. Bryant, “Graph-based Algorithms for Boolean Function 
Manipulation,” IEEE Trans. Computers, vol. 35, pp. 
677–691, Aug. 1986 

[24] K. Mcmillan, “Symbolic model checking—an approach to 
the state explosion problem,” Ph.D. Dissertation, 
Carnegie Mellon University, 1992 

 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 230 ISSN: 1690-4524


	P457798

