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ABSTRACT

An original interactive procedure is proposed, which aims at
overcoming some of the major weaknesses of existing pseudo-
criterion based methods for group decision analysis. It refers to
absolute judgements of feasible alternatives and is focused on
complementary activities of opinion elicitation and robustness
analysis. As a foundation, four interdependent principles are
introduced — problem localization, interactivity on the basis of
progressiveness approach, semiautomatic derivation of criteria
weights according to selective effects of veto thresholds, and
group consensus seeking. The principles are grounded and
realized by appropriate methodological solutions.
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INTRODUCTION

The application of the pseudo-criterion and the outranking
relation concepts represents one of the fundamental approaches
to decision analysis [9]. The use of indifference, preference and
veto thresholds deals in an effective and practical way with
imprecision, indetermination and uncertainty of the data. Real-
life applications of outranking methods show that a threshold
model is easily accepted by decision-makers, while in contrast,
capturing inaccuracies with probability distributions has been
found to be somewhat difficult for people to understand [6].
Yet, existing methods for group decision analysis that are based
on the concepts of pseudo-criterion and outranking relation have
several serious drawbacks: a substantial cognitive load is put on
a person because of many required input parameters, a poor
insight into the derivation of results from input data is given, a
quantitative decision model is insufficiently adaptable, and most
important of all, credible and just group agreement is not
assured.

A procedure that overcomes the above-mentioned difficulties
has to be interactive and iterative, should incorporate strong
analytical capabilities, and must enable firm conformity among
decision-makers. The method, which is defined in this paper,
rests on four concepts — problem localization, semiautomatic
weight derivation, progressiveness principle, and group consen-
sus seeking.

In addition to the classical ELECTRE (ELimination Et Choix
Tradusiant la REalité) [1, 9] and PROMETHEE (Preference
Ranking Organisation METHod for Enrichment Evaluations)
[1] families, there already exist some interactive methods. An
approach that determines parameter values according to sorted
alternatives [2] is related to the machine learning theory. It is
highly interactive, but it does not support group deciding. A
search procedure that has been introduced in [6] is limited to the
criteria weight space, does not consider veto thresholds, and
introduces nondifferentiable optimization programs. Interactive
trichotomy segmentation [5] is founded on the localization
principle. Its drawbacks are the following: alternatives are
sorted into three categories, criteria importance coefficients
cannot be manually set, it is suited solely to an individual
decision-maker, and finally, it does not allow for continuous
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change from indifference to weak and strict preference, which is
essential for the sake of inaccuracy treatment.

PROBLEM LOCALIZATION

To enable high adaptability of a quantitative model and high
comparability of individual participants' results, the alternative
sorting analysis is implemented. Sorting refers to the absolute
assignment of a set of alternatives into pre-existing ordinally
defined categories or classes [12]. In contrast to the more usual
ranking approach, where as much as m - (m — 1) relative pairwise

comparisons between alternatives have to be considered, only m

pieces of information about category memberships are needed.

But sorting by itself does not guarantee a fulfilment of both

specified conditions. For this reason, the localization principle is

introduced. The global problem of assigning variants to p + 1

ordered classes is reduced to the two-categorical partition of a

set of feasible alternatives; all acceptable choices belong to the

positive category C*, while unsatisfactory ones are members of
the negative category C . Many advantages appear:

e Since any two categories have to be delimited by a
reference vector, which is also termed a profile, and since
for each profile and for each criterion four parameters have
to be considered, instead of 4-p - n only 4 - n input values are
necessary. The cognitive load is thus considerably reduced.

e Because of mental and time constraints, a decision-maker is
rarely capable of altering many reference vectors at once. It
is therefore difficult for him to figure out how different
profiles affect the alternative evaluation process. But when
he concentrates on only one profile instead, it is easy for
him to modify referential values. By doing so he can tighten
or loosen demands and see what effect this has on selection.
Consequently, learning about a given problem situation, a
decision model and advantges or weaknesses of alternatives
is greatly improved.

e Dispersion of alternatives across classes is reduced. Vice
versa, comparability of individuals' results is increased.

e Because fewer input parameters are required, unification of
opinions becomes an easier task.

e The problem localization principle enables semiautomatic
derivation of criteria weights according to veto thresholds.

Implementation of the Localization Principle

In order to implement the alternative sorting analysis, some
basic notions of the ELECTRE TRI method [7] are used. But
yet, the concepts of ELECTRE TRI must be modified. The set
of alternatives is partitioned into two exclusive categories. They
are delimited by the profile b, which is defined as a vector of
referential values on criteria domains. Let this vector be denoted
as (gi(b), ..., gu(b)). Let similarly gi(a;) denote the value of an
alternative a; that is measured with regard to a criterion x;. Two
parameters allow for compensation — the indifference threshold
g; and the preference threshold p;. These thresholds form the
basis for computing the indices c{(a;, b) and c{(b, a;), which
express the degree of concordance with the assertions “the
alternative a; is at least as good as the profile »” and “the profile
b is at least as good as the alternative a,”, respectively. Each
index considers a single criterion x;. Its contribution to the
aggregation is determined by the weighting coefficient w;. The
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discordance concept is also applied to model partial incompen-
sation between criteria. It is grounded on the veto threshold v;.

The threshold model generally leads to three different types of
binary relations: preference, indifference and incomparability.
The incomparability relation occurs when there exist at least
two conflicting criteria. Then neither the alternative q; is treated
to be at least as good as the profile b nor the opposite. Since the
profile represents the delimitation of the categories C* and C,
it cannot be clearly stated whether the alternative should be
assigned to C* or to C™. Consequently, the membership of g; is
undetermined.

It must be assured that each alternative is strictly better or worse
than the single profile in order to enable the two-categorical
sorting. The localization principle thus calls for the prevention
of the incomparability relation. To solve the “incomparability
problem”, veto thresholds are treated asymmetrically. This is
justified by the noncompensatory nature of the veto concept and
originates from the explicitly regarded primary viewpoint of the
logical evaluation of the truthfulness of presupposed alternative
assignment to the positive category C*. This fixed point of view
implicitly determines the complementary logical evaluation,
which confirms or rejects the truthfulness of assignment to the
negative category C~. The positive semantics is mathematically
denoted as:

a,eC =a¢eC,
aeC =a¢eC.

Considering a decision-maker's beliefs, it is only important
whether the alternative a; is good enough to be assigned to the
positive category C* and not whether a; is convenient for C™.
This is utterly reasonable since alternatives belonging to C* are
solely chosen for further analysis or for implementation. In
practice, asymmetry means that an alternative a; with very poor
values on some criteria is excluded from the positive class. It is
not important though, if the profile » does not reach one or more
veto thresholds when compared with a;, because this inform-
ation does not confirm that a; is a member of the C* class nor
does it prevent the classification of @; into the C™ category. Yet
small weaknesses of an alternative should be compensated. For
this reason, indifference and preference thresholds are treated
symmetrically. The interpretation of preferential information is
thus symmetrically-asymmetrical and leads to the assignment
rule. The alternative a; is good enough to be sorted into the
positive category C*, when all its weaknesses that are measured
according to the g; and p; thresholds are compensated with
advantages and when no difference between gi(b) and gi(a;)
exceeds the veto threshold v;.

Since the incomparability relation no longer exists, another
mechanism is introduced to indicate conflicting alternatives and
to help a decision-maker express robust values of parameters. It
is the below described progressiveness approach.

Aggregation of Partial Indices

To express the degree of concordance with the assertion “the

alternative a; belongs to the C* class”, the indices cj(a;, b) and

¢j(b, a;) are aggregated with a fuzzy averaging operator:

c;(a;,b)+(~c;(b,a;)) c,(a;,b)+c;(a;,b)
2 - 2

20, o)
w.
z‘/':l..n 4

As o(a;) = > denotes strict equality among the alternative and
the profile, the classical A-cut may be used to determine the
“crisp” membership of the alternative:

s

O'j(ai):

o(a;)=
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a; € C" < o(a)) > A, where A € [%, 1].

Because of the introduced positive semantics and because the
index oj(a;) combines the indices c/(a;, b) and c/(b, a;), there is
no need to explicitly verify whether the alternative is a member
of the negative category. The fuzzy union operator is used to
compute the degree of discordance with the assertion “the
alternative a; belongs to the C™* class”:

d(a;)) = maxj-y_, dj(ai)«

An alternative cannot be excluded from the positive class with
greater certainty than it is excluded according to a criterion on
which its performance is the poorest. The noncompensatory
absolute influence of veto thresholds is the reason why the in-
dices o(«;) and d(a;) need not, and should not, be joint together.

PROGRESSIVENESS APPROACH

Because veto thresholds have an asymmetrical noncompensato-
ry effect, they are dealt with independently of criteria weights or
compensatory indifference and preference thresholds. Because,
on the other hand, criteria weights are dependent on discordance
indices, they are determined after veto thresholds have been set.
For these reasons, a decision-maker does not need to specify all
types of preferential parameters simultaneously. Instead, he
concentrates on only a subset of input data at a time, which
again gives rise to some benefits in comparison to the existing
techniques:
e Information burden is substantially reduced.
e It can be seen how each individual parameter influences the
alternative selection.
e It is not required that the decision-maker's preferences are
precise at the starting-point of the analysis since the learning
process is strongly emphasized.

Progressive and separate consideration of different parameters
and their iterative adaptation causes a partial reconstruction of a
quantitative model. According to a subset of specified input
information, partial results are derived and recurrently mediated
to the individual, who can respond. In this way, preferences can
be easily controlled — verified, compared to opinions of other
participants and, if necessary, modified. Robust solutions are
thereby obtained. Figure shows the interchanging elicitation and
analysis phases of the problem solving process.

Specification of referential values on criteria
> domains and veto thresholds

Intermediate alternative selection

v

| Sensitivity analysis on veto thresholds

v

| Derivation of criteria weights

v

Specification of indifference and preference
thresholds <]

Final alternative selection

v

Sensitivity analysis on criteria weights and
indifference/preference thresholds

Sensitivity analysis is carried out for the purpose of proving that
alternatives are robustly sorted. Three types of distance metrics
are applied. They reflect the minimum changes of veto, weight
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and evaluation vectors that cause the reassignment to another
category. The influence of veto thresholds is further analysed by
comparing selective strengths of criteria. In addition, indices
o(a;) and d(a;) are separately examined and can thus point to
conflicting alternatives.

SEMIAUTOMATIC WEIGHT DERIVATION

Assessment of criteria importance weights is a basic step in
preference elicitation. It is a hard and time consuming task [6,
8]. There exist some structured techniques, such as Simos'
procedure [3] or AHP (Analytic Hierarchy Process) [10], that
help people make more reasonable estimates. However, they are
not capable of automatic weight derivation according to a given
problem situation, which is reflected through values of input
parameters. The presented research tries to bridge this gap. Two
mechanisms are proposed that determine the criteria weights by
considering the selective influence of veto thresholds.

Although a relationship between the veto threshold v; and the
criterion weight w; has been discussed in the past [8], it has
neither been mathematically founded nor practically applied. As
the veto threshold has a noncompensatory nature, it can exclude
any alternative from the positive category C " regardless of other
parameter values. The closer to the preference threshold pj it is
set, the more alternatives it eliminates from C”, and a stronger
selective influence it has. The criterion x; thus contributes to a
higher degree to the evaluation process and consequently to the
final decision as well.

It is essential that the criterion importance is not dependent on
the indifference and preference thresholds. The effect of these
thresholds has to be compensated. Since the weighting factors
w; represent the concept that determines the compensation rates,
it is the role of the weights to direct the influence of the g; and p;
thresholds, and not the opposite.

Two approaches are introduced to obtain cardinal weights. Both
construct a fuzzy veto relation by organizing partial discordance
indices:

V:{((xj’ai)s:uV(xj>ai))|(xj’ai)EXxA}’
,u,,(x/,ai)=dj(a,.)wherei=1,...,m,j=1,...,n.

Selective Strength Based Approach

It consists of the following five steps:

1. All possible a-cuts of the fuzzy relation V are taken. With a
heuristic rule, partial selective strengths of criteria are calcu-
lated for each crisp relation.

2. Partial selective strengths are joint by use of an algorithm,
which considers veto certainty and similarities between
intermediate results.

3. Differences between each two complete selective strengths
are transformed with a linear or an exponential function so
that ratios of pairs of criteria weights are reflected through a
comparison matrix.

4. A decision-maker modifies ratios in the comparison matrix
according to his personal beliefs that reflect his cultural,
social, psychological and genetic background.

5. Numerical values of weights are computed from the adjus-
ted matrix.

Selective strengths: The selective strength of the j-th
criterion is computed according to the number of alternatives
that are excluded from the positive category C* because of the
discordance effect of the veto threshold v;, and simultaneously
according to the number of other criteria from the set X'\ {x;}
that oppose a veto on the assignment of the same alternatives to
the C* class. The partial selective strength of the criterion X;
considers only the i-th alternative and the single cut-level ¢. It
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equals to zero when v; does not contradict the assertion a; € c*
or when all criteria oppose a veto on this assertion. It indicates
to which degree a criterion outperforms the weakest criterion:

P card(x; e X \{x;}:d,(a;) <) ,d ;(a;) 2 a;
70 Jd(a)<ay.

It can be stated that the partial strength of the j-th criterion,

which excludes the i-th alternative from the positive category,

equals the number of criteria, which do not exclude the same
alternative. To aggregate the claculated indices that are obtained

for separate alternatives and for different cut-levels ¢y € L(V),

an algorithm is defined. It rests on the following principles:

e The higher the cut-level is, the more certain is the crisp veto
relation. Selective strengths of criteria, which are bound to
cuts with levels ¢ >> 0, are consequently more substantial
for a given problem situation than those, which correspond
to low levels ¢ = 0. They are entitled to contribute to a
greater extent to the total strengths.

e The criterion x; gains the highest possible selective strength,
measured according to the alternative a;, at the first cut for
which the discordance degree dj(a;) exceeds the ¢ thres-
hold. At levels ap > o, the indices equal to zero and need
not be dealt with, while at o < ¢, additional criteria might

oppose a veto and thus gof, < (pl/f[ holds true.

e  When (pf} =..= go‘ff for adjacent o, >...>a, , only the

cut with the highest level is considered. This originates from
the logical maximum concept.

e When the difference & = (pf,- —(pf,-' exceeds 0 for op < oy,

the total strength of x; according to g; falls by - 6. The
difference o has to be lessened by the certainty factor of
results. The decrease is a consequence of a weaker — yet
positive — veto effect of one or more additional critera.

The total selective strength @; of the criterion x; is not based on
average values of partial results. Instead, it relies on similarities
between a-cuts. It therefore represents a more consistent result
than would be achieved by applying the weighted sum function.

The @; strengths can be of great help to a decision-maker when
specifying the criteria weights, as they reflect the relationships
between criteria importances. In addition, when the value of @;
is too high or too low, the domination or the discrimination of
the j-th criterion is exposed. This is a clear sign for a decision-
maker to modify input parameters if he wishes that all criteria
are adequately participating in the evaluation process.

Conversion of selective strengths to criteria weights:
Selective strengths must, however, not be directly interpreted as
criteria weights. The meaning of the “zero strength” has to be
considered. If ®; = 0, it certainly does not imply that the weight
w; also equals to zero. Similarly, the maximal possible strength
@, = m - (n— 1), which appears when exactly a single criterion
eliminates all alternatives form the positive category, has to be
dealt with. When the difference A; = ®; — ®; is small compared
t0 Do = Anmax, it 1S reasonable that the same weight w; = w; is
assigned to both criteria x; and x;. Finally, computed strengths
should be modified by an individual in order to properly reflect
his personal beliefs.

Two interrelated problems arise:

1. the conversion of indices ®; to weights w;, forj =1, ..., n,

2. the representation of indices @; in such a way that criteria
importances are correctly and intelligibly expressed, and
that a decision-maker is able to easily as well as quickly
adjust them.
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To solve both problems, the differences A; of selective strengths
are transformed and included in a n x n pairwise comparison
matrix. This matrix contains ratios of criteria weights and is
consistent with the concepts of AHP [10] — it is reciprocal and it
is limited to the scale of 1 to 9. Because of the above illustrated
“@ ¢ problem” and because the ratio ®; / ®; can be computed
only if ®; # 0 holds true, an original approach is introduced
which combines ratios with intervals.

Let the weight ratio be denoted as r; = w; / w;. The fundamental
presumption is that the ratio 7; increases linearly according to
the difference A; = @; — @; between the selective strengths of
two criteria:

rj=a-A;+b.

The ratio r; remains the same for all feasible values of ®; and
®@,, if only the difference A; is constant. The interpretation is
that the additional strength d®;, which is gained by the criterion
x;, influences the weight increase with equal intensity regardless
of the initial value ®,. Since @, has the maximum possible
priority over @, = 0, it is evident that r,,,, = 9 is assigned to
Amax = (Dmax - cI)min- Thus:

V. = 8 <A i +1.

max

Only non-negative differences are considered; if A; < 0 holds, a
reciprocal value r; = 1/ r; is taken. The constant b = 1 ensures
that A; = 0 is transformed to the r; = 1 ratio, which indicates
total equality of criteria. Since the linear function does not
guarantee matrix consistency, the exponential function is also
defined:

A
E
Ty :(rmax) ,E= Am’jax
Now:

Tij = Vmax = 9, lfAl/ = Amaxa and
Vik:VU'fjkarAik:AU+A/k.

Statistical experiments show that the inconsistency rate of a
pairwise matrix, which is constructed with the linear function, is
very low. The results were obtained by the power method and
are summarized in Table 1. All values are considerably better
than required. They do not rise above the worst acceptable level
of CR = 0.1 in any of 40000 test cases.

Table 1. Inconsistency rates of pairwise comparison matrices

6 criteria, 6 criteria, 10 criteria, 10 criteria,
6altematives | Saltematives | 4 altematives | 30 altematives

Average 0.0106 0.0104 0.0112 0.0106

Deviation 0.0050 0.0050 0.0032 0.0030

Maximum 0.0309 0.0268 0.0236 0.0146

Binary Relation Based Approach

It consists of the following steps:

1. A fuzzy binary relation on the criteria set is constructed. Its
transitive closure is found.

2. Every a-cut of the transitive closure is analysed to obtain a
unique partial order of criteria.

3. Partial orders are combined into a single weak order.

The fuzzy binary relation
B={((x;,x;) p(x;,x)) | (x;,x;) € X x X}
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is interpreted with the assertion “the criterion x; is at least as
selective as the criterion x;”. It is constructed from the fuzzy
veto relation V' by applying the Bandler and Kohout's triangle
superproduct composition:

B=vsy",
Mg (X, x ;) =0y, (y (X, a,) < py (x),a;) -

For the inner fuzzy operator, the Lukasiewitcz's implication is
used. It compares two criteria in regard to their restrictive veto
effects on a single alternative:

ﬂg(xiaxj) =py (x;,a,) < py (x;,a;)
=min (-, (x;,a;)+ py (x;,a;), D).

Werners' fuzzy “and” serves as the outer aggregation operator:

:uB(xisxj):y'mink:l..m ﬂ]I;(xi’xj)+

k
Zk:I..m Hp (Xi ’ xj )

By setting the value of y at considerably less than 1, necessary
compensation is ensured. If the degree of truth u(x;, x;) would
be computed according to the logical minimum, as is usual for
the intersection operator in the realm of fuzzy set theory, then
the relative selectiveness of the i-th criterion in comparison to x;
would be reduced to only those alternatives that are to a greater
extent rejected by x;. Thereby, the criterion importance would
be dependent solely on the weakest discordance index, while
alternatives that are actually excluded from the positive class
would not participate in the weight determination process.

+(1-y)- , 05y <<1.

For the purpose of being analysed, the binary relation has to be
at least a fuzzy quasiorder relation, which means that it is
reflexive and transitive. Reflexivity is a consequence of the
implication operator, while transitivity is generally unachieved.
The transitive closure Q is therefore constructed. It is analysed
with respect to various levels ¢, € L(Q). From the perspective
of a single a-cut, four relations between criteria exist:

X > x; & (x; Qg x)A(x; 0y X)),
X <x; & =x; Qg X;)A(X; Oy X;) 5
xR X; & (X 0y X)A(x; Oy i),

X 7x; ©=(x; Qp x;)A—(x; Oy X;)

A different partial order of criteria is derived for each a-cut.
These orders can be represented by means of Hasse diagrams.
When, however, there are many graphs, determining unique
criteria importances might be inconvenient for a decision-
maker. This is the reason why partial orders are automatically
combined into a single weak order by applying a procedure
based on a distance measure 7 between preference, indifference
and incomparability relations [11]. The procedure computes and
compares dominance indices. It relies upon the presumption that
the criterion x; is the more influential the more are relations in
which it is with the other criteria x; € X'\ {x;} distant from the
antiideal considering all cut-levels ¢ € L(Q):

0,(x)= Y (<R, where R} € {~,<,%,},
J#i
O(x) =Y a,-0,(x).
The criterion with the highest dominance index ©®; is the most
important one, and so on. Obtained results are not so reliable as

selective strengths, because they are bound to an arbitrary real-
valued positive constant a:
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7r(>—,-<)=2-a,7z(>—,?)=§-a,7z(z,?)=§-a,ﬂ(z,>-)=a .

Comparison of Approaches

First, selective strengths @; are compared to weighted sums of
partial strengths as well as to dominance indices ®,. For this
purpose, criteria are arranged in the descending order. Ratios
between the best evaluation and all other evaluations are taken
in regard to a separate approach. For example @ : ®,, ®;: D3,
®,:D, ... Here ®; = max {®;}, D, = max {®;} \ @y, and so on.
Ratios of these ratios are computed, as is (D;:®D)):(0;:0)).
Results that were obtained from 10000 test cases for 8 criteria
and 5 alternatives are presented in Table 2.

Table 2. Ratios of selective strengths to weighted sums and
dominance indices

Weighted sums Dominance indices

Criteria | Average | Deviation | Average | Deviation

1:2 0.9884 0.0996 1.1760 0.2141

0.9756 0.1116 1.3167 0.2860

0.9630 0.1213 1.4630 0.3494

0.9549 0.1368 1.6239 0.4253

0.9267 0.1763 1.8230 0.6092

0.8250 0.2406 2.2152 1.1815

e e e e e
DA ||k~ |W

0.5973 0.2765 3.5501 3.0862

Ratios between weighted sums are higher than ratios between
selective strengths. They tend to be somewhat unnatural, since
the same information is included in the calculation many times.
Differences in discordance degrees are consequently intensified
and can potentially lead to considerable, immoderate differences
in criteria weights. Dominance indices, on the other hand, are
rather unstable, which is evident from the measured levels of
standard deviation as well as from Table 3. The latter shows
how many perturbations occured among weak criteria orders
that were derived by individual approaches. A perturbation is
interpreted as an event when two criteria swap places.

Table 3. Perturbations in weak criteria orders

Cases Average | Maximum
Select'lve strengths : 5764 0.8861 9
weighted sums
Selec.tlve str.eng.ths : 715 1.2676 9
dominance indices
Weighted sums : 7874 15512 12
dominance indices

GROUP CONSENSUS SEEKING

In group decision-making, methods belonging to the ELECTRE
and PROMETHEE families perform a final evaluation of alter-
natives by compensating values of preferential parameters,
which are set by individual group members. A decision thus
results from aggregated values. However, these aggregations do
not necessariliy represent the opinion of any decision-maker.
So, a chosen alternative might not be preferred by the majority
of involved people; it could merely be a consequence of consi-
derable disharmony within the group. Moreover, in the case of
the ELECTRE methods, the credibility of a decision is also
hindered by the fact that the coalition is limited to criteria
weights, which denote just a subset of input data.

For the above-listed reasons, a procedure is needed that takes

into account the following facts:

o All preferential parameters are important in group decision-
making.
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e A consensus, or at least a compromise, should be reached.
An alternative that is chosen according to average parameter
values is neither a consensus nor a compromise.

The level of consensus should be known.
e Equality among the involved people should be guaranteed.

It is a quite reasonable assumption that there exist considerable
discrepancies between initial preferential specifications of
individual group members. These differences can even increase
during the course of discussion and mathematical analysis.
Reaching an agreement about a subset of acceptable alternatives
is therefore a hard task, which cannot be solved instantly, but
rather requires a progressive, iterative, unremitting deepening of
problem understanding as well as adapting of personal opinions
in order to harmonize with beliefs of other involved decision-
makers. To reach uniformity on individuals' views, an active
mechanism for convergent group consensus seeking is needed.
It should be able to tell a decision-maker how he can modify his
preferential parameters so that they will — to as high degree as
possible — correspond to the preferences of the whole group [4].

Compromise

The proposed two-categorical sorting ensures a compromise in a
very simple way. An acceptable alternative is assigned to the
positive class. It thereby receives one vote. As all participants
operate on the same alternative set, votes are plainly added. Let

o be the number of decision-makers and C; the subset of

alternatives that are approved by the 4-th individual. Then the
sum of votes for the i-th alternative is:

v; =card(a; eC{,k=1,...,0) .

Alternatives can now be ranked from the most preferable ones
to those that receive the least votes. It is thus clear how many
participants in the decision-making process agree upon a given
choice and it can never happen that a decision is made, which is
not in accordance with the opinion of the majority.

Consensus and Agreement Measures

Since a high level of comparability is attained as a consequence
of the applied localization principle, it is an uncomplicated task
to define a consensus measure. Let z; be the consensus degree
reached for the i-th alternative. The equality z; = 0 holds true, if
exactly half of individuals in the group assign the alternative a;
to the positive category C* and the other half to the negative
category C . In this case, it is totally undetermined whether q; is
an appropriate choice. On the contrary, z; equals to 1 when all
participants classify a; into the same category. Then the group is

perfectly uniform. Let v, =v;, and v; =o—v, denote how

many participants assign the alternative g, to the C™ class and to
the C™ class, respectively. Then:

VvV, —

i

z; =

'D,wherevi :max(vi*,vi‘)andp:LEJ )
o—p o

An operator, which aggregates the partial consensus indices,
should not only ensure compensation but has to consider the
weakest alternative as well:
2
i=1

Z=y-min,_ , z,+(-y)- 2=y e0,1].
m

Another measure is important for the sake of active preference
unification in the process of group consensus seeking. It is
called the degree of agreement. The more people that assign an
alternative to the same category as an individual does, the
higher the level of agreement that is reached from the perspec-
tive of this person:
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Mechanism of Consensus Seeking

The active mechanism of directing group members toward

unified opinions is founded on the progressive increasing of the

consensus degree Z, that is on the convergence of aggregated
values z; toward the specified threshold & A decision-maker
with the lowest degree of agreement is selected. Since this parti-
cipant is in the strongest opposition to the collective choice, his
preferential attitude is the principal reason why the value of Z is
not high enough. He has to adjust input parameters to such an
extent that someone else becomes the most contradictive group
member. Because it is always “the turn” of the participant with
the lowest computed agreement level, two important gains arise:

e the values of ¢* incessantly increase and hence ensure the
convergence of Z toward the threshold &,

e equality among involved decision-makers is guaranteed, as
the only measure of the required conformation to opinions
of colleagues is the deviation from the collective choice,
which is independent of the person's rank.

It is reasonable that a decision-maker reassigns only alternatives
with a low agreement index and with a low robustness level. In
the opposite case, either a satisfactory degree of agreement is
reached from this person's perspective, or his opinion, which is
expressed through the values of input parameters, is so firmly
stated that the conformation to the group is not sensible in spite
of a considerable contradiction with it. Therefore, the decision
support system has to show the k-th group member all partial
agreement indices ordered from the lowest to the highest. For
each alternative a;, data on its sensitivity have to be additionally
interpreted. The obtained information enables the manual
selection of alternatives, which are subject to reassignment. This
is essential, because a decision-maker must be able to reject the
proposed category changes. When he is convinced that his
judgement is right, he may insist on his own choice. Other
participants are thereby stimulated to rethink about the decision,
enlighten their understanding of the problem situation from
another possible point of view, and consider important facts that
they have perhaps overlooked.

Suppose a decision-maker specifies which non-robustly sorted
alternatives with a low agreement level he is prepared to
reassign to the other category. New values of parameters of the
decision model — referential values of the profile gi(b), thresh-
olds g;, p; and v;, and weights w; — can then be automatically
derived for each of n criteria so that the required changes are
attained for the chosen alternatives and so that the memberships
of all other alternatives are preserved. The adjustment of
parameters consists of two phases. At first, the discordance
effects are eliminated by loosening the veto thresholds for all
criteria according to which the measured performances are
intolerably poor. Next, the parameters g;(b), g;, p; and w; are set.
An approach is used which was defined at the Lamsade institute
[2]. As the desired categories of all alternatives are known, the
decision support system is confronted with the problem of
parameter determination on the ground of a sorted alternative
set. The problem is solved by an optimization program.

CONCLUSION

In this paper, an interactive alternative sorting procedure, which
aims at overcoming some of the major weaknesses of existing
pseudo-criterion based methods, was proposed. As its central
concept, the localized two-categorical decision analysis was
introduced. To enable such analysis, the asymmetrical treatment
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of veto thresholds was grounded and realized, and appropriate
fuzzy aggregation operators for computing the concordance and
discordance degrees were defined. The problem localization
assured high adaptability of a quantitative model and high
comparability of individual group members' results. It hence
laid the foundation for three other principles — semiautomatic
weight derivation, the progressiveness approach, and group
consensus seeking. Two techniques were introduced that are
able to determine criteria weights according to the influence of
noncompensatory veto thresholds. Both of them define a fuzzy
veto relation by organizing partial discordance indices. The first
one computes the selective strengths of criteria and transforms
them into a pairwise comparison matrix, which can be adjusted
by decision-makers in order to correctly reflect their personal
beliefs. The second uses the triangle superproduct composition
to construct a binary relation on the criteria set. It obtains a
weak order by applying a distance measure between preference,
indifference and incomparability relations. The techniques were
statistically compared. Finally, the mechanism for the iterative
unification of decision-makers' opinions was described, being
capable of automatic adjustment of preferential parameters. A
mathematical optimization program was applied to reach robust
conclusions. The consensus and agreement measures were also
defined in order to ensure convergence.

Within the scope of further research work, the procedure will be
compared to existing methods and evaluated by statistical tests
as it is necessary to prove its usefulness, reliability, credibility
and convergence toward just group choices. It will also have to
be approved in realistic problem situations.
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