
ABSTRACT 
 

The fast development of network and database techniques 
makes the data collecting and storing much easy and 
convenient. With more data being collected and available,  there 
come the  increasing requirements and huge opportunities for 
cooperative computation, where data are distributed across sites, 
and each site holds a portion of the data and wishes to 
collaborate to detect globally valid multivariate linear 
relationship.  
 
This paper considers the privacy-preserving cooperative linear 
system of equations (PPC-LSE) problem in a large, 
heterogeneous, distributed database scenario, in which two 
parties would like to conduct cooperative computation from 
their private database while keeping their own data secret. The 
paper proposes a privacy-preserving algorithm to discover 
multivariate linear relationship based on factor analysis. 
Compared with other PPC_LSE algorithms, the proposed 
algorithm not only significantly reduces the communication 
cost, but also avoids the random matrix generation of either 
party to hide private information. 
 
Keywords:  privacy preserving data mining, multivariate linear 
relationship. 
 
 

1 INTRODUCTION  
 
The fast advances in network and database technologies have 
dramatically increased our ability to collect, store, and share the 
data. With more and more data being available, there are 
increasing needs for sharing and “making the sense” out of the 
data by data mining. Data mining, as an efficient way of 
exploiting large databases, has been widely used for extracting 
useful knowledge from the data that was not known before. 
Traditional data mining research and development focus on 
efficient and scalable techniques that can handle huge datasets. 
As data tends to be collected and scattered across different 
places, in many occasions, multiple data sources owned by 
different parties are needed in order to extract hidden 
knowledge, thus data privacy becomes a major concern. 
Without proper control data mining can easily leak the secret 
information from the data.  
 
Privacy preserving data mining is a very active research field of 
data mining.  Its goal is to discover new and useful knowledge 

buried in the sheer amount of data while protecting private 
information from being disclosed at the same time. 
 
The paper considers the privacy-preserving cooperative-data- 
mining problem, in which multiple parties want to conduct data 
mining on their databases to find mutually beneficial 
information. These parties may be trusted, partially trusted, 
mutually uncommitted, or even competitive. When the parties 
trust each other, the cooperative data mining is straightforward: 
it only requires knowing inputs from all partners. However, the 
situation could become much complicated if no trust could be 
assumed.  This gives rise to the need for privacy-preserving 
cooperative data mining. The following two examples explain 
such need.  
 
• Two clinics conjecture that two diseases may be related. 

Each clinic has the patient data of one disease. Both would 
like to conduct a joint investigation on their patient data to 
verify their conjecture.  Since each clinic is required to 
protect their patients’ data according to the privacy 
regulation, they need to find a way to analyze their patient 
data without disclosing the patients’ information. 

• After a costly market research, company A decided that 
expanding its market share in some region will be very 
beneficial. However A is aware that another competing 
company B is also planning to expand its market share in 
some region. Strategically, A and B do not want to compete 
against each other in the same region, so they want to know 
whether their regions overlap without giving away location 
information (not only would disclosure of this information 
cost both companies a lot of money, it can also cause 
significant damage to the company if it is disclosed to other 
parties, e.g. another bigger competitor could then 
immediately occupy the market there before A or B even 
starts; or some real estate company could actually raise their 
price during the negotiation if they know A or B is very 
interested in that location). Therefore, they need a way to 
solve the problem while maintaining the privacy of their 
locations [11]. 

These applications require conducting cooperative computation 
based on each party’s private inputs, but neither party is willing 
to disclose its own information. The problem of how to provide 
the gains of shared data without “giving away the store” [5] 
triggers the privacy-preserving data mining research.  
 
In this paper, we consider the privacy-preserving cooperative 
linear system of equations (PPC-LSE) problem in a large, 
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heterogeneous, distributed database scenario. The definition of 
PPC-LSE problem [10] can be summarized as follows. 
 
A matrix M and a vector b represent a set of linear constraints. 
There exist two basic models in the cooperative computation. 

Model 1 Homogeneous Model 

Party A has a nm ×1  matrix M
1
 and a vector b

1
 of length m

1
; 

party B has a nm ×2  matrix M
2
 and a vector b

2
 of length m

2
. 

Without releasing private matrix, they want to solve  
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Model 2 Heterogeneous Model 

Party A has a 1nm ×  matrix M
1
; party B has a 2nm ×  matrix 

M
2
. Both parties know a vector b of length m. Without releasing 

private matrix, they want to solve  

( ) bxMM =21  

The two models can be combined into a hybrid model 

( ) 2121 bbxMM +=+  

PPC-LSE protocol [10] was proposed to solve this problem. It 
uses 1-out-of-N Oblivious Transfer protocol [12] as secure 
protocol. Based on 1-out-of-N Oblivious Transfer protocol, two 
linear equations, ( ) 2121 bbxMM +=+  and 

)()( 21
1

21 bbPxQQMMP +=+ − ,  have the same solution x,  

where P and Q, are nn ×  random matrices and Q is invertible. 
The protocol proceeds in three steps. Firstly, Party A hides M

1
 

in j random matrices D
i
, i=1,2,…,j, and sends all to party B. 

Secondly, party B generates P and Q, and sends the results 
ji ,,2,1, L=+ )QMP(D 2i  and )( 21 bb +P  to party A. In 

terms of 1-out-of-N Oblivious Transfer protocol, party A can 
know )QMP(M 21 + , while party B doesn’t know party A’s 

choice. Thirdly, party A solves the linear equation 
)( 21 bb +=+ Px)QMP(M 21

)
, and sends x

)
 to party B. Finally, 

party B calculates the final results xQ
)=x .   

 
This paper focuses on the Heterogeneous Model of PPC-LSE 
problem. This model assumes a large, heterogeneous, 
distributed database scenario in which numerical data is 
vertically partitioned in two sites. Each site contains some 
elements of a transaction and shares a join key of the two 
databases. Without privacy concern, the problem is to mine 
linear regression model involving attributes other than the join 
key, and it can be solved using the traditional statistical method 
because all inputs are known. However, the assumption that all 
inputs are known is not true in the privacy-preserving 
cooperative computation situation. The paper introduces a 
privacy-preserving algorithm based on factor analysis to mine 
multivariate linear relationship from vertically partitioned data.  
 
The remainder of this paper is organized as follows. Section 2 
gives the related work. Section 3 presents the formal definition 
of the problem. Section 4 presents the proposed method. Section 
5 analyzes the accuracy of the algorithm. Section 6 discusses 
security, communication and computation cost of the algorithm. 
Section 7 concludes the paper and gives future work. 
 
 

2 RELATED WORK  
 
Secure multiparty computation (SMC) problem was first 
introduced by Yao [13], and extended by Goldreich [14]. From 
SMC perspective, [11] lists a number of privacy-preserving 
problems in the area of data mining, scientific computing, 
statistical analysis and so on. Privacy is becoming an important 
issue in data mining applications. There exist three classes of 
privacy-preserving solutions in data mining: data obfuscation, 
data summarization, and data separation [6]. 
 
Data obfuscation is based on reconstructing distribution of the 
original data value. The techniques include swapping values 
between records [15, 20], adding noise to the values in the 
database [2, 4, 3, 16]. Data summarization provides statistical 
information via query restriction, for example, controlling the 
overlap [17], suppressing data cells of small size [18] and so on. 
Data separation is a kind of secure multiparty computation. 
Research has also been conducted to construct the decision tree 
[19] and exploit association rules from horizontally partitioned 
data [8] by using cryptographic oblivious functions. A privacy-
preserving scalar product protocol was proposed in [9, 7] to 
mine association rules from vertically partitioned data.  
 
From the eigensystem and statistics perspectives, this paper 
proposes a privacy-preserving algorithm to discover 
multivariate linear relationship and analyzes the algorithm’s 
confidence.       
 
                                                                           

3 PROBLEM DEFINITION  

 
Let },,,{ 21 miiiI L=  be a set of m items, },,,{ 21 ntttT L=  be a 

collection of transactions, where each transaction it is a set of 

items such that It i ⊆ .  Let X be an pn ×  matrix that  

represents n  transactions defined on p correlated attributes X
1
, 

X
2
,…………, X

p
; Y be an qn ×   matrix that represents n transactions 

defined on q correlated attributes Y
1
, Y

2
,…………, Y

p
. There is no 

sharing information between X and Y.  
 

Under the PPC-LSE’s heterogeneous model, we assume that the 
database T is vertically partitioned between two parties A and B. 
Party A has the matrix X, and party B has the matrix Y.  Both 
parties know a vector Z of length n. Without either party 
disclosing its private matrix, they want to solve the linear 
function 
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4 PROPOSED ALGORITHM  
 
Concerning the privacy, the proposed algorithm detects 
multivariate linear relationship using factor analysis and least 
squares estimation. Factor analysis is a statistical technique that 
can be used to analyze interrelationships among a large number 
of variables and to explain these variables in terms of their 
common underlying dimensions (factors). In the proposed 
algorithm, factor analysis is employed at party A to find the 
common factors of its data partition X. Party A then sends F

x
, 

the factor scores matrix of X, to party B. Party B uses the least 
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square method to obtain the multivariate relationship Z ′  among 
its data partition Y and the factor scores matrix of X, and sends 
Z ′  to A. Finally party A recovers the multivariate relationship 
between X and Y by transforming Z ′  from the factor space 
back to the original variable space. Thus by factor analysis the 
problem of finding the multivariate relationship among original 
variables is transformed to finding the relationship among the 
common factors of party A’s data X and the original variables 
of the party B’s data Y. Moreover, factor analysis enables both 
parties to collaborate on the computation of the multivariate 
relationship without disclosing their own data.  
 

In this section, we first briefly introduce factor analysis and 
classical linear regression model, and then we present the 
private-preserving algorithm to detect multivariate linear 
regression. 

4.1 Factor Analysis  

Factor analysis is used to uncover the latent structure 
(dimensions) of a set of variables. It has a variety of 
applications such as the assessment of underlying relationships 
or dimensions in the data, and the replacement of original 
variables with fewer, new variables. [21]. 
 
Definition 1 

Let X be the observable random vector with p variables 

pXXX ,,, 21 L , that has sample mean vector µ  and covariance 

matrix Σ . The factor model postulates that X is linearly 
dependent on a few unobservable random 
variables },,,{ 21 mFFF L=F , called common factors, and p 

additional sources of variation },...,,{ 21 pεεε=ε , called errors, 

or specific factors. The factor analysis model is 
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 (1) 

or, in matrix notion, 

εLFX +=− µ  (2) 

where }{ ijl=L  is the matrix of factor loadings. ijl  is called 

the loading of the ith variable on the jth factor. 
 

If we assume the unobservable random vectors F and ε  satisfy 
the following conditions: 

F and ε  are independent 

0)( =FE , Ι=)(FCov  

0)( =εE , Ψ=)(εCov , where 

Ψ  is a diagonal matrix 

We get the covariance structure for the orthogonal factor model. 
 
Property 1.  The covariance structure for the orthogonal factor 
model is 

1. ψ+′= LLXCov )(   or  
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2. LFXCov =),(     or   

ijji FXCov l=),(  

Given n observations on p correlated variables, the goal of 
factor analysis is to adequately represent the dataset 

T
ipiii xxxx ),,,( 21 L= , ni ,,2,1 L= , with a small number of 

factors. The factor analysis can be performed via two 
approaches: the principal component method and maximum 
likelihood method. The principal component method 
assumes TT LLLL =+=Σ   0   . For simplicity, we only present 
the results from the principal component method here.    
 
The principal component factor analysis of the sample 
covariance matrix S is specified in terms of its eigenvalue-

eigenvector pairs )ˆ,ˆ(,),ˆ,ˆ(),ˆ,ˆ( p211 peee 2 λλλ L  where 

.ˆ ˆˆ
p21 λλλ ≥≥≥ L  Let m<p be the number of common factors. 

The matrix of estimated factor loadings }ˆ{ ijl  is given by  

                     ]ˆˆ,,ˆˆ ,ˆˆ[ˆ
2211 mm eeeL λλλ L=                (3)       

The estimated specific variance are provided by the diagonal 

elements of the matrix TLLS ˆˆ= , so  
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Communalities are estimated as 

22
2

2
1

2 ˆˆˆˆ
imiii lllh +++= L  

Factor scores are estimated values of the unobserved random 

factor vector [ ]T

pFFF L21=F . That is, factor scores jf̂  is 

equal to the estimate of the values f j attained by F in jth case. 
Factor scores estimated by the principal component are 
generated using an un-weighted least squares procedure:  

)x(xL)LL(f 1 −= −
j

TT
j

ˆˆˆˆ                         (5) 

where ∑
=

=
n

j
jn 1

1
xx  is the sample mean.  

Property 2.  The contribution to total variance from the j-th 
common factor is 

pp

j

sss +++ L2211

λ
 

Then, the number of common factors m can be selected based 
on the estimated eigenvalues. It is generally set to the number of 
positive eigenvalues of  S. 

4.2 Classical Linear Regression Model Introduction 

Given n independent observations on r predictor variables 

rzzz ,,, 21 L  and the associated response variable Y, the 

classical linear regression model is defined as [22] 
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or, 

εβ += ZY  

(6) 

The least squares estimate of β  in (6) is given by 

YZZZ TT 1)( −=β  (7) 

4.3 Algorithm 

The intuition behind the algorithm is that the representation of 
an original data matrix in the factor space is transferred for 
computation. By doing this, it is possible to reduce the size of 
data being transferred if only a small number of common factors 
are used. In addition, it is infeasible to retrieve the original data 
matrix without the knowledge of common factors. The least 
square method seeks the linear model based on the common 
factors. Finally, the linear function is obtained via 
transformation. 
 
Step 1 Party A calculates eigenvalue-eigenvector pairs for its 
sample covariance matrices via scanning private matrices once 
[23]. Assume X is an pn ×  matrix, Y is an qn ×  matrix. Let 

( ) ),,2,1(, pie X
i

X
i L=λ  be the eigenvalue-eigenvector pairs 

of the positive definite matrix Sx, which is the sample 
covariance matrix of X. 
 
Step 2 Party A chooses h (h ≤ p) common factors, and 
computes the factor loading matrix hp

X
×L , specific error 

vector Xε , and  the factor scores matrix },{ X
ijhn

X f=×F  

,,,2,1 ni L= hj ,,2,1 L= respectively.  
 

Step 3 Party A sends its common factor matrix XF  to party 
B. 
 
Step 4 Let the predictor be 
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the associated response be ( )n
T zzz L21=Z . Party B 

calculates the  1++ kh  coefficients ZWWWβ
TT 1)( −= , then 

obtains the linear function 
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Step 5 Party B sends the linear function (8) to party A. 
 
Step 6 Party A replaces X

iF , hi ,,2,1 L= , in (8) by 

),,,( 21 pXXX L=X . Finally, the linear function (9) is 

obtained. 

qqpppp YYXXZ ++ ++++++= δδδδδ LL 11110  (9) 

 
Step 7 Party A sends the equation (9) to party B. 

5 ACCURACY OF THE ALGORITHM 

Suppose the population is normally distributed on either party. 
To assess the adequacy of the model obtained by the proposed 
algorithm, it involves the following two kinds of estimation 
analysis. 
 
� Test the adequacy of factor model [21].  

Suppose the number of common factors is m . Testing the 
adequacy of the m common factors model (1) is equivalent 
to testing 

0H : ψLLS T +=   vs  1H : any other positive definite 

matrix. 

We reject 0H  at the α  level of significance if 

2

,2/])[( 2

||

||
ln)6/)542(1( αχ

mpmpS

LL
mpn −−−>Ψ+′

++−− (1

0) 

provided that n and pn −  are large. This condition can be 
guaranteed in large databases.  

Because the number of degrees of freedom 
2/])[( 2 mpmp −−−  in (10) must be positive, then 

)1812(2
1 +−+< ppm  (11) 

Suppose party A has 1α  level of significance for the h 

common factors model via step 2.    

• Test the linear regression model [22]. 

After fitting a multiple regression model (6), the next step 
is to determine which predictor variables have statistically 
significant effects on the response variable. This can be 
done by testing the hypotheses 

0H : 01 === rββ L   vs   1H : at least one 0≠jβ  

Before giving statistics, we introduce some definitions. 

Definition 2 

Let iy  be observed values, rri zzy βββ +++= L
)

110  be 

fitted values ),,2,1( ni L= , and y  be the mean of the 
observed values. 

The error sum of squares 2

1
)( i

n

i
i yySSE

)−= ∑
=

. 

The total sum of squares 2

1
)( yySST

n

i
i −= ∑

=
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The regression sum of squares SSESSTSSR −= . 

The coefficient of multiple determination 

SST

SSE
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SSR
c −== 12  

We reject 0H  at the α  level of significance if 

α),1(,2

2

)1(
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−
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Where statistic F is an increasing function of 2c , follows 
an F-distribution with r and n-(r+1) degree freedom. 
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Without considering the error from step 2, we assume party 
B has α2 level of significance for the multivariate linear 
model via step 4. 

Finally, taking both errors from step 2 and step 4 into account, 
the algorithm has allα  level of significance for the multivariate 

linear model via step 6. 

)1)(1(1 21 ααα −−−=all  (13) 

 
 

6 SECURITY AND COMMUNICATION /COMPUTATION 

ANALYSIS 

6.1 Security Analysis 

The goal of the work is to create a practical, efficient method to 
compute multivariate linear regression model without disclosing 
entity values. This does not require a complete zero-knowledge 
solution. In this section, we discuss what must be disclosed and 
what is not disclosed. 
 
In the PPC-LSE problem, each party knows its own data and 
learns the global multivariate linear relationship. It naturally 
brings some disclosure. For example, if we have 90% level of 
significance for a multivariate linear model  
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,  

 
and party A has exactly 90% level of significance for the linear 
model pp XXXZ δδδδ ++++=′ L22110 , party A knows that 

party B has 90% % level of significance for the linear model 

qqppp YYYZZ +++ +++=′− δδδ L2211 . Further, if party B has 

only one variable in the final linear model, party A can guess 
the value in party B with 90% confidence.  
 
The security of the algorithm is based on the inability of either 
side to solve n equations in more than n unknowns. Using factor 
analysis, matrix X , with n observations on p variables, is 
replaced by m common factors. In step 3, party A sends an 

)( pmmn <×  matrix F to party B. With the n equations, 

party B is not able to solve ( )pmn 1++  unknowns. On the 
other hand, without the matrix of loading factors, the meaning 
of the m  items cannot be interpreted. Hence, party A’s private 
individual information is not disclosed. Party B’s privacy is also 
kept because it never sends its private individual information to 
party A. 
 
It is impossible that specific individual data values and private 
constraints will be disclosed with certainty by this method. 

6.2 Communication/Computation Analysis 

For the PPC-LSE problem, assume the Gaussian elimination is 
used in both the general solution [13] and the PPC-LSE [10]. 
The former one costs ))(( 22 dqmn ×+×Ο  to conduct 
Gaussian elimination, where d is the maximum length to 
represent a number. The latter one, based on 1-out-of-N 
Oblivious Transfer protocol [12], costs ))(( qpn +××Ο µ , 
where µ  is security parameter. 
 

In the proposed algorithm, party A sends n messages, each with 
pm <  values; party B replies with one message; finally, party 

A sends results. Thus, there are total three rounds of 
communication, and the total cost is )( mn ×Ο . 
 
The proposed algorithm requires party A to do a single pass, 

)( 2pn ×Ο  operations, to compute its covariance matrix, and 

then )( 3pΟ  operations to calculate the eigensystem. )( 3pΟ  is 

negligible compared with )( 2pn ×Ο  because pn >>  holds in 

large database. In the similar manner, party B needs 
))(( 2qmn +×Ο  operations to compute the linear coefficients 

β . The total computation cost of the algorithm is less than 

))(( 2qpn +×Ο . 
 
The analysis shows that, when compared with other PPC_LSE 
algorithms, the proposed algorithm not only significantly 
reduces the communication cost, but also avoids the random 
matrix generation of either party to hide private information. 
 
 

7 CONCLUSION AND FUTURE WORK  
 
In this paper, we propose a privacy-preserving linear-
relationship mining algorithm and give the linear model’s 
confidence level. Using factor analysis, the algorithm can 
effectively compress data and protect private information. It 
significantly reduces the communication cost, avoids 
transferring lots of random matrix and extra computation. 
Another advantage is that the algorithm can be easily extended 
to calculating a multiple multivariate linear regression model. 
 
There are several directions for future research, such as how to 
improve the efficiency of computing eigensystem, and how to 
handle multiple parties, especially, if we consider collusion 
between parties as well. 
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