

 Issues in Component-Based Development:

Towards Specification with ADLs

Rafael GONZÁLEZ
 Departamento de Ingeniería de Sistemas, Universidad Javeriana

Bogotá, Colombia

and

Miguel TORRES
Departamento de Ingeniería de Sistemas, Universidad Javeriana

Bogotá, Colombia

ABSTRACT

Software development has been coupled with time and cost
problems through history. This has motivated the search for
flexible, trustworthy and time and cost-efficient development.
In order to achieve this, software reuse appears fundamental and
component-based development, the way towards reuse. This
paper discusses the present state of component-based
development and some of its critical issues for success, such as:
the existence of adequate repositories, component integration
within a software architecture and an adequate specification.
This paper suggests ADLs (Architecture Description
Languages) as a possible means for this specification.

Keywords: Component-Based Development and Software
Component specification.

1. INTRODUCTION

An earlier version of this paper was presented at The 3rd
International Conference on Computing, Communications and
Control Technologies, held in Austin, Texas in July 2005. It has
been updated and revised according to the progress we have had
in carrying out our research.

We begin by reminding ourselves of some of the typical
problems in the development of computer-based information
systems: excessive customization (meaning, little or no reuse);
complex integration and deployment; lack of coordination
standards; lack of interoperability; difficulty in dealing with
change; necessity of reducing time and development cost;
demanding integration requirements; and lack of run-time
flexibility [17]. Software Development has, however,
continually evolved to deal with such challenges: from
structures, to objects, to components, even perhaps to services.
Regarding components, the body of knowledge and tools
already has enough drive and potential to allow Component-
Based Development (CBD) to deal with the ever-present
difficulties mentioned above. This paper discusses the present
state of component-based software development and some of its
critical issues, such as: the existence of repositories, component
integration within software architecture and an adequate
ontology and specification for which ADLs may prove useful.

The rest of this paper is structured as follows. Section 2 will
provide an overview of what a component is, how it is different

from an object and its implications on the issue of software
reuse. On the third section, component-based development will
be briefly described, presenting it as a new software
development paradigm which requires the existence of
component repositories and alignment with software
architecture and patterns in order to be effective. The fourth
section highlights the main issue of this paper, that of
component description and modeling; it distinguishes between
formal and informal and between static and dynamic
specifications, and presents some languages that exist to
describe components. On section five, ADLs are presented as a
possible alternative which may help in integrating software
component description to architecture and pattern abstractions,
possibly resulting in better CBD, which is the future research
we point at in the final section.

2. FROM OBJECT-ORIENTED DEVELOPMENT TO
COMPONENT REUSE

In this section we will describe what a component is and how it
is different from an object (or class). After this, we will
mention some of the advantages and issues of component-based
development in terms of software reuse.

What is a Component?
The definition of a component is ample and potentially
ambiguous, which is why, for software, the ontology of a
component remains an open and critical issue towards the
development of guidelines and practical efforts in component-
based software development. From a logical perspective, a
component is a way to model real-world concepts in a computer
system’s domain. This allows for decomposition of complex
problems into entities, processes or transactions, for instance.
From a “physical” (in the software sense) perspective,
components are independent units of software, which
implement logical abstractions. Thus, a component is any
coherent design unit which may be packaged, sold, stored,
assigned to a person or team (for development), maintained and,
most importantly, reused [21]. Another cryptic and recursive
definition of component is the one provided by Councill et al.
[11]: “A software component is a software element that
conforms to a components model and can be independently
deployed and composed without modification according to a
composition standard”.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 5 49ISSN: 1690-4524

With the increasing interest in enterprise architectures, service-
oriented architectures and Web Services, the notion of
component has been further stretched, in the sense that it can be
any physical module of an architecture, any business abstraction
implemented with software or any component deployed as a
web-enabled service. This adds to the initial confusion with
terms like object, building block and module. We do believe the
concept of service to be linked to different approaches and
technologies that may indicate a service as a specific type of
component, but the difference with objects is clearer, as the next
section will argue.

From Objects to Components
The notions of instance, identity and encapsulation are
associated with the “object” notion, whose properties are: being
an instantiated unit with unique identity; having an externally
observable state; and encapsulating its state and behavior. A
component, on the other hand, is an independent deployment
unit, built by a third party, which has no externally observable
state [25].

Historically in software development the idea behind libraries,
subroutines, and abstract data types, was modularization. In the
80’s and 90’s, the arrival of the Object Oriented (OO) paradigm
brought about the possibility of creating highly encapsulated
and easily maintainable systems. In OO, a component was
normally seen as a collection of related classes which provided
a consistent and logical set of services [22]. For some authors,
the fact that CBD is a natural evolution of OO [7][24], gives
origin to Object-Oriented Components, which includes benefits
such as: interoperability, extensibility, reusability, easy
assembly, flexibility in run-time, integrated standards for
design, flexible development, speed, quality and reliability
when using components-off-the-shelf (COTS) [17].

However, it seems that the OO paradigm has not proven to be
useful enough for reuse, because most OO applications are
developed relatively from scratch or require complex efforts to
exploit reuse, including adaptations and inheritance mechanisms
that effectively make the system, although built with reused
classes, hardly reusable. Furthermore, while the OO paradigm is
based on programming techniques and models, CBD extends
such ideas to other areas, which complement the programming
field. For example, to be able to achieve an effective interaction
among components, it is necessary to adopt rigorous design and
documentation disciplines, and modeling standards. This is the
basic notion of Design-by-Contract, a discipline conceived
within the OO paradigm, which fits more naturally inside the
CBD approach [5]. In other words, component-based
development is not just about developing with components, but
developing with component-based models, formalism, project
design and tools.

CBD Implications on Reuse
The most important advantage of CBD is the possibility of
reuse it brings into the software development field. The main
idea is to be able to build systems based on reliable and already
tested components as it is done in other engineering disciplines
[3]. To achieve this, it is important to extend our comprehension
from a software understanding (where models describe software
technically and code is the focus) to a component understanding
(where the functionality, application and adaptation
requirements of components gain importance) [2]. This means
that besides a model which technically describes the software,
the component must be viewed and understood in terms of its

reusability (functionality, requirements and restrictions). When
this is fully achieved, it will be possible to build systems by
means of component integration and by directing programming
efforts to the integration and not to coding functionality.

Effective software reuse offers robustness, reliability and
interoperability, but these benefits must outweigh the cost of
achieving reuse and it seems that CBD is not there yet. Some
argue that building a system from scratch may still be cheaper
than building a mostly reused fully component-based system
[23]. Aside from the adaptation cost, components usually have
an undesired performance cost also (performance is usually
proportional to customization), resulting in software that, in
most cases, performs less efficiently than one fully customized
from scratch [5]. Another difficulty in achieving successful
reuse is that the original developer of a component usually
makes implicit assumptions with regards to the possible
applications of his components, making these uses implicit and
hard to find by other developers attempting to reuse the
component [12]. A further concern might be that depending on
reusable components goes against the rapid change in software
technology and the need for innovation, but as we can see from
electronics or mechanical engineering, working with
components does not need to imply that.

It can be concluded that reuse is not a direct benefit of CBD; for
it to be effective, it must be coupled with adequate component’s
description that aims toward reducing adaptation costs and that
will allow performance improvement, without affecting
significantly its interoperability or increasing its development
cost. One way to achieve this is by using a component’s formal
specification; such specification should include the
component’s static restrictions (consistency) and dynamic
restrictions (allowed sequences of execution, allowed
redefinition). It might be naive to believe that there already
exists a component in a repository satisfying in its entirety the
requirements of a given problem; thus, the component must be
adapted to the problem and to the system’s architecture, so it
can be used in that context. The other necessary issue, as we
have already mentioned, is to focus on components through a
component-based approach; this will de discussed in the next
section.

3. COMPONENT-BASED DEVELOPMENT

Component-based development can be regarded as a new
paradigm of software construction. Some of its success factors
are: the existence of an adequate component repository and the
placement of components within the context of architectures,
patterns and structures.

CBD as a new Software Development Paradigm
Traditional information systems development is based on large
work groups and long periods of time, which has resulted in
undesirable economical and chronological consequences,
disrupting an organization’s competitiveness. The biggest
challenge for developing successful software systems will be to
build systems in a shorter lapse of time, with lower cost and
inside a changing and complex environment [8]. This also
suggests the need for a more permanent solution, which will
bring the possibility of information systems development that
may be flexible and adaptable to an organization’s conditions
and existing technology. Research and practice point towards
the CBD paradigm as one feasible way to achieve this goal

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 550 ISSN: 1690-4524

[1][3][8][15][28]. This approach includes improvements in:
quality, throughput, performance, reliability and
interoperability; it also reduces development, documentation,
maintenance and staff training time and cost [18]. Most recent
trends in software engineering show that future developments
will follow in the CBD path. This argument is partially
confirmed by the large amount of component development
technologies that exist today (CORBA, EJB, DCOM, and .NET
among others), and also given the amount of components
(COTS) available in the market [2].

Although CBD promises to improve the software development
processes, quality, productivity and reuse in particular [27],
these achievements are not new in other areas of industry [3].
The biggest contribution of the Industrial Revolution was
precisely this. From that point forward this paradigm has been
used in the electronics, automotive, and construction industries.
Automobile parts, hardware components (such as video and
networking cards), and construction design patterns are reused
in every new project, making use of rigorous and reliable
standards, without losing innovation in the process (as the
dynamics of these particular sectors has shown).

In the last few years Component-Based Software Engineering
(CBSE) has emerged as a new paradigm for plug-and-play
software, where components are provided and stored in
component repositories which provide the interface information
for each component. This approach supports complex and
usually distributed applications, while reducing maintenance
costs and increasing reliability [21].

This new form of applying Software Engineering requires
particular aspects for its success, such as: component and
architecture selection; adaptation and integration of components
inside the chosen architecture; and maintenance of the
components along with the evolution of requirements [2][3]
[16]. This new approach might not be easy to implement,
because of the fact that it must guarantee coexistence and
compatibility among different component versions, and from
different sources. So in order to be able to maintain
independence, which facilitates maintenance of third party
components, it is recommended to divide CBSE into two levels:
the component level and the application level [5]. This means
that in one level, the engineering of the components itself is the
focus, while in the second level, the application engineering is
the focus (without, off course, disconnecting these two aspects).

CBSE remains as an immature discipline [3] that can learn from
other engineering areas, and from the experience of the object-
oriented paradigm and traditional software engineering, but for
it to be successful, it most be used along with an adequate
support by a component repository.

Component Repositories
In order to make CBD more cost-effective and allow
components to be more easily found, good repositories must be
available. The aim is to obtain effective, easy to use (navigate),
complete and efficient repositories. However, a problem arises
from using open (on-line) repositories: it must be guaranteed
that components comply with the minimum security
expectations [20]. An integrator or architect will expect
components developed by third-parties to have the properties
(behavior) which the creators claim, along with maintaining the
basic requirements of quality, legitimacy, abstraction,
encapsulation, low coupling and high cohesion.

This concern supports the idea that a certifying authority is
required; one which should aid in the following: 1) outsourcing
(managing the outsourcing contract for the development of
components and auditing the performance of the developing
institution); 2) component selection (selection of the most
adequate components according to user requirements, such as
functionality, security, trustworthiness and performance); and 3)
testing of components (verifying that components satisfy the
requirements with acceptable quality and reliability) [9].

Aside from certifying conformance, it is useful that the
certifying authority guard the relevant security aspects, studying
components in the following manner [20]: 1) characterizing
atomic components independently; 2) checking the
compatibility of security features among components; and 3)
validating property visibility with respect to external entities.
Some additional efforts would indeed be desirable, such as the
implementation or adoption of security standards, such as the
Department of Defense’s Orange Book, the NIST Common
Criteria or ISO/IEC’s 15408 standard. An example of a
repository that both validates a component’s properties and
compliance to standards is the CLARiFi project [6][10].

Architecture and Patterns
Another critical issue is the place of components within an
architecture with the aid of design patterns. In this context,
architectures are a set of decisions regarding the platform,
component frameworks and interoperability design among such
frameworks [25]. In recent years, software development has
oriented its focus upwards, in the direction of an abstract level
of architecture specification [5]. The transition towards CBD
has introduced new distributed technological infrastructures
based on Microsoft’s COM (Component Object Model),
OMG’s CORBA (Common Object Request Broker
Architecture) or Sun Microsystem’s EJB (Enterprise Java
Beans). When these models are coupled to a well-defined
layered architecture, they become the best technological support
to develop the infrastructure necessary for component-based
systems [17].

Besides software architectures, design patterns exist to optimize
object-oriented systems design, based on a catalogue of generic
structures guided towards solving recurring problems. Some
actually see design patterns as micro-architectures [25]. Yau
and Dong [27] propose the use of design patterns for integrating
components in CBD. After designers have selected a design
pattern to describe relationships among components (within a
particular system), the pattern must be instantiated; this
instantiation consists in transforming the participating
relationships into design interactions. After this, the structure
and interactions are verified, to guarantee that the pattern’s
restrictions are complied with, and wrappers can then be
employed as decorators of the components. In this way,
architectures and patterns are formally integrated into the
system’s design.

With component-based software development, the engineering
process centers its attention on high-level design through
architecture and design patterns, in which components are
assembled and adapted to this design. Such assembly and
composition, requires semantic clarity and detailed
specification, accompanied by static and dynamic models of the
components in isolation or within determined design or

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 5 51ISSN: 1690-4524

architecture patterns. This is why the rest of this paper focuses
on the issue of component description and modeling.

4. COMPONENT DESCRIPTION AND MODELING

A component is usually specified (described) in terms of its
interface (as Interface Definition Languages do), but this offers
no information regarding the component’s performance,
security or synchronization [12]. More detailed descriptions are
useful or necessary, and they can vary in terms of formality,
dynamics and modeling language.

Formal vs. Informal Specification
There are three different options for specification: it may be
informal, formal or semiformal. Informal specification
concentrates on describing the component through natural
language; formal specification presents more detailed aspects
such as semantic information or requirements in formal logic;
semiformal approaches describe components without being
either totally formal or totally unstructured [12][21][23].

Detailed and formal descriptions of a “white box” type could
provide enough information for the use and understanding of a
component, but the effort required to use and comprehend this
formal models dissuades developers from using it, inclining
them towards “black box” type descriptions [2][26]. Because of
this, a more appropriate model would be one that offers not only
understanding of the domain (requirements vs. capabilities), but
also of the program itself (interfaces, data types, syntax,
parameters, and acceptable ranges) and the situation (structure,
connections, and flows) [2].

One semiformal proposal is LIPS [12] which, besides use
policies, shows instance and thread support information.
Another semiformal approach is CDM (Component Description
Manager) [21] that presents a classification framework for the
effective management of components, based on problem
domain, semantic information and the component’s ontology.
The resulting classification tree concentrates on characteristics,
grammar, components and standards. Such classifications are
useful in different contexts: for instance, in component brokers
or repositories, they help in finding and identifying components;
in a development environment, they help in verifying
compatibility and performance of the components.

Static vs. Dynamic Specification
Aside from the level of formalism, a component may also be
specified statically or dynamically. The static structure of a
component is described in terms of the services that the
component provides and which remain valid for any instance of
the component; such specification, however, makes it difficult
to describe certain restrictions [5]. Dynamic structure may
describe legitimate call sequences and behavior of the services
or operations of the component in a given moment of the
component’s execution (i.e. in run-time) [22]. An example of
this type of dynamic description is provided by the Abstract
State Machine Language (AsmL) based on Microsoft’s .NET
technology, which incorporates non-determinism ad
transactions to generate IL (.NET’s intermediate language) and
verify a component in run-time [4]. Another approach consists
in defining the component in a mathematical and hierarchical
fashion, based on finite state-machine modeling of classes and
the components which contain them. [22].

Fortunately, it is possible to describe a component both
formally and informally and both statically and dynamically, as
a developer might need a first informal description to get
acquainted with the component and a formal one for adapting or
integrating it. He or she might also want to know the static
composition and properties of the component as well as the
dynamic behavior and run-time restrictions. An effective
modeling language for components should account for all these
possibilities or views.

Some description and modeling languages
Along with the type of specification available for a component,
there is the language chosen to specify it. Such languages may
be formal, semiformal or formal to answer to the required type
of specification, but they must also be standard languages in
order to stimulate adoption, comprehension and interoperability.

The UML is an obvious natural candidate for describing
components given its widespread adoption and generic nature.
Its strengths are (among others) that it integrates in a natural
way, various modeling approaches (disconnected in the past)
and thus becomes a stronger, more mature and integrated
alternative; it also offers enough popularity and available tools
to make it attractive in practice. However, some argue that it is
still ambiguous for describing components and that its
understanding of components is limited [14]. For instance,
valid redefinition of operations is a restriction that is not
formally modeled with UML [22]. Nonetheless, the use of
UML within a set of object-oriented practices and languages,
make it one of the best modeling languages for designing
(visually, in particular) systems and describing components
[19]. Versions of UML after 2.0 also have an increased
understanding of components, with a higher level abstraction,
but a remaining focus on components as deployable software
units.

One particular effort which extends the UML for components is
the Catalysis approach [13]. CBD and Catalysis are clear
examples of modeling techniques which support analysis and
design of components [21]. Catalysis offers a non-ambiguous
definition of component and subsystem interfaces to ensure
adherence to a given model and set of business rules. Indeed,
this means that Catalysis allows the description of a component
according to the component and application levels presented in
section 3.1 [2]. Its disadvantage is that any representation of a
component with Catalysis means that the component is built
with the Catalysis approach, making it difficult to describe an
already made component or adopting a different development
method. It should also be noted that even though it treats
components, Catalysis is mainly an object-oriented approach.

Another language worth pointing out is Microsoft Research’s
AsmL (already mentioned), an executable specification
language that provides the possibility of verifying components
statically and monitoring behavior dynamically.

One could also think of using architecture description languages
(ADLs) as possible languages for specifying components. This
possibility will be discussed in the last section.

5. ADLs FOR COMPONENT SPECIFICATION

Although ADLs are aimed at architectures, these are made up
(basically) of components and connectors. Although their high

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 552 ISSN: 1690-4524

level of abstraction and limited commercial adoption might
make them less attractive, we have already mentioned the
tendency of CBD to focus in architectures and patterns, making
ADLs desirable for representing components within high-level
structures.

ADLs describe component interfaces without getting into their
internal details [31]. So the first question that arises is whether
or not ADLs are enough to describe components. We argue that
it is enough when structuring component-based systems from an
architectural point of view in which integrating components
means doing so through their interfaces, regardless of how the
component is implemented. Of course, in reality, often the
architect or developer dives into the component’s code, but this
shouldn’t be necessary if, and this is precisely what we are
striving for, the component’s interface is well defined along
with the non-functional aspects of the component.

Another advantage of ADLs within the CBD approach is that it
helps in assigning tasks to the development team, as well as
helping guarantee that the different constraints imposed by the
interfaces and the architectural structure are satisfied [30]. This
means that an ADL departs from object-oriented modeling
languages and helps in focusing on higher-level issues and
contributes to the project planning and management, which we
have already argued is critical to the success of CBD.

Even if each ADL has a different goal, most share a common
ontology [29] and support the following elements:

1) Components: the primary computational elements and data

stores of the system.
2) Connectors: interactions between components.
3) Systems: configurations of components and connectors as

a topology.
4) Properties: semantic information of a system and its

components.
5) Constraints: facts of the architectural design that must

remain true.
6) Styles: families of related systems.

This ontology suggests two additional benefits. The first is that
regardless of which specific ADL to choose from, there is
already a common vocabulary and agreed representational
interest. The other is that it offers the possibility of describing
properties, constraints and styles which exceed the components
in isolation and both clarify and restricts component integration
within well-defined architecture decisions.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have established some of the advantages and
challenges associated with component-based development. We
consider component technologies as an excellent tool for
building robust software in a changing environment with many
restrictions. At first, we clarified the differences between
components and objects and how the first are more suitable for
software reuse, through flexibility and reliability. We have also
pointed out some critical issues for effective CBD: the existence
of component repositories is one of the most important
requirements; the existence of conditions and guarantees of
security is also fundamental; having components supported by
and integrated within structures and high-level architectures is
also seen as a very desirable approach.

But the issue that is of highest relevance in this paper is
component specification. Without adequate specification,
components will not be found, understood or used effectively.
It has been underlined that it is necessary to define the level and
characteristics of specification (formal vs. informal and static
vs. dynamic) and also to select an adequate specification
language (among many available).

We argue that by using ADLs to describe components in
context, it will be possible to offer a description that is better
suited to the CBD approach, by considering higher-level issues.
In this same sense, we believe that by integrating research in
CBD with research in software architecture we can finally take
mature steps towards reliable, effective, dynamic and reusable
component-based software development, by means of
integration, storage, distribution and adequate description of
components.

7. REFERENCES

[1]. Allen, P.; Frost, S., Component-Based Development for

Enterprise Systems: Applying the Select Perspective,
Cambridge University Press, 1997.

[2]. Andrews, A.; Ghosh, S., Choi, E. “A Model for
Understanding Software Components,” Proceedings of
the International Conference on Software
Maintenance, Oct. 2002 (ICSM’ 02), pp. 359–368, IEEE
Computer Society, 2002.

[3]. Apperly, H. “The Component Industry Metaphor,”
Heineman, G. & Councill, B. (Eds.) Component-Based
Software Engineering: putting the pieces together,
Addison-Wesley, Boston, 2001.

[4]. Barnett, M. et al. “Serious Specification for Composing
Components” in Crnkovik, I. et al. (Eds.) Proceedings of
the 6th ICSE Workshop on Component-Based
Software Engineering: Automated Reasoning and
Prediction, Portland, Oregon, USA, May 2003, Carnegie
Mellon University, 2003.

[5]. Bertolino, A.; Mirandola, R., “Towards Component-Based
Software Performance Engineering” in Crnkovik, I. et al.
(Eds.) Proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering: Automated
Reasoning and Prediction, Portland, Oregon, USA, May
2003, Carnegie Mellon University, 2003.

[6]. Brereton, P. et al.., “Software components - enabling a
mass market,” Proceedings of the 10th International
Workshop on Software Technology and Engineering
Practice, Oct. 2002, pp. 169–176.

[7]. Brown, A.; Wallnau, K., “The Current State of
Component-Based Software Engineering”, IEEE
Software, September/October 1998. IEEE, 1998

[8]. Brown, A., Large-Scale Component-Based
Development, Prentice-Hall PTR, 2000.

[9]. Cai, X. et al., “Component-based software engineering:
technologies, development frameworks, and quality
assurance schemes,” Proceedings of the Seventh Asia-
Pacific Software Engineering Conference, 2000. APSEC
2000, Dec. 2000, pp. 372–379, IEEE.

[10]. Ci, J.; Tsai, W., “Distributed component hub for reusable
software components management,” Proceedings of the
24th Annual International Computer Software and
Applications Conference. COMPSAC 2000., Oct. 2000,
pp. 429–435, IEEE.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 5 53ISSN: 1690-4524

[11]. Councill, B.; Heineman, G., “Definition of a Software
Component and its Elements,” Heineman, G. & Councill,
B. (Eds.), Component-Based Software Engineering:
putting the pieces together, Addison-Wesley, Boston,
2001.

[12]. DePrince, W.; Hofmeister, C., “Usage Policies for
Components,” Crnkovik, I. et al. (Eds.), Proceedings of
the 6th ICSE Workshop on Component-Based
Software Engineering: Automated Reasoning and
Prediction, Portland, Oregon, USA, May 2003, Carnegie
Mellon University, 2003.

[13]. D’Souza, D.; Wills, A., Object, Components and
Frameworks with UML: the Catalysis approach,
Addison-Wesley, Reading, 1999.

[14]. Eden, A., “A Theory of Object-Oriented Design,”
Information Systems Frontiers, vol. 4, No. 4, pp. 379-
391, Kulwer Academic Publishers, 2002.

[15]. Eeles, P.; Sims O., Building Business Objects, John
Wiley & Sons, New York, 1998.

[16]. Griss, M.; Pour, G. “Accelerating Development with Agent
Components”, IEEE Computer, vol. 34, No. 5, May
2001, pp. 37–43, IEEE, 2001.

[17]. Hall, L. et al., “COTS-based OO-component approach for
software inter-operability and reuse (software systems
engineering methodology),” Proceedings of the
Aerospace Conference, vol. 6 , March 2001, pp. 2871–
2878, IEEE, 2001.

[18]. Herzum, P.; Sims, O., Business Component Factory,
John Wiley & Sons Inc., 2000.

[19]. Houston, K.; Norris, D., “Software Components and the
UML,” Heineman, G. & Councill, B. (Eds.), Component-
Based Software Engineering: putting the pieces
together, Addison-Wesley, Boston, 2001.

[20]. Khan, K.; Han, J., “A security characterization framework
for trustworthy component based software systems,”
Proceedings of the 27th Annual International
Computer Software and Applications Conference,
2003. COMPSAC 2003., Nov. 2003, pp. 164–169, IEEE,
2003.

[21]. Meling, R. et al., “Storing and Retrieving Software
Components: a component description manager,”
Proceedings of the Australian Conference on Software
Engineering , April 2000, pp. 107–117, IEEE, 2000

[22]. Moisan, S. et al.., “Behavioral Substitutability in
Component Frameworks: a Formal Approach,”
Proceedings of the SAVCBS'03 Specification and
Verification of Component-Based Systems 2003
Workshop at ESEC/FSE’03, Helsinki, Finland,
September 2003, pp. 22-28, ACM, 2003.

[23]. Morel, B.; Alexander, P., “Automating Component
Adaptation for Reuse,” Proceedings of the 18th IEEE
International Conference on Automated Software
Engineering, pp. 142-151, Oct. 2003. IEEE, 2003.

[24]. Orfali, R., Harkey D., y Edwards J., The Essential
Distributed Objects Survival Guide, John Wiley & Sons,
1996.

[25]. Szyperski, C., Component Software: Beyond Object-
Oriented Programming, Second Edition, ACM Press,
Addison-Wesley, New York, 2002.

[26]. Weinreich, R.; Sametinger, J., “Component Models and
Component Services: concepts and principles,” Heineman,
G. & Councill, B. (Eds.), Component-Based Software
Engineering: putting the pieces together, Addison-
Wesley, Boston, 2001.

[27]. Yau, S.; Dong, N., “Integration in component-based
software development using design patterns,” Proceedings
of the the 24th Annual International Computer
Software and Applications Conference, 2000.
COMPSAC 2000, Oct. 2000, pp. 369–374, IEEE, 2000.

[28]. Zahavi, R., Enterprise Application Integration with
CORBA: Component and Web-Based Solutions, OMG
Press, John Wiley & Sons, Inc., 2000.

[29]. Graham, D.; Monroe, R. & Wile, D. “Acme: Architectural
Description of Component-Based Systems” in Leavens, G.
& Sitaraman, M. (eds.), Foundations of Component-
Based Systems, pp. 47-68, Cambridge University Press,
2000.

[30]. Grau, A.; Shihada, B. & Soliman, M. Architectural
Description Languages and their Role in Component
Based Design, Project Report, Department of Computer
Science, University of Waterloo, Canada, Available:
http://www.cs.uwaterloo.ca/~bshihada/adl.pdf, 2002.

[31]. Riemenschneider, R. & Satvridou, V. “The Role of
Architecture Description Languages in Component-Based
Development: The SRI Perspective” in Proceedings of the
International Workshop on Component-based
Software Engineering held in conjunction with the
ICSE1999, LA, May 1999, pp. 203-206.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 554 ISSN: 1690-4524

	P583714

