
Formal Methods Unifying Computing Science and Systems Theory

Raymond BOUTE
INTEC, Universiteit Gent

B-9000 Gent, Belgium

ABSTRACT

Computing Science and Systems Theory can gain much from uni-
fied mathematical models and methodology, in particular formal
reasoning (“letting the symbols do the work”). This is achieved
by a wide-spectrum formalism.

The language uses just four constructs, yet suffices to synthe-
size familiar notations (minus the defects) as well as new ones. It
supports formal calculation rules convenient for hand calculation
and amenable to automation.

The basic framework has two main elements. First, a func-
tional predicate calculus makes formal logic practical for engi-
neers, allowing them to calculate with predicates and quanti-
fiers as easily as with derivatives and integrals. Second, concrete
generic functionals support smooth transition between pointwise
and point-free formulations, facilitating calculation with func-
tionals and exploiting formal commonalities between CS and
Systems Theory.

Elaborating a few small but representative examples shows
how formal calculational reasoning about diverse topics such as
mathematical analysis, program semantics, transform methods,
systems properties (causality, LTI), data types and automata pro-
vides a unified methodology.

Keywords Calculation, Computing Science, Concrete Generic
Functionals, Formal Methods, Functional Predicate Calculus,
Quantifiers, Systems Theory, Unification

1. INTRODUCTION

Motivation: ut faciant opus signa
Computing Science and Systems Theory are fundamental to en-
gineering in general [17] and ICT in particular. Complex systems
heavily rely on both. Yet, the conceptual frameworks and mod-
elling techniques are (still) very divergent. The crucial loss is
that the benefits of formal reasoning are much underexploited.
We briefly elaborate.

Whoever enjoyed physics will recall the excitement when ju-
dicious manipulation of formulas yielded results not obtainable
by mere intuition. Such manipulation, from polynomial factor-
ization in high school to calculation with derivatives and integrals
in calculus, is essentiallyformal, i.e., guided by the shape of the
expressions. The usual style iscalculational, namely, chaining
expressions by relational operators such as equality (“=”). An
example is

F (s) =
R +∞
−∞ e−|x|e−i2πxsdx

= 2
R +∞
0

e−x cos 2πxs dx

= 2 Re
R +∞
0

e−xei2πxsdx

= 2 Re −1
i2πs−1

= 2
4π2s2+1

, (1)

taken from a classic engineering text by Bracewell [10].

The typical formal rules used are those for arithmetic (asso-
ciativity, distributivity etc.) plus those from calculus.

Exploiting formality and the calculational style are taken for
granted throughout most of applied mathematics based on alge-
bra and calculus (although, as shown later, common conventions
still exhibit some serious defects).

By contrast, logical reasoning in everyday practice by math-
ematicians and engineers is highly informal, and often involves
what Taylor [20] callssyncopation, namely using symbols as
mere abbreviations of natural language, for instance the quanti-
fier symbols∀ and∃ just standing for “for all” and “there exists”,
without calculation rules.

The result is a severe style breach between “regular calcu-
lus”, usually done in an essentially formal way, and the logical
justification of its rules, which even in the best analysis texts is
done in words, with syncopation instead of calculation. As Taylor
observes, the logical structure of the arguments is thereby often
seriously obscured.

This style breach pervades applied mathematics, and is re-
flected in the methodological gap between classical Systems The-
ory, based on calculus, and Computer Science, based on logic. As
explained by Gries [13], although formal logic exists as a sepa-
rate discipline, its traditional form is drowned in technicalities
that make it too cumbersome for practical use, but now calcula-
tional variants exist [12].

The rewards of bridging the gap are huge, namely making
the symbols do the work, as nicely captured by the maxim “Ut
faciant opus signa” of the conference series on Mathematics of
Program Construction [2]. Here we do not mean only (nor even
primarily) using software tools, but also the guidance provided by
the shape of the expressions in mathematical reasoning, and the
development of a “parallel intuition” to that effect. This comple-
ments the usual “semantic” intuition, especially when exploring
areas where the latter is clueless or still in development.

Approach: Functional Mathematics (Funmath)
A unifying formalism is presented that spans a wide application
spectrum. Aformalism is a language (or notation) together with
formal rules for symbolic manipulation.

The language [5] isfunctional in the sense that functions
are first-class objects and also form the basis for unification. It
supports declarative (abstract) as well as operational (implemen-
tation) aspects throughout all mathematics relevant to computer
and systems engineering, and is free of all defects of common
conventions, including those outlined by Lee and Varaiya [18] as
discussed later.

The formal rules arecalculational, supporting the same style
from predicate logic through calculus. Thereby the conceptual
and notational unification provided by the language is comple-
mented by unified methodology.

In particular, this enables engineers to formally calculate with
predicates and quantifiers with the same ease and algebraic flavor
as with derivatives and integrals.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 31ISSN: 1690-4524

Overview
The formalism is presented in section 2, which introduces the lan-
guage, its rationale and its four basic constructs, and in section 3,
which gives the general-purpose formal rules, namely those for
concrete generic functionals and for functional predicate calcu-
lus (quantifiers). Application examples are given in section 4 for
Systems Theory, section 5 for Computing Science, and section
6 for common aspects. Some concluding remarks are given in
section 7.

2. THE FORMALISM, PART A: LANGUAGE

Rationale: the need for defect-free notation
Notation is unimportant if and only if it is well-designed, but be-
comes a crucial stumbling block if it is deficient. The criterion is
supporting formal calculation: if during expression manipulation
one has to be on guard for the defects, one cannot let the symbols
do the work.

In long-standing areas of mathematics such as algebra and
analysis, conventions are largely problem-free, but not entirely.
Most important are violations of Leibniz’s principle, i.e., that
equals may always be substituted for equals. An example is ellip-
sis: writing dots as ina0 +a1 + . . .+an. By Leibniz’s principle,
if ai = i2 and n = 7, this should equal0 + 1 + . . . + 49,
which most likely is not intended. Other defects, also pointed
out in [18], are related to writing function application when the
function is intended, as iny(t) = x(t) ∗ h(t) where∗ is convo-
lution. This causes instantiation to be incorrect, e.g.,y(t− τ) =
x(t− τ) ∗ h(t− τ).

In discrete mathematics the situation is worse, e.g., for the
sum-

P
many conventions are mutually inconsistent and calcula-

tion rules are rarely given. Poorest are the conventions in logic
and set theory used in daily practice. A typical defect is abusing
the set membership relation∈ for binding a dummy. Frequent
patterns are{x ∈ X | p}, as in{m ∈ Z | m < n}, and
{e | x ∈ X}, as in{n · m | m ∈ Z}, where in the patterns
p is boolean ande any expression. The ambiguity is shown by
takingy ∈ Y for p ande. Defects like these prohibit formal rules
and explain why, for such expressions, syncopation prevails in
the literature.

Funmath language design
We do not patch defects ad hoc, but generate correct forms by
orthogonal combination of just 4 constructs, gaining new useful
forms of expression for free. The basis isfunctional. A func-
tion f is fully defined by itsdomain D f and itsmapping (image
definition). Here are the constructs.

Identifier: any symbol or string except colon, filter mark,
abstraction dot, parentheses, and a few keywords.

Identifiers areintroduced by bindings i : X ∧. p, read “i in X
satisfyingp”, where i is the (tuple of) identifier(s),X a set and
p a proposition. Thefilter ∧. p (or with p) is optional, e.g.,n : N
andn : Z∧. n ≥ 0 are interchangeable. Identifiers fromi should
not appear in expressionX.

Shorthand:i := e stands fori : ι e. We writeι e, not{e}, for
singleton sets, usingι defined bye′ ∈ ι e ≡ e′ = e.

Identifiers can bevariables (in an abstraction) orconstants
(declared bydef binding). Well-established symbols, such asB,
⇒, R, +, serve as predefined constants.

Application: for function f and argumente, the default is
f e; other conventions are specified by dashes in the operator’s
binding, e.g., —? — for infix. For clarity, parentheses arenever
used as operators, but only for parsing. Rules for making them

optional are the usual ones. Iff is a function-valued function,
f x y stands for(f x) y.

Let ? be infix. Partial application is of the forma? or ?b,
defined by(a?) b = a? b = (?b) a. Variadic application is of the
form a ∗ b ∗ c etc., and isalways defined to equalF (a, b, c) for
a suitably definedelastic extension F of ?.

Abstraction: the form isb . e, whereb is a binding ande an
expression (extending after “ . ” as far as compatible with paren-
theses present). Intuitively,v : X ∧. p . e denotes a function whose
domain is the set ofv in X satisfyingp, and mappingv to e (for-
malized in section 3). Syntactic sugar:e | b for b . e andv : X | p
for v : X ∧. p . v.

A trivial example: if v does not occur (free) ine, we de-
fine • by X • e = v : X . e to denoteconstant functions. Special
cases: theempty function ε := ∅ • e (any e) and defining7→ by
e′ 7→ e = ι e′ • e for one-point functions.

We shall see how abstractions help synthesizing familiar ex-
pressions such as

P
i : 0 ..n . qi and{m : Z | m < n}.

Tupling: the 1-dimensional form ise, e′, e′′ (any length),
denoting a function with domain axiomD (e, e′, e′′) = {0, 1, 2}
and mapping axiom(e, e′, e′′) 0 = e and(e, e′, e′′) 1 = e′ and
(e, e′, e′′) 2 = e′′. The empty tuple isε and for singleton tuples
we defineτ with τ e = 0 7→ e.

Parentheses arenot part of tupling, and are as optional in
(m, n) as in(m + n). Matrices are 2-dimensional tuples.

3. THE FORMALISM, PART B: RULES

The formal calculation rules and gaining fluency with them is the
topic of a full course [7], so here we must be terse.

Rules for equational and calculational reasoning
The equational style of Eq. (1) is generalized to the format

e R′ 〈Justification〉′ e′ , (2)

where theR′ in successive lines are mutually transitive, for in-
stance =,≤, etc. in arithmetic,≡,⇒ etc. in logic.

In general, for any theoremp we have the rule

INSTANTIATION : from p, infer p[ve . (3)

We write [ve to express substitution ofe for v, for instance,
(x + y = y + x)[x,y

3,z+1= 3 + (z + 1) = (z + 1) + 3.
For equational reasoning (i.e., using = or≡ only), the basic

rules [12] are reflexivity, symmetry, transitivity and

LEIBNIZ ’ S PRINCIPLE: from e = e′, infer d[ve= d[ve′ . (4)

For instance,x + 3 · y = 〈x = z2〉 z2 + 3 · y. Eq. (4) is used
by takingd := v + 3 · y ande := x ande′ := z2.

Rules for calculating with propositions and sets
Assume the usual propositional operators¬, ≡, ⇒, ∧, ∨. For a
practical calculus, a much more extensive set of rules is needed
than given in classical texts on logic, so we refer to Gries [12].
Note that≡ is associative, but⇒ is not. We make parentheses in
p ⇒ (q ⇒ r) optional, hence required in(p ⇒ q) ⇒ r. Embed-
ding binary algebra in arithmetic [3, 4], logic constants are 0 and
1, not FALSE and TRUE.

Leibniz’s principle can be rewrittene = e′ ⇒ d[ve= d[ve′ .
For sets, the basic operator is∈. The rules are derived ones,

e.g., defining∩ by x ∈ X ∩ Y ≡ x ∈ X ∧ x ∈ Y and× by
(x, y) ∈ X ×Y ≡ x ∈ X ∧ y ∈ Y . After defining{—}, we
shall be able to provey ∈ {x : X | p} ≡ y ∈ X ∧ p[xy .

32 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

Set equality is defined viaLeibniz’s principle, written as an
implication: X = Y ⇒ (x ∈ X ≡ x ∈ Y) and the con-
verse,extensionality, written here as an inference rule: from
x ∈ X ≡ x ∈ Y , infer X = Y , with x a new variable. This
rule isstrict, i.e., the premiss must be a theorem.

Rules for functions and generic functionals
We omit the design decisions, to be found in [5] and [8]. In what
follows, f andg are any functions,P any predicate (B-valued
function,B := {0, 1}), X any set,e arbitrary.

Function equality and abstraction Equality is defined via
Leibniz’s principle (taking domains into account)f = g ⇒
D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x), andextension-
ality as a strict inference rule: with newx, from p ⇒ D f =
D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x), infer p ⇒ f = g.

Abstraction encapsulates substitution. Formal axiom: for the
domain d ∈ D (v : X ∧. p . e) ≡ d ∈ X ∧ p[vd, and for themap-
ping: d ∈ D (v : X ∧. p . e) ⇒ (v : X ∧. p . e) d = e[vd. Equality
is characterized via function equality (exercise).

Generic functionals Our goal is (a) removing restrictions in
common functionals from mathematics, (b) making often-used
implicit functionals from systems theory explicit. The idea is
defining the result domain to avoid out-of-domain applications
in the image definition.

Case (a) is illustrated by compositionf ◦ g, whose common
definition requiresR g ⊆ D f ; thenD (f ◦ g) = D g. Removing
the restriction, we definef ◦ g for any functions:

f ◦ g = x :D g ∧. g x ∈ D f . f (g x) . (5)

Observation:x ∈ D (f ◦ g) ≡ x ∈ D g ∧ g x ∈ D f by the
abstraction axiom, henceD (f ◦ g) = {x :D g | g x ∈ D f}.

Case (b) is illustrated by the usual implicit generalization of
arithmetic functions to signals, traditionally written(s+s′)(t) =
s(t) + s′(t). We generalize this by(duplex) direct extension (b):
for any functions? (infix), f , g,

f b? g = x :D f ∩ D g ∧. (f x, g x) ∈ D (?) . f x ? g x . (6)

Often we needhalf direct extension: for functionf , anye,

f
↼
? e = f b? (D f • e) and e

⇀
? f = (D f • e) b? f . (7)

Simplex direct extension () is defined byf g = f ◦ g.
Function merge (∪·) is defined in 2 parts to fit the line:

D (f ∪· g) = {x :D f ∪ D g | x ∈ D f ∩ D g ⇒ f x = g x}
andx ∈ D (f ∪· g) ⇒ (f ∪· g) x = (x ∈ D f) ?f x g x. (8)

Filtering (↓) introduces/eliminates arguments:

f ↓ P = x :D f ∩ D P ∧. P x . f x . (9)

A particularization isrestriction (e): f eX = f ↓ (X • 1). We
extend↓ to sets:x ∈ (X ↓ P) ≡ x ∈ X ∩ D P ∧ P x.

Writing ab for a ↓ b and using partial application, this yields
formal rules for useful shorthands likef<n andZ>0.

A relational generic functional is compatibility (c©) with
f c© g ≡ f eD g = g eD f . For many other generic functionals
and their elastic extensions, we refer to [8].

A very important use of generic functionals is supporting the
point-free style, i.e., without referring to domain points. The ele-
gant algebraic flavor is illustrated next.

Rules for predicate calculus and quantifiers
Axioms and forms of expressionThe quantifiers ∀, ∃ are

predicates over predicates: for any predicateP ,

∀P ≡ P = D P • 1 and ∃P ≡ P 6= D P • 0 .(10)

Let p and q be propositions, thenp, q is a predicate and
∀ (p, q) ≡ p ∧ q. So ∀ is an elastic extension of∧ and we
define variadic application byp ∧ q ∧ r ≡ ∀ (p, q, r) etc.

LettingP be an abstractionv : X . p yields the familiar form
∀ v : X . p, as in ∀x : R . x2 ≥ 0. For every algebraic law,
most elegantly stated in point-free form, a matching pointwise
(familiar-looking) form is obtained in this way.

Derived rules All laws follow from Eq. (10) and function
equality. A collection sufficient for practice is derived in [7].
Here we only give some examples, starting with a characteriza-
tion of f = g without inference rules:

f = g ≡ D f = D g ∧ ∀x :D f ∩ D g . f x = g x . (11)

Another example isduality (generalizing De Morgan law)

¬∀P = ∃ (¬P) ¬ (∀ v : X . p) ≡ ∃ v : X .¬ p . (12)

Here are the main distributivity laws. All have duals.

Name of the rule Point-free form
Distributivity ∨/∀ q ∨ ∀P ≡ ∀ (q

⇀∨ P)

L(eft)-distrib.⇒/∀ q ⇒ ∀P ≡ ∀ (q
⇀⇒ P)

R(ight)-distr.⇒/∃ ∃P ⇒ q ≡ ∀ (P
↼⇒ q)

P(seudo)-dist.∧/∀ D P = ∅ ∨ (p ∧ ∀P) ≡ ∀ (p
⇀∧ P)

Pointwise:∃ (v : X . p) ⇒ q ≡ ∀ (v : X . p ⇒ q) (newv).
Here are a few additional illustrative laws.

Name of the rule Point-free form
Distribut.∀/∧ ∀ (P b∧ Q) ≡ ∀P ∧ ∀Q
One-point rule ∀P=e ≡ e ∈ D P ⇒ P e
Trading ∀PQ ≡ ∀ (Q c⇒ P)

Transposition ∀ (∀ ◦R) ≡ ∀ (∀ ◦RT)

Distributivity ∀/∧ assumesD P = DQ, otherwise only∀P ∧
∀Q ⇒ ∀ (P b∧ Q). The one-point rule written pointwise is
∀ (v : X . v = e ⇒ p) ≡ e ∈ X ⇒ p[ve . For the last line,
R : S→T →B and(v : X . w : Y . e)T = w : Y . v : X . e, hence
∀ (v : X .∀w : Y . p) ≡ ∀ (w : Y .∀ v : X . p) (∀-swap). Duals
and other pointwise forms are left as an exercise.

Sometimes the following rules are useful:
Instantiation: ∀P ⇒ e ∈ D P ⇒ P e and, with newx: Gener-
alization: from p ⇒ x ∈ D P ⇒ P x, infer∀P .

Wrapping up the rule package for function(al)s
Function rangeWe define the range operatorR by

e ∈ R f ≡ ∃x :D f . f x = e . (13)

A consequence is the composition rule∀P ⇒ ∀ (P ◦ f) and
D P ⊆ R f ⇒ (∀ (P ◦ f) ≡ ∀P), whose pointwise form
yields∀ (y :R f . p) ≡ ∀ (x :D f . p[yf x) (“dummy change”).

Set comprehensionWe define{—} as fully interchange-
able with R. This yields defect-free set notation: expressions
like {2, 3, 5} and Even = {2 · m | m : Z} have familiar
form and meaning, and all desired calculation rules follow from
predicate calculus via Eq. (13). In particular, we can prove
e ∈ {v : X | p} ≡ e ∈ X ∧ p[ve (exercise).

Function typing The familiarfunction arrow (→) is defined
by f ∈ X→Y ≡ D f = X ∧ R f ⊆ Y . A more refined type
is theFunctional Cartesian Product (×):

f ∈×T ≡ D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x (14)

whereT is a set-valued function. Note× (X, Y) = X ×Y and
× (X • Y) = X→Y . We writeX 3x→Y as a shorthand for
×x : X . Y , whereY may depend onx.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 33ISSN: 1690-4524

4. EXAMPLES I: SYSTEMS THEORY

Analysis: calculation replacing syncopation
We show how traditional proofs rendered tediuos by syncopation
[20] are done calculationally. The example isadjacency [15].
Since predicates (of typeR→B) yield more elegant formula-
tions than sets (of typeP R), we define the predicate transformer
ad : (R→B)→ (R→B) and the predicatesopen and closed
both of type(R→B)→B, by

ad P v ≡ ∀ ε : R>0 .∃x : RP . |x− v| < ε
open P ≡ ∀ v : RP .∃ ε : R>0 .∀x : R . |x− v| < ε ⇒ P x

closed P ≡ open (¬P)

We prove theclosure property closed P ≡ ad P = P . The
calculation, assuming the (easy) lemmaP v ⇒ ad P v, is

closed P
≡〈closed〉 open (¬P)
≡〈open〉 ∀ v : R¬P .∃ ε : R>0 .∀x : R . |x− v| < ε ⇒ ¬P x
≡〈Trading∀〉
∀ v : R .¬P v ⇒ ∃ ε : R>0 .∀x : R . |x− v| < ε ⇒ ¬P x

≡〈Contrapositive, i.e.,¬ p ⇒ q ≡ ¬ q ⇒ p〉
∀ v : R .¬∃ (ε : R>0 .∀x : R . P x ⇒ ¬ (|x− v| < ε)) ⇒ P v

≡〈Duality and¬ (p ⇒ ¬ q) ≡ p ∧ q〉
∀ v : R .∀ (ε : R>0 .∃x : R . P x ∧ |x− v| < ε) ⇒ P v

≡〈Def. ad〉 ∀ v : R . ad P v ⇒ P v
≡〈Lemma〉 ∀ v : R . ad P v ≡ P v .

An example about transform methods
We show how formally correct use of functionals, in particular
avoiding common defective notations likeF {f(t)} and writing
F f ω instead, enables formal calculation. In

F f ω =
R +∞
−∞ e−j·ω·t · f t · d t

F ′g t = 1
2·π ·

R +∞
−∞ ej·ω·t · g ω · d ω

bindings are clear and unambiguous. The example formalizes
Laplace transforms via Fourier transforms. We assume some fa-
miliarity with the usual informal treatments.

Given`— : R→R→R with `σ t = (t < 0) ?0 e−σ·t, we
define the Laplace-transformL f of a functionf by:

L f (σ + j · ω) = F (`σ b· f) ω (15)

for realσ andω, with σ such that̀ σ b· f has a Fourier transform.
With s := σ + j · ω we obtainL f s =

R +∞
0

f t · e−s·t · d t.
The converseL′ is specified byL′ (L f) t = f t for all t ≥ 0

(weakened wherèσ b· f is discontinous). For sucht,

L′ (L f) t

= 〈Specific.〉 f t

= 〈a = 1 · a〉 eσ·t · `σ t · f t

= 〈Defin.b〉 eσ·t · (`σ b· f) t

= 〈Weaken.〉 eσ·t · F ′ (F (`σ b· f)) t

= 〈Defin.F ′〉 eσ·t · 1
2·π ·

R +∞
−∞ F (`σ b· f) ω · ej·ω·t · d ω

= 〈Defin.L〉 eσ·t · 1
2·π ·

R +∞
−∞ L f (σ + j · ω) · ej·ω·t · d ω

= 〈Factor〉 1
2·π ·

R +∞
−∞ L f (σ + j · ω) · e(σ+j·ω)·t · d ω

= 〈s := σ+j·ω〉 1
2·π·j ·

R σ+j·∞
σ−j·∞ L f s · es·t · d s

Characterization and properties of systems
General Signals over a value spaceA are functions of type

SA with SA = T→A for some time domainT.

A system is a functions :SA →SB . The response ofs to
input signalx :SA at timet : T is s x t, read(s x) t.

Characteristics Let s :SA →SB . Thens is memoryless iff
∃ f— : T→A→B .∀x :SA .∀ t : T . s x t = ft (x t).

Let T be additive, and theshift function σ— be defined by
στ x t = x (t + τ) for any t andτ in T and any signalx. Then
systems is time-invariant iff ∀ τ : T . s ◦στ = στ ◦ s.

A systems :SR →SR is linear iff for all (x, y) :S2
R and

(a, b) : R2 we haves (a
⇀· x b+ b

⇀· y) = a
⇀· s x b+ b

⇀· s y.
Equivalently, extendings toSC →SC in the evident way, the sys-
tem s is linear iff ∀ z :SC .∀ c : C . s (c

⇀· z) = c
⇀· s z. A

system is LTI iff it is both linear and time-invariant.
Response of LTI systemsDefine the parametrized exponen-

tial E— : C→T→C by Ec t = ec·t. Then we have:
THEOREM: if s is LTI thens Ec = s Ec 0

⇀· Ec.
Proof: we calculates Ec (t + τ) to exploit all properties.

s Ec (t + τ) = 〈Definitionσ〉 στ (s Ec) t
= 〈Time inv.s〉 s (στ Ec) t

= 〈PropertyEc〉 s (Ec τ
⇀· Ec) t

= 〈Linearitys〉 (Ec τ
⇀· s Ec) t

= 〈Defintion
⇀〉 Ec τ · s Ec t

Substitutingt := 0 yields s Ec τ = s Ec 0 · Ec τ or, using
⇀

,
s Ec τ = (s Ec 0

⇀· Ec) τ , so s Ec = s Ec 0
⇀· Ec by func-

tion equality. The〈PropertyEc〉 is στ Ec = Ec τ
⇀· Ec (easy).

Note that this proof uses only the essential hypotheses.

Tolerances on specifications
Our first motivation for designing× was formalizing the con-
cept of tolerance for functions, based on a common convention
for specifying frequency/gain characteristics:

6Gain

- Frequency�
�
�
�
�
� A

A
A
A
A
A�

�
�
�� A

A
A
AA

6

?

x

��� T x

� f xq

Clearly, withT x specifying the desired interval for everyx, the
functionsf satisfyingf ∈ ×T are precisely the desired ones.
Next we show other uses of the same operator.

5. EXAMPLES II: COMPUTING SCIENCE

From data structures to query languages
Recordsas in PASCAL [14] are expressed by× as func-

tions whose domain is a set of field labels (anenumeration type).
Example: with field namesname andage ,

Person :=× (name 7→A∗ ∪· age 7→N)

defines a function type such thatperson : Person satisfies
person name ∈ A∗ andperson age ∈ N. Obviously, by defin-
ing record F =× (

S
· F) (

S
· : elastic extension of∪·), one can

also writePerson := record (name 7→A∗, age 7→N).
Trees are functions whose domains arebranching structures,

i.e., sets of sequences describing the path from the root to a leaf
in the obvious way (for any branch labeling). Other structures are
covered similarly

Relational databases The following record type
record (code 7→Code, name 7→A∗, inst 7→Staff , prrq 7→Code∗)
specifies the type of tables of the form

34 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

Code Name Instructor Prerequisites
CS100 Elements of logic R. Barns none
MA115 Basic Probability K. Jason MA100
CS300 Formal Methods R. Barns CS100, EE150
· · · · · · · · ·

Generic functionals subsume all usual query-operators:
For theselection-operator (σ): σ (S, P) = S ↓ P .
For projection (π): π (S, F) = {r eF | r : S}.
For thejoin-operator (./): S ./ T = S ⊗ T .

Here⊗ is the genericfunction type merge operator, defined as in
[8] by S ⊗ T = {s∪· t | (s, t) : S×T ∧. s c© t}. Note that⊗ is
associative, although∪· is not (exercise).

Formal semantics of programming languages
We show how the functional predicate calculus unifies the
methodology for analysis (thead example) and semantics.

The state s is the tuple made of the program variables, and
S its type. We let8s denote the state before ands′ after execut-
ing a command. This allows referring to different states in one
equation. We writes • e for s : S. e.

Program equations If C is the set of commands,
R : C→S2→B and T : C→S→B are defined such that the
effect of a commandc can be described by two equations:
R c (8s, s′) for state change andT c 8s for termination. We some-
times uses for 8s, writing R c (s, s′) andT c s. An example is
Dijkstra’s guarded command language [11].

Commandc State changeR c (s, s′)

v := e s′ = s[ve
c′ ; c′′ ∃ t • R c′ (s, t) ∧ R c′′ (t, s′)

if i : I . bi -> c′i fi ∃ i : I . bi ∧ R c′i (s, s′)

Commandc TerminationT c s

v := e 1
c′ ; c′′ T c′ s ∧ ∀ t • R c′ (s, t) ⇒ T c′′ t

if i : I . bi -> c′i fi ∃ b ∧ ∀ i : I . bi ⇒ T c′i s

For skip : R skip (s, s′) ≡ s′ = s and
T skip s ≡ 1. For abort : R abort (s, s′) ≡ 0 and
T abort s ≡ 0. The loop do b -> c′ od stands for
if ¬ b -> skip b -> (c′ ; c) fi by definition, wherec is
the command itself.

Hoare semantics Let the state before and after executing
c satisfy a (antecondition) and p (postcondition) respectively.
Since all that is known about8s and s′ is a[s8s and R c (8s, s′),
this must implyp[ss′ . This is the intuition behind the definitions
of the following correctness criteria:

Partial:{a} c {p} ≡ ∀ 8s • ∀ s′ • a[s8s ∧R c (8s, s′) ⇒ p[ss′
Termination:Term c a ≡ ∀ s • a ⇒ T c s

Total: [a] c [p] ≡ {a} c {p} ∧ Term c a

Calculating Dijkstra semantics We define the weakest lib-
eral antecondition operatorwla and the weakest antecondition
operatorwa by {a} c {p} ≡ ∀ s • a ⇒ wla c p and[a] c [p] ≡
∀ s • a ⇒ wa c p (evident). To obtain explicit formulas, we cal-
culate[a] c [p] into this shape.

∀ 8s • ∀ s′ • a[s8s ⇒ (R c (8s, s′) ⇒ p[ss′) ∧ T c 8s
≡〈Ldst.⇒/∀〉 ∀ 8s • a[s8s ⇒ ∀ s′ • (R c (8s, s′) ⇒ p[ss′) ∧ T c 8s
≡〈Pdst.∧/∀〉 ∀ 8s • a[s8s ⇒ ∀ (s′ • R c (8s, s′) ⇒ p[ss′) ∧ T c 8s
≡〈s for 8s〉 ∀ s • a ⇒ ∀ (s′ • R c (s, s′) ⇒ p[ss′) ∧ T c s

Note the similarity with thead -calculations. We proved:
wla c p ≡ ∀ s′ • R c (s, s′) ⇒ p[ss′ andwa c p ≡ wla c p∧T c s.

Substituting the program equations for the various constructs, cal-
culation in our predicate calculus yields [9]

wa [[v := e]] p ≡ p[ve
wa [[c′ ; c′′]] p ≡ wa c′ (wa c′′ p)

wa [[if i : I . bi -> c′i fi]] p ≡ ∃ b ∧ ∀ i : I . bi ⇒ wa c′i p
wa [[do b -> c′ od]] p ≡ ∃n : N . wn (¬ b ∧ p)

definingw by w q ≡ (¬ b ∧ p) ∨ (b ∧ wa c′ q) .

6. EXAMPLES III: COMMON ASPECTS

Automata theory is a classical common ground between comput-
ing and systems theory. Yet, even here formalization yields uni-
fication and new insights. The example is sequentiality (captur-
ing non-anticipatory behavior) and the derivation of properties by
predicate calculus.

Preliminaries For any setA we defineAn by An =
n→A where n = {m : N | m < n} for n : N or n :=∞,

e.g.,(0, 1, 1, 0) ∈ B4. Also, A∗ =
S

n : N . An (lists). Con-
catenation is++, e.g., (0, 7, e)++ (3, d) = 0, 7, e, 3, d. Also,
x−< a = x ++ τ a. Next we consider systemss : A∗→B∗.

Causal systemsWe defineprefix ordering ≤ on A∗ by
x ≤ y ≡ ∃ z : A∗ . y = x ++ z, and similarly forB∗. Sys-
tem s is sequential iff x ≤ y ⇒ s x ≤ s y. This captures the
intuitive notion of causal (better: “non-anticipatory”) behavior.
Functionr : (A∗)2→B∗ is a residual behavior (rb) function for
s iff s (x ++ y) = s x ++ r (x, y). We show:

THEOREM: s is sequential iff it has an rb function.
Proof: we start from the sequentiality side.

∀ (x, y) : (A∗)2 . x ≤ y ⇒ s x ≤ s y
≡〈Definit.≤〉∀ (x, y) : (A∗)2 .∃ (z : A∗ . y = x ++ z) ⇒

∃ (u : B∗ . s y = s x ++ u)
≡〈Rdst⇒/∃〉 ∀ (x, y) : (A∗)2 .∀ (z : A∗ . y = x ++ z ⇒

∃u : B∗ . s y = s x ++ u)
≡〈Nest, swp〉 ∀x : A∗ .∀ z : A∗ .∀ (y : A∗ . y = x ++ z ⇒

∃u : B∗ . s y = s x ++ u)
≡〈1-pt, nest〉 ∀ (x, z) : (A∗)2 .∃u : B∗ . s (x ++ z) = s x ++ u
≡〈Compreh.〉
∃ r : (A∗)2→B∗ .∀ (x, z) : (A∗)2 . s (x ++ z) = s x ++ r (x, z)

This completes the proof. Remarkably, the definition of++ is
used nowhere, illustrating the power of abstraction.

The last step uses thefunction comprehension axiom:
∀ (x : X .∃ y : Y . R (x, y))≡∃ f : X→Y .∀x : X . R (x, f x)
for any relationR : X ×Y →B.

Derivatives and primitives This framework leads to the
following. An rb function is unique (exercise). We define the
derivative operator D on sequential systems bys (x−< a) =
s x ++ D s (x−< a), so Ds (x−< a) = r (x, τ a) wherer is the
rb function ofs, and byD s ε = ε.

Primitivation I is defined for anyg : A∗→B∗ by I g ε = ε
and Ig (x−< a) = I g x ++ g (x ++ a). Properties are shown
next, with a striking analogy from analysis.

s (x−< a) = s x ++ D s (x−< a) s x = s ε ++ I (D s) x
f (x + h) ≈ f x + D f x · h f x = f 0 + I (D f) x

Of course, in the second row, D is the derivation operator from
analysis, and Ig x =

R x

0
g y · d y for integrableg. Moreover,

f x + D f x · h is only approximate.
This and other differences confirm the observation in [18]

that automata are easier than real functions.
Finally, {(y : A∗ . r (x, y)) | x : A∗} is thestate space.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 35ISSN: 1690-4524

7. CONCLUSION

We have shown how a formalism, consisting of a very simple lan-
guage of only 4 constructs, together with a powerful set of formal
calculation rules, not only yields a notational and methodological
unification of computing science and systems theory, but also of
a large part of mathematics.

Apart from the obvious scientific ramifications, the formal-
ism provides a unified basis for education in ECE (Electrical and
Computer Engineering), as advocated in [17].

The difficulties should be recognized as well. First, although
calculational logic is easier than classical formal logic, the de-
emphasis on proofs in education has caused students to find logic
increasingly difficult [1, 19]. Second, conservatism of colleagues
may even be a larger problem [1, 18, 19, 21], and there are known
cases of censorship.

Yet, the wide scope of the formalism demonstrated in these
few pages, with only minor gaps left for the reader to fill, provides
ample evidence for the long-term advantages.

8. REFERENCES

[1] Vicki L. Almstrum, ”Investigating Student Difficulties With
Mathematical Logic”, in: C. Neville Dean and Michael G.
Hinchey, eds,Teaching and Learning Formal Methods,
pp. 131–160. Academic Press (1996)

[2] Eerke Boiten and Bernhard M̈oller, Sixth International
Conference on Mathematics of Program Construction
(Conference announcement), Dagstuhl (2002).
www.cs.kent.ac.uk/events/conf/2002/mpc2002

[3] Raymond T. Boute, “A heretical view on type embedding”,
ACM Sigplan Notices 25, pp. 22–28 (Jan. 1990)

[4] Raymond T. Boute,Funmath illustrated: A Declarative
Formalism and Application Examples. Declarative Sys-
tems Series No. 1, Computing Science Institute, University
of Nijmegen (July 1993)

[5] Raymond T. Boute, “Fundamentals of hardware description
languages and declarative languages”, in: Jean P. Mermet,
ed.,Fundamentals and Standards in Hardware Descrip-
tion Languages, pp. 3–38, Kluwer Academic Publishers
(1993)

[6] Raymond T. Boute, “Supertotal Function Definition in
Mathematics and Software Engineering”,IEEE Transac-
tions on Software Engineering, Vol. 26, No. 7, pp. 662–
672 (July 2000)

[7] Raymond Boute,Functional Mathematics: a Unifying
Declarative and Calculational Approach to Systems, Cir-
cuits and Programs — Part I: Basic Mathematics. Course
text, Ghent University (2002)

[8] Raymond T. Boute, “Concrete Generic Functionals: Prin-
ciples, Design and Applications”, in: Jeremy Gibbons and

Johan Jeuring, eds.,Generic Programming, pp. 89–119,
Kluwer (2003)

[9] Raymond T. Boute, “Calculational semantics: deriving pro-
gramming theories from equations by functional predicate
calculus”, Technical note B2004/02, INTEC, Universiteit
Gent (2004) (submitted for publication toACM TOPLAS)

[10] Ronald N. Bracewell,The Fourier Transform and Its Ap-
plications, 2nd ed, McGraw-Hill (1978)

[11] Edsger W. Dijkstra and Carel S. Scholten,Predicate Cal-
culus and Program Semantics. Springer-Verlag, Berlin
(1990)

[12] David Gries and Fred B. Schneider,A Logical Approach
to Discrete Math, Springer-Verlag, Berlin (1993)

[13] David Gries, “The need for education in useful formal
logic”, IEEE Computer 29, 4, pp. 29–30 (April 1996)

[14] Kathleen Jensen and Niklaus Wirth,PASCAL User Man-
ual and Report. Springer-Verlag, Berlin (1978)

[15] Serge Lang,Undergraduate Analysis. Springer-Verlag,
Berlin (1983)

[16] Leslie Lamport,Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Pearson Education Inc. (2002)

[17] Edward A. Lee and David G. Messerschmitt, “Engineering
— an Education for the Future”,IEEE Computer, Vol. 31,
No. 1, pp. 77–85 (Jan. 1998), via
ptolemy.eecs.berkeley.edu/publications
/papers/98/

[18] Edward A. Lee and Pravin Varaiya, “Introducing Signals
and Systems — The Berkeley Approach”,First Signal
Processing Education Workshop, Hunt, Texas (Oct. 2000)
ptolemy.eecs.berkeley.edu/publications/
papers/00/

[19] Rex Page, BESEME: Better Software Engineering
through Mathematics Education, project presentation
http://www.cs.ou.edu/˜beseme/besemePres.pdf

[20] Paul Taylor,Practical Foundations of Mathematics(sec-
ond printing), No. 59 inCambridge Studies in Advanced
Mathematics, Cambridge University Press (2000); quoted
from the introduction to Chapter 1 in
http://www.cs.man.ac.uk/˜pt
/Practical Foundations/html/s10.html

[21] Jeannette M. Wing, “Weaving Formal Methods into the
Undergraduate Curriculum”,Proceedings of the 8th In-
ternational Conference on Algebraic Methodology and
Software Technology (AMAST) pp. 2–7 (May 2000); file
amast00.html in
www-2.cs.cmu.edu/afs/cs.cmu.edu
/project/calder/www/

36 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 4 ISSN: 1690-4524

	P743525

