

 Integrated Design Validation: Combining Simulation and Formal Verification for

Digital Integrated Circuits

Lun Li, Mitchell A. Thornton, Stephen A. Szygenda
Dept. of Computer Science and Engineering

Southern Methodist University, Dallas, Texas 75206
{lli, mitch,szygenda}@engr.smu.edu

ABSTRACT

The correct design of complex hardware continues to challenge
engineers. Bugs in a design that are not uncovered in early
design stages can be extremely expensive. Simulation is a
predominantly used tool to validate a design in industry.
Formal verification overcomes the weakness of exhaustive
simulation by applying mathematical methodologies to validate
a design. The work described here focuses upon a technique
that integrates the best characteristics of both simulation and
formal verification methods to provide an effective design
validation tool, referred as Integrated Design Validation (IDV).
The novelty in this approach consists of three components,
circuit complexity analysis, partitioning based on design
hierarchy, and coverage analysis. The circuit complexity
analyzer and partitioning decompose a large design into sub-
components and feed sub-components to different verification
and/or simulation tools based upon known existing strengths of
modern verification and simulation tools. The coverage
analysis unit computes the coverage of design validation and
improves the coverage by further partitioning. Various
simulation and verification tools comprising IDV are evaluated
and an example is used to illustrate the overall validation
process. The overall process successfully validates the example
to a high coverage rate within a short time. The experimental
result shows that our approach is a very promising design
validation method.

Keywords: Formal Verification, Simulation, Digital Circuit
Design

1. INTRODUCTION

Design validation is the process of finding design errors in a
model of an electronic Integrated Circuit (IC) before it is
manufactured. IC designers rely heavily upon simulation
techniques; however, the size of ICs continues to increase in
terms of the number of transistors per chip resulting in
diminished validation effectiveness when using simulation
only. More recently, formal verification methods have been
developed that utilize specialized models of ICs and then
mathematically reason about them to prove design correctness
in an automated way. While some formal verification methods
are beginning to appear in commercial tools, most formal
methods are limited to relatively small ICs or small sub-circuits
of large ICs. The work described here focuses upon the
creation of a new technique that integrates the best
characteristics of both simulation and formal verification
methods to provide a new and effective IC design validation
CAD tool.

We describe an integrated approach to design validation that
takes advantage of current technology in the areas of
simulation (for both critical timing and fault simulation), and
formal verification resulting in a practical verification engine
with reasonable runtime called the Integrated Design
Validation (IDV) system.

2. METHODOLOGY

The IDV system utilizes existing simulation and verification
techniques in an efficient manner of integration to provide a
comprehensive tool for design specification compliance. The
latest results in all areas of verification [3, 6 11, 12] simulation
[9, 2], and test [5] are used to provide a design compliance tool
that is extremely effective as is illustrated with the example
described in a later section of this paper.

The novelty in this approach is in the use of circuit complexity
analysis and partitioning to decompose a large design into sub-
components and validate the sub-components using different
tools based upon known existing strengths of modern
verification and simulation tools, new coverage analysis
methods that compute the degree of design validation, using the
result of coverage analysis as an indication for further
validation iterations, and integration of these techniques with
existing simulation and formal verification techniques. There
have been recent attempts to tightly combine two different
verification tools [4, 7], most notably SAT solvers and BDD
approaches for equivalence checking [8]; however, to our
knowledge, no overall verification/simulation engine with
significant analysis before design validation occurs has been
produced.

The overall structure of the Integrated Design Validation (IDV)
system is shown in the block diagram of Figure 1. A primary
focus is on the complexity analysis, partitioning, and coverage
analysis blocks, that are used to determine the most effective
use of simulation or verification tools.

2.1 Complexity Analyzer

The complexity analyzer estimates the complexity of an RTL
or netlist design based on existing methods for
controller/datapath extraction.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 222 ISSN: 1690-4524

Figure 1 Architecture of the IDV

Integration with the partitioner is crucial for this function. The
extracted control and datapath portions of the circuitry are
analyzed for applicability of various techniques. One simple
method is to send the same partitions of a circuit to more than
one validation technique. As an example, a portion of a
datapath is sent to both a SAT-based equivalence checker and a
BDD-based equivalence checker. It is known that if a BDD-
based approach is going to be effective, it will likely execute
very rapidly. Thus, we can initiate multiple verification
“threads” for a given portion of a circuit and let the thread
producing a result first “win”. If some amount of preset
computational resource is reached with no result, then the sub-
circuit is sent to the simulator.

In terms of automating the simulator, an interesting approach
was presented in [14] where the focus was the automated
generation of 1) an input generator, 2) a coverage metric and,
3) an output correctness checker. These three simulation “aids”
were generated from a formal specification of module interface
protocols. The input generator produced input sequences based
on what the interface protocol allows and the output checker
compared the output to what the protocol defined as correct,
The coverage metric quantified coverage by exploiting the fact
that the protocol defines the set of all possible interface events.
We are utilizing an approach similar to this one in IDV.

2.2 Design Partitioning

One of the biggest hurdles in applying formal techniques is to
correctly identify the target circuits.

Although a lot of work has been accomplished with respect to
partitioning for logic and physical level synthesis, there is not
as much for design validation and simulation. In [10] a
methodology for automatically extracting controllers from an
RTL-HDL specification is described. This work introduces an
algorithm for automatically separating the datapath and
controller described at the RTL level by locating general

patterns of FSMs in a Process-Module (PM) graph
representation of the design. A PM graph is defined to be a
directed graph where each node represents a sequential process,
a concurrent dataflow statement, or a module instantiation in
both VHDL and Verilog. In such a representation, the
hierarchy is preserved and each module contains its own PM
graph. Because a FSM’s next states always functionally
depend on their current state, signals stemming from state-
registers will loop back after some combinational paths.
Finding the FSMs in the HDL is based on finding such loops in
the PM graph. Some loops found, however, may have a valid
pattern topologically but not be part of a FSM. To deal with
such instances, the checking of functional dependency follows
the loop search to determine if the loop is a valid part of the
FSM. The extraction process is divided into 4 phases, most of
which are traversal procedures resembling a Depth-First Search
of the PM graph. All steps are of linear complexity

Another technique allows for abstracting away large portions of
the datapath circuitry leaving the controllers intact [13]. This
technique uses a methodology for abstracting away portions of
the datapath and reducing the bit-width size of some elements
while preserving the control structure. This process, referred to
as a spatial abstraction, reduces the state space of the system
under consideration and allows for complete verification with
model checking. The fundamental concept is to identify the
data path storage elements that do not contribute to the control
flow of the design and reduce their size to a single bit. Next,
using interval computations, the range of values that can be
assumed by all the storage elements is determined. The
abstraction procedure consists of 1) partitioning the design into
a module call graph -a collection of modules as a list, 2)
classifying the variables as control, data, or mixed 3)
initializing the variables with respect to their classification and
size and 4) Interval Propagation. Experimental results show a
drastic reduction in states and CPU time for verification.

Design
Specification

Complexity
Analyzer

Partition

Equivalence
Check

(SAT, BDD,
state space explor.)

Simulation
Verification
(testbench gen.)

Symbolic
Simulation
(WLDDs, MVL)

Property
Check

(bounded model
checking)

Coverage
Analyzer

Design
Constraints
Properties

Reference
Models

Intelligent Feedback Loop - Runtime versus Coverage Tradeoff

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 23ISSN: 1690-4524

Based on the factor that designers usually partition their design
into multiple RTL blocks (these blocks usually mirror the
floor-planned design). Methods that exploit such an inherent
design hierarchy have been used in the past such as the jMocha
tool [1].

In IDV, design partitioning is mainly done manually with
assistant of PM graph mentioned previously and design
hierarchy. IDV Uses PM graph as a starting point and further
partitions are accomplished manually by using finer grained
designer-defined partitions that occur naturally in the hierarchy
of the HDL code describing the system under validation.

2.3 Coverage Analysis

Some work has been accomplished in terms of coverage
analysis particularly with respect to evaluating the
effectiveness of simulation-based validation. An overview of
design validation coverage methods is given in [16] that
classify existing metrics in terms of code coverage, metrics
based on circuit structure, metrics defined on finite state
machines, functional coverage, error models, observability, and
metrics applied to specifications.

Currently, we are focusing on vector coverage based on three
factors: a) the coverage rate of the components related to the
output when they are simulated or verified at the block level, b)
the contributions or importance of each component related to
the output, c) the vector coverage of the system-level
simulation and the interconnection error. The first two points
are easy to understand. The third point is related to the system
level simulation and interconnection errors. Even if all related
components are fully verified, the coverage for an output may
not reach a perfect level of 100% since the interconnections
may cause errors. System level simulation can be used to detect
the presence of possible interconnection errors. The more
interconnections, the more errors are possible. Also, the more
system level simulation that is accomplished, the less possible
interconnection errors present in a design.

3. VERIFICATION AND SIMULATION TOOLS
COMPRISING IDV

To integrate the tools and make them complement each other is
our goal. Various tools have been developed for formal
verification and simulation. Choosing the right tools will set up
the base for the success of our system.

3.1 Symbolic Trajectory Evaluation (STE)

STE is an approach similar to model checking that verifies
circuits with very large state spaces. It is more sensitive to the
property being checked instead of the size of the circuit when
compared to model checking. The STE package we use is from
the Intel Strategic Research Laboratory called Forte. It also
supports a simple yet effective compositional theory besides
STE. Two important properties of STE are:

a. It is suitable for verifying designs of circuits at the gate or
switch level

b. STE provides accurate models of timing, which is

reflected in the types of properties checked for.

STE originated from the idea of multi-level and ternary-valued
logic symbolic simulation. It is a formal verification method
that is close to traditional simulation. One of the distinguishing
features of STE is that the state space is represented as lattice.
The partial order of the lattice represents an information
ordering or abstraction relation between states. The higher up it
goes in the information ordering, the more information it has.
The computational advantage of this is that, given the
appropriate logical framework, if a property is proved to hold
for a state in the lattice, it holds for all states above it in the
lattice. Another important fact is that circuits have natural
representations as lattices, and the use of the information
ordering allows us to easily abstract out the necessary
information for property checking [17].

The properties to be checked are represented using temporal
logic (TL). TL is usually propositional or first-order logic
augmented with temporal modal operators that allow reasoning
about how the truth values of assertions change over time. TL
can express safety and liveness properties, such as “property p
holds at all times” or “if p holds at some instant in time, q must
eventually hold at some later time.” Properties of this sort can
be employed to specify desired properties of systems. As an
example, consider a traffic signal control system with
properties “the signals at both directions should never be green
at the same time” and “the signal at one direction will
eventually be green”.

The properties that STE focuses on are a restricted TL that
offers only the next-time operator [19], which is called
trajectory formula. A trajectory assertion has the form A C,
where A and C are trajectory formulas, named as antecedent
and consequent respectively. Informally, a trajectory assertion
holds for a circuit M iff each sequence of states of M that
satisfies the antecedent A also satisfies the consequent C.
Typically, A specifies constraints on how the inputs of a circuit
are driven, while C asserts the expected results on the output
nodes [18]. For example, the formula (read_enable=1 ∧ addr

 out = Next(M[addr]) asserts that if signal read_enable is
asserted and address is specified, the output of memory is the
value stored at address in the next cycle.

3.2 Symbolic Model Checking

TL as introduced in the above section can be used as a
framework for the specification of the temporal properties of a
design in forms other than a trajectory assertion. Computational
TL (CTL) is a propositional logic of branching time. It is based
on propositional logic and uses a discrete model of time where,
at each instant, time may split into more than one possible
future event. Thus, it forms a tree structure. A powerful
algorithm to determine whether or not a given design satisfies a
CTL is referred to as model checking [22]. In model-checking
techniques, the entire state transition graph needs to be
constructed either explicitly or implicitly using a symbolic
representation.

Reduced Ordered Binary Decision Diagrams (ROBDDs) [23]
provide a powerful symbolic representation for Boolean
functions. A Binary Decision Diagram (BDD) is a rooted,
directed acyclic graph. There are two types of nodes in the
graph: terminal and non-terminal nodes. The terminal node is
labeled with either the constant 0 or constant 1 and has no
outgoing edges. Each non-terminal node is associated with one

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 224 ISSN: 1690-4524

binary variable and has two outgoing edges labeled as T (Then)
and E (Else) respectively, which correspond to the two possible
valuations of the node’s variable. ROBDD has the additional
property that no variable appears more than once, and the
variables appear in the same order on every path. ROBDD is a
canonical representation for Boolean functions. A popular form
of the model checking algorithm utilizes BDDs for state and
transition function representation and is referred to as symbolic
model checking. McMillan first formulated this approach and
implemented the SMV method [24]. However, BDD-based
model checkers can cause memory explosion since BDD sizes
may exceed memory limits in large designs. The symbolic
model checking tool used in IDV is VIS (Verification
Interacting with Synthesis).

VIS is a verification package developed jointly at the
University of California at Berkeley, the University of
Colorado at Boulder, and more recently, at the University of
Texas, Austin [21]. VIS is able to synthesize finite state
systems and/or verify properties of such systems, which have
been specified hierarchically as a collection of interacting finite
state machines. VIS utilizes the BDD package developed by the
University of Colorado at Boulder, named CUDD [20]. VIS
and CUDD has been used extensively in academia for symbolic
model checking.

STE and VIS are both capable of model checking. They differ
in the following aspects:

Properties: VIS can verify more properties since it uses CTL
while the trajectory formulas supported by STE are less
expressive.

Capacity: STE can handle bigger circuits in terms of latches

and bit cells (over 1000 latches). VIS usually exceeds memory
capacity when there are more than 200 latches. STE trades
expression power for capacity.

BDD Memory: The underlying mechanism for VIS is a

compact symbolic representation in term of BDDs representing
the circuit model. The underlying engine for STE is symbolic
simulation where the size of the internal BDDs are related more
to the properties being verified instead of the circuit model.

Application: Based on the above differences, we can

conclude that VIS is better in control dominated designs while
STE is more suitable for memory dominated circuits. Actually,
STE has been used extensively in property checking for
memory.

3.3 Digital Logic Simulation

Speed5 is Tegas-like, 5-value multi-modal, assignable-delay,
five-valued simulator [15]. It performs gate-level and
functional-level simulation. Nominal and critical timing
(min/max) delays are used in the simulation. Speed5 also has a
fault simulation ability by fault model generation and insertion
of those models into the simulated circuit. Fault models that are
provided are stuck-at, shorts, transient fault models, and
multiple faults. Performance is improved by parallel simulation
of faults where a specified number of faults are simulated in
one pass. The number of faults per simulation is determined
from indistinguishable fault classes, fault blocking
characteristics and the desired diagnostic resolution.

3.4 Automatic Equivalence Checking

Equivalence checking methods have led to significant success
in industry. Two designs are functionally equivalent if they
produce identical output sequences for all valid input sequences
(i.e. a gate-level design matches its desired behavior as
specified at the Register Transfer Language (RTL) level).
Because of the computational complexity of formal
equivalence checking, a design methodology typically adopts
specific rules to make the problem tractable for large designs.
In practice, the specification and implementation of a design
often have a large degree of structural similarity in terms of
internal nets that implement the same function. For example,
equivalence checking can check if the designs have
corresponding latches. Once the correspondence between
latches of a reference design and an implementation has been
discovered, equivalence checking is just a matter of showing
that corresponding latches have the same next-state function.
This has proven to be very valuable in validating that an
implemented gate-level design matches its desired behavior as
specified at the RTL level.

The equivalence checker developed in our group, SMU-EQ
[11] performs quite well on large designs. The core part of the
equivalence checking tool is image computation during state
space traversal where conjunctive scheduling is very important
in order to reduce BDD size during intermediate computations.
In our approach, a genetic-based approach is developed to
minimize total lifetime and active lifetime at the same time.
Experimental results show that SMU-EQ is very effective. We
have also incorporated a SAT engine into our equivalence
checker to make it more robust and to handle larger designs.
This allows SMU-EQ to operate using SAT when it is
impractical to represent the entire transition relations with
collections of BDDs.

3.5 SMU Functional Simulator

Our group also developed a functional simulator that is used for
system level simulation. At the system level, we are more
interested in the interconnection of modules instead of the
internal function of separate modules. The functionalities of
these modules are fully verified by VIS, STE, SMU-EQ, or
simulated by Speed5 before the functional simulator is
invoked.

Based upon the tool sets just described, the prototype version
of IDV being described here is given by the diagram in Figure
2.

Figure 2 Prototype IDV Tool

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 25ISSN: 1690-4524

4. VERIFICATION PROCESS

The IDV system is a constraint-based system. Constraints
specify the system’s operation such as what validation method
will be used for each design module, the properties to be
verified, and so on.

Figure 3 shows a validation flow chart for the IDV system. The
circuit is parsed as a netlist either in blif or structural RTL
format. The next block is the partitioning portion. The design
hierarchy information is utilized for partitioning. This is
reasonable since most current designs are created in a
hierarchical format. After partitioning, based on the result of
complexity analysis, all modules and corresponding constraints
are supplied as input to appropriate validation engines for
verification and/or simulation. The general rules are listed as
follows:

a. VIS deals with complex properties presented in CTL and
control logic.

b. STE deals with simple TL and control logic, and also all

properties related to memory.

c. SMU-EQ deals with datapaths that will not cause memory
explosion problems.

d. The Speed5 simulator is used to validate multipliers or

other complex components not suitable for formal methods.

e. Functional simulation/system-level simulation is used as
the last step for validating the interconnections of the
components.

After the sub-modules are validated separately, the functional
simulator is applied to simulate the system with the main focus
on system interconnections. The coverage analyzer provides a
degree of confidence metric for the design validation. When the
coverage value is low, the components that are simulated in
previous stages are further partitioned into smaller modules.
The coverage for further partitioned component can be
improved with formal verification methods or more simulation.
The increased coverage on such components improves the
overall coverage for the entire design.

In the following, we use an example to show the entire
processing flow of the IDV system. The example we use is
quite simple but contains all the necessary modules exercise the
various verification and simulation methods incorporated into
IDV. The example used here is an arithmetic inverse circuit
that produces the inverse of an 8-bit unsigned integer, B, using
the Newton-Raphson iteration equation:

2
1 2i i ix x Bx+ = −

A block diagram of the example digital system is shown in
Figure 4. The system operates as follows: the initial value of

0x is an estimate that is stored in a ROM lookup table for the
arithmetic inverse of 1/B where B is the input unsigned 8-bit
value. The 3-bit address is generated from the most significant
bits of the integer B to get the initial value from the ROM.
Then the value is input to the portion of the circuit that
implements the above Newton-Raphson iteration equation,
named newtraph in order to refine the approximation to the
desired accuracy. The result of computation is fedback and

iterates 5 times to produce an estimate of 1/B accurate to 6-bits
before the result is output. The iteration and initial
approximation selection operations are handled by the block
labeled controller.

Verilog/BLIF

Partitioning

Constraints for
Sub-blocks

Validation of
sub-block

Constraints for
Interconnections

Functional
Simulator

Coverage
analysis

Good Enough?
no

yes

Terminate

Complexity
Analysis

Figure 3 Processing Flow of IDV System

Figure 4 Inverse Circuit Block Diagram

The example circuit design includes a memory unit (ROM), a
datapath (2 multipliers and 1 adder), control logic (a counter
and synchronous sequential circuit controller), and some other
datapath components such as an address generator, latch, and
multiplexer. For such a design, the properties to be checked are
as follows:

a. Liveness property: load=1 AX:2(AF(busy=0)): Along
all controller state-space paths in the future, there will be a state
that busy=0 and it will be asserted for at least the next 2 states.
The signal load =1 means an unsigned integer B is to be loaded
for calculating the arithmetic inverse. The signal busy is
asserted while the circuit is in the process of calculating the
inverse and it is deasserted when the circuit is idle or the
previous calculation is completed. This property indicates that
if an integer is loaded for inverse calculation, it must finish the
calculation sometime in the future and will not loop endlessly
(busy will never be 0). This is a liveness property since it

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 226 ISSN: 1690-4524

indicates the constraint that circuit will finish a computation in
a finite amount of time.

b. Safety property: load=1 Next(busy=1): If the signal
load is asserted, then the signal busy has to be asserted in the
next cycle. As we indicated previously, busy is asserted when
the circuit is performing a calculation for the prior request. So
this property ensures that if an integer is loaded, the calculation
will be started in the next cycle.

c. Property related to the Memory Operation: RE=1 ∧ addr
 RAM_out = Next(M[addr]): The signal RE indicates read

enable for ROM. The property can be interpreted as: if read
enable for ROM is asserted and a valid address is given, the
output of the ROM in next cycle should be the value stored at
that address.

d. Also, most importantly, is the overall functionality. This
means that the multiplier, adder, counter, and all other
components should work properly separately and when
connected together.

4.1 Complexity Analyzer

The complexity analyzer is mainly focused on:

a. Analyzing the properties checked and assigning them to
different verification tools. Complex properties specified in
CTL are assigned to VIS while properties specified as
Trajectory Formulas are assigned to STE. Given the above
example, property a is quite complicated and is not appropriate
for an STE approach thus VIS is used. While property b can be
verified via either VIS or STE, in such cases, we prefer using
STE since STE can be more efficient. Also, all properties
related to memory operations are assigned to the STE tool for
formal verification since STE usually performs better for such
components and the related properties can generally be
expressed as trajectory formulas.

Deciding to use a SAT-based approach or BDD-based
approach for equivalence checking based on the number of
variables. A SAT-based approach can be more time consuming
but can handle large designs where BDD-based approaches
may lead to a memory explosion problem. BDD-based
approaches are used when possible since they usually result in
faster runtimes. Thus, if the number of variables is over a user-
defined threshold, the IDV tool uses a SAT-based EQ method,
otherwise the BDD-based approach is used.

b. Extracting components/modules/processes and
information about their interconnection topology. This
information is used for partitioning and system level functional
simulation. A Process-Module Graph (PMG) is constructed
that describes the hierarchy of the design under validation.
Each node in the PMG represents a component/module/process
and each edge corresponds to the interconnections of these
components. The process-module graph for the above example
is shown in Figure 5.

4.2 Partitioning

Design hierarchy explored in the previous stage is analyzed
further in this stage. We initially explore coarse-grain partitions
and continuously increase the granularity of the partitions until

the desired coverage goal is reached. This step is completed
with the assistance of a PMG and the design hierarchy. Given
the above example, the top-level consists of three parts,
controller, ROM, and datapath. These three parts are extracted
and assigned to different tools for verification or simulation.
The controller is assigned to a property checking and
reachability analysis tool, the datapath is assigned to an
equivalence checker or simulator, and the memory unit is
assigned to STE for property checking.

Figure 5 PMG Representation of the Example Design
Hierarchy

4.3 Verification or Simulation process

After complexity analysis and partitioning are completed, the
subcircuits undergo verification and/or simulation according to
the process as depicted in the flowchart in Figure 3.

Given the 3 components of the inverse circuit example, we
show results that use different tools in Table 1. The results give
a sense of the required computational time for tools. These
results were obtained using a Pentium-4 PC with 512MB of
Memory running Microsoft WindowsXP under the cygwin
UNIX emulation environment.

Table 1 Verification/Simulation result
Component Properties Tools Result Time

a VIS T 0.1s Controller
b STE T 0.08s

Memory c STE T 0.3s
Newtraph 10% Speed work 0.9s
Functional 1% Func. Sim work 5s

4.4 Coverage Analysis

Different coverage metrics have been proposed in different tool
sets. We are currently focusing on vector coverage and plan to
expand to other coverage metrics. The vector coverage of an
output is based on:

a. the coverage rate of the components related to the output
when they are simulated or verified at the block level

b. the contributions or importance of each component related
to the output

c. the vector coverage of the system-level simulation and the
interconnection error

Detailed descriptions for the above three points are
demonstrated as follows. The first point can be described as

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 27ISSN: 1690-4524

follows. For each output of the design, not all components
contribute such as the output signal busy which is only related
to the controller component. If an output is related to the n
components C1 … Cn, each component has a corresponding
normalized coverage value R1 … Rn when they are verified or
simulated at the block level. Ri is 1 (i.e. 100%) if the
component has been fully verified or a value (0,1)iR ∈ that
corresponds to the percentage of all possible vectors simulated.
The coverage for an output will increase as the coverage for
each related component increases. However, even if all related
components are fully verified (1iR =), the coverage for the
output may not reach a perfect level of 100% since the
interconnection may cause an error such as the case where two
interconnections are reversely connected.

Also, not all components related to an output have the same
contribution. For example, the output z is related to all three
components and it is the direct output of the datapath which in
turn relates to the other two components. The contribution or
“weight” of the component Ci to the output is denoted as wi.
Currently, IDV allows for two ways to determine the value wi:
(1) designers manually assign the weight value, (2) an
automatic method based on the input distribution of the directly
related component is computed by IDV. An example is used to
demonstrate the automated method. For the inverse circuit
example, the directly related component datapath has three
inputs. One of the three inputs is provided by the circuit inputs,
one of them is from the controller component, and one of them
is obtained from the ROM component. The contribution of
each component is proportional to the input distribution. The
contribution of the component datapath is 1/ 3 , the
contribution of the component controller is 1/ 3 , and the
contribution of the component controller is 1/ 3 .

The third point is related to the system level simulation and
interconnection errors. Even if all related components are fully
verified, the coverage for an output may not reach a perfect
level of 100% since the interconnections may cause errors.
System level simulation can be used to detect the presence of
possible interconnection errors. The number of possible
interconnection errors is related to the number of
interconnections. The more interconnections, the more errors
are possible. Also, the more system level simulation that is
accomplished, the less possible interconnection errors present
in a design. Based on this description, a graph of the
relationship between possible interconnection errors and the
coverage at the system level is shown in Figure 6 where the
parameter p indicates the dropping rate of interconnection
errors with respect to the coverage at system level simulation.

Figure 6 shows the change in coverage of the system level
simulation and presence of possible interconnection errors.
When no system level simulation is performed, all possible
interconnection errors are normalized to one. The possible
interconnection errors presented in the system decrease as the
coverage of system level simulation increases. Various slopes
in Figure 6 show the different decreasing rates of the possible
interconnection errors which is referred to as the dropping rate,
p . No interconnection error is present in a design once 100%

coverage is reached at the system level simulation. The
dropping rate p is related to the number of interconnections
and present in the interconnection architecture. The smaller p
is, the faster possible interconnection errors are detected via

system-level or functional simulation. The function in Figure 6
is referred to as the dropping function and denoted as (,)d s p
where the parameter s is the vector coverage at the system
level simulation. Currently (,)d s p is calculated as

1/(1)p pd s= − (1)

where p is determined by

number of interconnections
total inputs

.

Here only the number of interconnections is considered and the
interconnection architecture is ignored.

 Figure 6 Interconnection Errors versus Coverage of System
Level Simulation

An alternative way of describing (,)d s p is that it defines

the distance between the perfect situation (no interconnection
error) and the imperfect situation due to interconnection errors.
1 (,)d s p− represents the confidence an output gains for
interconnections with s system level simulations. If (,)d s p is
given, the coverage of an output can be calculated as

(1 (,)) R d s p× − considering interconnection errors. In an
optimistic analysis, interconnection error is ignored. Thus, the
coverage for components is adjusted with and without
considering interconnection errors. The adjusted coverage rate
is referred to as R′ and is calculated as an interval value

[,]low highR P P′ = (2)

 where (1 (,)) , low highP R d s p P R= × − = .

Based on the previous analysis, the total coverage rate for the
output can be written as:

1 1 2 2 ...o n nP w R w R w R′= + + + (3)

We will show how to use the above equation to calculate the
coverage rate of the given example, there are two outputs, busy
and 1/B. Among three components, Controller and ROM are
fully verified and their coverage rates are 1cR = and 1mR =
respectively. While the component newtraph, is simulated with
10% of total vectors being tested yields 0.1dR = .

The output Busy is only related to the component controller
and also the input load. Since the component controller totally
controls the functionally of Busy, we have 1cw = . Applying
Eq. (3), we obtain:

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 228 ISSN: 1690-4524

1 1 1busy c c c cP w R w R′= = = × = =100%
indicating that the output Busy has been fully verified.

The output 1/B is related to all three components. 1/B is the
direct output of the datapath component which accepts inputs
from the system level input B , the output of the ROM
component and the outputs of the controller component. Using
this automatic method based on the input distribution, the
contribution of the component controller is the contribution of
the component datapath is 1/3 0.33dw = = , and the
contribution of the ROM component is also 1/3 0.33mw = = .
Next, the coverage for the datapath component is updated.

In the system-level simulation, 10% of the input values
(vectors) for B have been simulated (0.1BI =). Among the
three inputs for the datapath component, two of them come
from the interconnected components yielding 2 /3p = .
According to Eq. (1), the dropping function (,)d s p is written

as
2 3

3 2(1)d s= − . Substituting BI with s in the formula
yields 0.70d = . This shows that with 10% of system
simulation values of B, a 30% overall coverage confidence is
obtained with the system interconnections accounted for.

The simulated vectors of the datapath component at the block
level are 20%. Thus the adjusted coverage for the datapath is
in the interval [0.06,0.2]dR′ = according to Eq. (2).

Then the coverage for the output 1/B is calculated as

1/

0.33 1 0.33 1 0.33 [0.06,0.2]
[0.69,0.74]

B c c m m n dP w R w R w R′= + +

= × + × × + ×
=

The coverage of the output 1/B with the initial partition is in the
interval [0.69 0.74]. This coverage can be further improved by
partitioning refinement and iteration in the IDV system.

4.5 IDV Iterative Refinement

When the coverage is too low, IDV iterates over more fine-
grained partitions of the previously simulated components. In
the above example, newtraph is the only component simulated.
When IDV iterates and the component newtraph is
repartitioned, it is found that it hierarchically consists of three
smaller modules; two multipliers and one adder. The IDV tool
formally verifies one of these three smaller modules. The
equivalence checking tool is used to formally verify the adder
and the two multipliers are simulated. After simulation, the
coverage of the multiplier components is calculated using the
method described above. Equal weight is assigned to the three
components, 1 2 1/ 3mult mult adderw w w= = = . Since the adder
is fully verified (1adderR =) and the other two components
have been simulated at the same rate as before yielding

1 2 0.3mult multR R= = . Thus applying Eq. 3 yields:

1 1 2 2

1/ 3 (0.3 0.3 1) 0.53
d mult mult mult mult adder adderR w R w R w R= + +

= × + + =

The result is that the coverage of the component, newtraph, has
been improved from 20% to 53% by refining the partitioning.
The coverage rate of component, newtraph, is increased by
refinement.

[0.16,0.53]R′ =

and the coverage rate of the output 1/B, is

1/

0.33 1 0.33 1 0.33 [0.16,0.53]
[0.72,0.84]

B c c m m n dP w R w R w R′= + +

= × + × × + ×
=

We can see that the coverage rate of the output is improved by
partitioning refinement and IDV iteration.

5. CONCLUSION

The prototype IDV tool described here integrates various
formal verification and simulation methodologies into a single
design validation framework. The architecture of IDV is such
that new verification and simulation tools can be easily
integrated allowing for more choices of component validation.
IDV has been applied to an example circuit design consisting
of components that are well suited for both simulation and
formal verification and the process of computing overall
system coverage has been described with improvements
obtained through iteration. This approach allows designers to
trade-off IDV runtime for overall system coverage. This is one
of the first approaches for loose coupling of validation
techniques and the example has shown that this approach is
successful.

6. REFERENCES

 [1] R. Alur, et al., “Mocha: A Model Checking Tool that

Exploits Design Structure,” Proc. of the IEEE
Inter.ational Conference on Software Engineering,
2001

[2] A. Aziz, et al., “Hybrid Verification Using Saturated
Simulation,” Proc. of the DAC, 1998, pp. 615-618

[3] R. Bloem, et al., “Symbolic Guided Search for CTL
Model Checking,” Proc. of the DAC, 2000

[4] J. Burch, et al. “Tight Integration of Combinational
Verification Methods,” Proc. of the ICCAD, pp. 570-576,
2000

[5] A. Chandra et. al., “AVPGEN – A Test Generator for
Architecture Validation,” IEEE Tran. VLSI, Vol 3, No 2,
June 1995

[6] S. G. Govindaraju, D. L. Dill, and J. P. Bergmann,
“Improved Approximate Reachability using Auxiliary
State Variables,” Proc. of the DAC, June 1999, pp. 312-
316

[7] S. Hazelhurst, et al.. “A Hybrid Verification Approach :
Getting Deep into the Design,” Proc. of the DAC, 2002

[8] A. Kuehlmann, M. Ganai and V. Paruthi, “Circuit-based
Boolean Reasoning,” Proc. of the DAC, pp. 232-237,
2001

[9] K. Kang and S.A. Szygenda, “Accurate Logic Simulation
by Overcoming the Unknown Value Propagation
Problem”, Simulation Journal, Vol. 79, Issue2, February
2003

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 29ISSN: 1690-4524

[10] C.-N. J. Liu and J.-Y. Jou, “An Automatic Controller
Extractor for HDL Descriptions at the RTL,” IEEE
Design & Test of Computers, pp. 72-77, July-September
2000

[11] L. Li, M.A. Thornton, and S.A. Szygenda, “A Genetic
Approach for Conjunction Scheduling in Symbolic
Equivalence Checking,” IEEE Computer Society
Annual Symposium on VLSI, pp. 32-36, February 2004

[12] R. Marcyzynski, M.A. Thornton, and S.A. Szygenda,
“Test Vector Generation and Classification Using
Symbolic FSM Traversals,” International Symposium
on Circuits and Systems, pp. V-309 – V-312, May 2004

[13] V. Paruthi, N. Mansouri and R. Vemuri, “Automatic Data
Path Abstraction for Verification of Large Scale Designs,”
Proc. of the ICCD, pp. 192-194, 1998

[14] K. Shimizu and D. L. Dill, “Using Formal Specifications
for Functional Validation of Hardware Designs,” IEEE
Design & Test of Computers, pp. 96-106, July-August
2002

[15] S. Szygenda, “The Simulation Automation System, Using
Automatic Program generation, for Hierarchical Digital
Simulation Systems,” Proc. of the European Simulation
Conference, 1990

[16] S. Tasiran and K. Keutzer, “Coverage Metrics for
Functional Validation of Hardware Designs,” IEEE
Design & Test of Computers, pp. 36-45, July-August
2001

[17] S. Hazelhurst and C-J Seger, “Symbolic Trajectory
Evaluation.” In T. Kropf, editor, Formal Hardware
Verification, ch. 1, pp 3-78, Springer Verlag; New York,
1997

[18] Christoph Kern and Mark Greenstreet “Formal verification
in hardware design: a survey,” ACM Trans. on Design
Automation of Electronic Systems, Vol. 4, Iss. 2, pp:
123-193, 1999

[19] Carl Seger, And Randy Bryant, “Formal verification by
symbolic evaluation of partially- ordered trajectories,”
Formal Methods System Design, Vol. 6, Iss. 2, pp: 147-
189, 1995

[20] F. Somenzi et al. CUDD: University of Colorado Decision
Diagram Package. http://vlsi.colorado.edu/~fabio/CUDD/

[21] R. Brayton et al. VIS: A system for verification and
synthesis. http://vlsi.colorado.edu/vis/

[22] E., Clarke, E., Emerson, and A. Sistla. “Automatic
verification of finite-state concurrent systems using
temporal logic specifications.” ACM Trans. Program.
Language System, Vol. 8, Iss. 2, pp: 244–263, 1986

[23] R. Bryant, “Graph-based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, pp.
677–691, Aug. 1986

[24] K. Mcmillan, “Symbolic model checking—an approach to
the state explosion problem,” Ph.D. Dissertation,
Carnegie Mellon University, 1992

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 230 ISSN: 1690-4524

	P457798

