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ABSTRACT 

 
In sensor fusion, the use of composition information can help 
define and understand relationships between targets.  This 
process, part of the Situational Assessment problem, also 
referred to as Level 2 fusion, can be quite complex when using 
standard classification approaches such as the Bayesian 
taxonomy.  Determination of the number and type of elements 
that comprise a group can vary from report to report based on 
the type of sensors, the environment, and the behavior of the 
group.  Estimation of group composition that can take these 
factors into account has been developed using a Markov chain 
approach.  If the number of potential target classes is significant 
and the various standard group compositions are numerous, the 
computational complexity becomes unmanageable.  This effort 
investigates a useful and computationally attainable Level 2 
composition state estimate based upon the use of state 
aggregation. 
 
Keywords: Situational Assessment, Level 2 Fusion, Markov 
Chain Approach, Group Composition, Sensor Data Fusion 
 

1.  INTRODUCTION 
 

Situational Assessment, also referred to as Level 2 fusion, has 
numerous definitions to the fusion community.  This work uses 
the Joint Directors Lab (JDL) definition [1] that it is the 
development and interpretation of relationships between 
objects.   Knowledge of relationships between objects can 
determine which objects are working in coordination as a single 
unit, which objects are supporting the efforts of other objects 
either directly or indirectly, and which objects are having 
minimal or no relationships with other objects.  To develop 
Level 2 objects and determine these relationships, the individual 
Level 1 objects or targets must be compared, combined, and 
interpreted.   
 
State vector representation is a straightforward technique to 
develop a Level 2 object description.  The states are the 
individual elements of the state vector. They can take on a 
variety of representations that are both quantitative and 
qualitative.  In this effort, a battlespace problem is examined.  
First presented in [2], the proposed state representation of the 
overall Level 2 object is 
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Each of the sub-vectors that comprise the overall state vector 
may utilize different representation schemes.  The 
implementation scheme of Figure 1, often referred to as the 
Bowman model, has been proposed for higher levels of fusion 
in both [2] and [3] and uses a different prediction and update 
approach for each representation.  The prediction and update of 
the composition component of the Level 2 state vector is 
considered in this work for the case where the measurements or 
Level 1 entities use a Bayesian taxonomy [4] to represent 
uncertainty. 
 

Detect Predict Associate Hypothesis
Generation Update

Hypothesis
Management

 
 
Figure 1:  Level 2 Architecture based on the Bowman model. 
 
In [5], [6], and [7], the composition sub-vector was designed to 
work in conjunction with a Markov chain.  This implementation 
requires that each state element represents a possible 
composition.  The value of each state element is then a 
probability of that defined composition.  The sum total of the 
values of the entire sub-vector is then constrained to equal one, 
and all elements must be nonnegative.  In [8], estimation of the 
composition was considered where the number of targets was 
known but the actual class contained uncertainty.  Using the 
Bayesian taxonomy to provide the measurements for each target 
class, this implies that the class for each target could take n 
values where n indicates the number of possible classes.  This 
implies that there are nnum_targets different permutations and a 
related number of combinations.  Evaluation of the probabilities 
clearly can cause the computational complexity to grow 
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quickly.  The concept of restricting the combinations by the 
limiting the various compositions was considered in [8].  While 
this reduced the computations, it still was an exceedingly 
complex problem to implement.   
 
In this work, the use of aggregation of states is proposed as a 
means of estimation of composition.  Using such an approach, 
similar classification states, such as tanks and armored 
personnel carriers (APCs), would be mapped into aggregate 
states, such as armored vehicles.  The algorithm also includes 
the reduction of the possible combinations using the 
aforementioned composition restrictions. In Figure 2, a battle 
group of three APCs and three tanks is shown.  The aggregated 
group is simply an armored battle group of six elements.  The 
aggregate does not concern itself with misidentified tanks that 
are assumed to be APCs.  Thus, there is just one group-
permutation instead of having six different ones (six tanks, five 
tanks/1APC, 4 tanks/2 APCs, etc.).  Oftentimes, the information 
of interest in assessing the situation is the aggregate group, 
rather than information on individual targets within the group.  

 
Figure 2:  Armored battle group with six elements 
 
In Section 2, the development of the general state representation 
and the aggregated state representation is presented.  This is 
followed in Section 3 with an overview of the Markov chain as 
applied to the Level 2 battlespace problem.  Section 4 contains 
the results of an initial test case.  

 
2.  STATE DEFINITIONS FOR COMPOSITION 

 
This effort discusses a Markov chain approach to estimation for 
the Level 2 fusion problem when composition of a group of 
targets is considered.  The current assumption is that the number 
of targets is known accurately while the classification of the 
elements of the group is unknown.  One of the standard 
individual classification techniques is that of a Bayesian 
taxonomy.  With this approach, a target has a number of 
possible classes that can exist in the battlespace as seen in 
Figure 3.  The top node is referred to as the root node and is 
always assigned a probability of 1.0.  At each level, a more 
granular description of the target is developed until at the lowest 
level of nodes, referred to as the leaf nodes, contains the most 
individualized description of the target that is desired.  Here, the 
leaf nodes are defined as the individual target types.  A set of 
nodes that branch off from a higher node are referred to as the 
children of the higher node.  Similarly, the higher node is 
considered the parent node of the children nodes.  Thus, Truck 
and Recon are the children nodes of the node Light.  The root 
node, Target, is the parent node of Armor and Light.  In this 

application, the probability of a parent node is equal to the sum 
of the probabilities of their children. 
 
Based on a priori information, the nodes at a specific level are 
set.  Usually, for ease, it is the leaf nodes that have their 
probabilities defined first with the scores then propagated up 
through the tree.  New information is provided by reports from 
sensor systems.  In a Bayesian taxonomy, each new set of data 
is “injected” into the classification as a set of probabilities for 
each potential target at a specific node as in Figure 3. 
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Figure 3:  A Bayesian taxonomy can represent the probable 
classification of the target 
 
For a given sensor, each potential class has an associated 
probability which is derived from the information gathered 
about features of the target.  Many of the potential classes have 
a probability of zero, but others have nonzero probabilities.  In 
Table 1, a set of probabilities is defined for each target class for 
a given sensor in a sensor field.  These conditional probabilities 
are defined as the probabilities of what class is reported by the 
sensor given the target is of a specific class.  For example, row 
one of Table 1 is for the class Tank.  The probabilities of that 
row define, given that a tank exists, there is a 0.45 probability 
that the sensor system will classify the target as a tank while 
there is a 0.05 probability that the sensor system will define it as 
a truck.   
 
Table 1. Example probabilities based on a sensor’s abilities to 
identify target class given a specific target type is present.  
 

Actual \ 
Detected 

Class 
Tank APC Truck Recon TEL 

Tank .45 .45 .05 .02 .03 
APC .45 .45 .05 .02 .03 
Truck 0 0 .90 .10 0 
Recon 0 .05 .05 .85 .05 
TEL .10 0 0 .10 .80 

 
 
An example of how a set of reports from different sensors 
would work in a Level 1 fusion classification system is as 
follows.  The initial leaf nodes for a set of targets as defined in 
Table 1 are set as probabilities 0.2 for each target since there are 
five target classes.  If the sensor of Table 1 reports a tank, then 
by Bayes theorem 
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the probability becomes 0.45 for a tank, 0.45 for and APC, and 
0.10 for a TEL.  As this senor continuously reports a tank, the 
probability trends towards 0.5 for a tank and 0.5 for an APC 
while the TEL slowly trends towards a probability of zero.  If 
another sensor with better discrimination between a tank and 
APC is used, the probability of a tank will vary towards the tank 
as the class with the highest probability repeatedly reported 
becomes the dominant class.  Classes with probabilities of zero, 
unless the algorithm is modified, will go to zero completely and 
be unable to vary from this attraction point. 
 
Depending on the number of target classes, the classification 
vector can become quite large.  This can even occur with a 
relatively small number of target classes.  To overcome this 
computational bottleneck, aggregation of the classes based on 
the group compositions is proposed.  While aggregation loses 
some of the finer understanding of the individual elements, the 
overall benefit is the quick dissemination of information to 
those in the decision process.  The battlefield groups for five 
element are defined in Table 2.  In Table 3, the aggregation of 
the groups and the individual elements are presented.  The 
concept is similar to using the middle set of nodes, armor and  
light, in Figure 3 as opposed to the five leaf nodes of individual 
target types. 
 
 
Table 2:  The composition of individual groups are based on 
standard military doctrine and are not an exhaustive list of 
combinations 
 

Groups Num 
Tanks 

Num 
APCs 

Num 
Trucks 

Num 
TELs 

Num 
Recon 

Armored 6  0       0 0 0 
Combined 

Arms 1 
3 3 0 0 0 

Combined 
Arms 2 

2 4 0 0 0 

Mech. 
Infantry 

1 4 0 0 1 

Heavy 
Infantry 

0 5 0 0 1 

Light 
Infantry 

0 1 4 0 1 

Supply 0 0 5 0 1 
TEL 1 0 0 3 1 2 
TEL 2 0 1 3 1 1 

 
 
Table 3:  The aggregated list delineates different groups based 
on their primary missions and capabilities. 
 

Groups Armored Support TEL 
Heavy Armored 6 0 0 
Heavy Infantry 5 1 0 

Light 
Infantry/Supply 

1/0 5/6 0 

TEL 1/0 4/5 1 
 
The aggregated individual elements clearly reduce the 
combinatorics of the problem.  The aggregated groups still have 
interactions as seen in the first two and last two aggregated 
groups, but it is less so that the with those defined in Table 2.  
These aggregated groups define the state that is the output for 

the update component of the estimation process.  It is also the 
input to the prediction component. 
 
The predicted state is not comprised of group compositions but 
a number of individual elements of a specific aggregated class 
that will be provided by the classification sensor system with 
the next report. 

 
3.  THE MARKOV CHAIN 

 
The Markov chain [9,10] provides the estimation that is core to 
this development.  Although the concept and the 
implementation of the Markov chain are straightforward, the 
complexity of the model and power of its application lie in the 
development of the transition probabilities. 
 
Basic Implementation 
The Level 2 implementation from [2] has two major 
components: update and prediction.  In Level 1 
implementations, these components are often combined to be 
part of a state estimation routine, typically the Kalman filter.  
Such techniques combine both of these model components into 
a single algorithm.  For Level 2 problems, the estimation routine 
is not easily coupled to a single algorithm, and estimation 
routines, such as a Kalman filter, require very complex 
mathematical models to handle the system dynamics and the 
measurement reports.  
 
The Markov chain can be used in the two steps of estimation for 
the Level 2 problem with greater ease than commonly used 
estimation approaches.  One Markov chain model can be 
develop to predict measurement reports for association; another 
can be developed to incorporate the new measurements into the 
state vector.  Also, as opposed to the dynamic model 
 

  xk+1 = Akxk + Bkuk             (2) 

a time-step probability  model  [9] is developed 
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              (3) 
 
The state in Eq. (3) represents the complete set of possible 
compositions for the groups.  Two important factors in the 
implementation are the definition of the state elements and the 
generation of transition probabilities. 
 
While, often, the state vector is the same dimension on both 
sides of the equation, this need not always be the case.  The 
estimated vector on the left-hand-side of the equation can be a 
composite or expansion of the state vector on the right-hand-
side of the equation.  The state vector on the right-hand-side of 
the equation is usually generated using the most recent 
measurement/report information. 
 
State Aggregation 
The concept of the composition component of the Level 2 state 
in Eq. (1) can take numerous forms.  The state can contain all 
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possible numbers of each class in the group.  For the Markov 
chain state vector, this requires that the state include a state 
element for 0 to n, where n indicates the number of targets 
determined to be in the group.  Another state representation that 
can be used by the Markov chain would have each individual 
target class with a possible number of each class being available 
as in Eq. (4): 
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Another possible representation would be similar to that of the 
column labels in Table 2.  The state vector could be the various 
possible composition groups.  An additional group known as 
other could be incorporated to identify unknown or 
misidentified groups.   
 
In [8], the application of the state representation as discussed 
with Eq.(4) was used for the prediction estimate while the group 
representation for the state vector was used by the update 
estimate.  Even with an average number of target classes (e.g., 
six), a handful of groups (e.g., ten), and just six targets, the 
problem became computationally unwieldy.  
 
A change in the aggregation scheme was considered.  The first 
step in this effort was to aggregate the classes and the groups.  
As seen in Table 3, the aggregated groups were taken from nine 
to four.  The individual classes were also reduced from five to 
three.  This aggregation in states first reduced the number of 
states and the number of transition probabilities.  More 
importantly, many of the outlying or other classes due to target 
misclassifications instantly became part of existing groups.  For 
example, the group Heavy Armored now contains many more 
permutations of Tanks and APCs .  This can be seen with many 
of the groups.   
 
While these two new aggregation approaches provided an 
appreciable reduction in computations, the complexity was still 
significant, particularly in the prediction where the input state 
vector is the aggregated group state representation and the 
output is an aggregated composition vector as seen in Eq. (4). 
 
The next component of the aggregation operated on the number 
of targets of a specific class.  Instead of  defining an individual 
number of targets for each state, the state elements represented a 
range of targets of a given class.  Thus, the state representation 
in the prediction was aggregated as 
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This second level of aggregation provided the greatest reduction 
in computational complexity.  Also, the development of the 
transition probabilities could become less rigorous as grosser 
estimates can be used without loss of the general accuracy.  
 

4.  EXAMPLE OF AGGREGATION IN COMPOSITION 
 
In Figure 2, a combined arms force of three tanks and three 
APCs is shown.  In Figure 4, a report of two tanks, two APCs, 
and two trucks is given for that group.  In fact, a tank and APC 
have been misidentified as each other.  With the aggregation of 
the groups and the targets, the process of estimating becomes 
significantly simpler than with the full state representation as 
done in [8].  If the  tank and APC were considered different 
classes, then the process would need to consider the error in the 
individual reports of these similar vehicles.  
 
To demonstrate the aggregated composition approach, a six 
target example is provided.  The actual group is the non-
aggregated group (Table 3) Heavy Infantry.  Without 
aggregation, the most probable result would be that of Other as 
an APC would most likely be misrepresented as a tank and no 
unit with a tank has a Recon unit.  The groups named 
Combined Arms would follow in probability. 
 

 
 
Figure 4:  The reported group has two misidentifications as 
trucks.  Also, a tank and APC have been switched. 
 
The probabilities associated with the classification of each 
target are given in Table 1.  These probabilities indicate the 
probability that given a specific target (the row) the system will 
assume that the target is a given class (the column).  The 
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aggregation of these classes results in the probabilities listed in 
Table 4.  
 
Table 4. State transition probabilities for aggregate states.  
 

Actual\ Detected 
Class 

Armored Support TEL 

Tank .90 .07 .03 
APC .90 .07 .03 
Truck 0 1.00 0 
Recon .05 .90 .05 
TEL .10 .10 .80 

 
 
An aggregated score set of probabilities can be generated using 
the estimated number of units (i.e., APCs and Tanks) in a 
specific aggregated class (i.e., Armored) and weight the 
different elements’ probabilities appropriately using Bayes 
Theorem.  
 
Using the probabilities in Table 4, a set of transition 
probabilities for the prediction state that estimates the next 
report on the individual targets classifications is generated.  In 
Table 5, the actual probabilities for the Heavy Armored 
aggregated group are generated.  From these values, one can see 
that the transition probabilities can be approximated using bin 
values such as low, medium, high, etc.  In Table 6, the applied 
transition probabilities are defined.  A similar set of 
probabilities for the update problem are defined in Table 7.  
With the update transition, the resulting vector requires 
normalization after being computed. 
 
Table 5.  Development of the actual transition probabilities for 
Heavy Armored 
 

Groups Armored 
tanks/ 
APCs 

Support 
Truck/ 
recon 

TEL 

Heavy Armored 
Pright=0.53 

P1err = 0.354 
P2err=0.098 

P3+err = 0.016 
 

6 0 0 

Heavy Infantry 
P2+errarmor=.114 

P3+errarmor = 0.016 
 

5 1 0 

Light Infantry/Supply 
Prob2+errrecon=0.033 

Prob1errtoTEL=.23 
 

1/0 5/6 0 

TEL 1/0 4/5 1 
 
 
Three reported classifications for each target in the group are 
shown in Table 8.  With the first report, the classes are mapped 
to their aggregates as shown in the table, and the update is 
applied.  Then a prediction is generated.  The process is 
repeated for each new report.  The update progression is shown 
in Table 9.  A similar set of predictive estimates for each report 
is presented in Table 10. 
 
In implementation of an actual Level 2 system, the prediction 
would be used to associate the Level 2 track with the new 

report.  Such information can be used to look for targets that 
have split off from the group or to detect targets that are 
traveling too close to each other to be separated. 
 
 Table 6.  Heuristically developed prediction transition matrix. 
 

Armored 
 

Support TEL Group\ 
Reported

-          
Predicted 

4-6 1-3 0 4-6 1-3 0 2+ 1 0 

 Heavy 
Armored 

 .95  .05 0 0  .5  .5 0  .2  .8

 Heavy 
Infantry 

 .8  .2 0 0  .5  .5 0  .2  .8

Light 
Infantry/ 
Supply 

0  .5  .5  .9  .1 0 0  .2  .8

TEL 0  .5  .5  .9  .1 0  .1  .8  .1
 
 
Table 7:  Heuristically derived update transition matrix 
 

Armored 
 

Support TEL Group\ 
Reported

-          
Predicted 

4-6 1-3 0 4-6 1-3 0 2+ 1 0 

 Heavy 
Armored 

 .9 .1 0 0 .1  .9 0 .05  .9 

 Heavy 
Infantry 

.9 .5 0 0 .9 .1 0 .05 .9 

Light 
Infantry/ 
Supply 

.05 .8 .8 .9 .5 .05 0 .05 .9 

TEL 0 .5 .8 .8 .5 0 .9 .8 .1 
 
 
Table 8:  Three Bayesian reports on the classification of the six 
targets in the group 
  

R
ep

or
t Tgt. 

Class 
Tgt. 

1 
Tgt. 

2 
Tgt. 

3 
Tgt. 

4 
Tgt. 

5 
Tgt. 

6 

Armored 0.5 0.5 0.75 0.8 0.3 0.45 
Support 0.4 0.4 0.25 0.2 0.7 0.55 #1 

TEL 0.1 0.1 0 0 0 0 
Armored 0.63 0.68 0.82 0.8 0.19 0.38 
Support 0.35 0.31 0.18 0.2 0.81 0.62 #2 

TEL 0.02 0.01 0 0 0 0 
Armored 0.62 0.78 0.86 0.8 0.11 0.42 
Support 0.37 0.22 0.14 0.2 0.89 0.58 #3 

TEL 0.01 0 0 0 0 0 
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Table 9: The resulting update probabilities for compositions. 
 

Aggregated 
Group 

With 
Report 

1 

With 
Report 

2 

With 
Report 

3 
Heavy 
Armored 

0.2066 0.2266 0.2322 

Heavy 
Infantry 

0.3394 0.3535 0.3604 

Light Infantry/ 
Supply 

0.2842 0.2819 0.2764 

TEL 0.1698 0.1380 0.1309 
 
 
 
Table 10:  The resulting prediction probabilities for 
measurements  
 

Aggregated 
Group 

Predicted 
Report 2 

Predicted 
Report 3 

Predicted 
Report 4 

4-6 
Armored 0.4678 0.4981 0.5089 

1-3 
Armored 0.3052 0.2920 0.2874 

0 
Armored 0.2270 0.2099 0.2037 

4-6 
Support 0.4086 0.3779 0.3666 

1-3 
Support 0.3184 0.3321 0.3371 

0 
Support 0.2730 0.2901 0.2963 

2+ 
TEL 0.0170 0.0138 0.0131 

1 
TEL 0.3019 0.2828 0.2785 

0 
TEL 0.6812 0.7034 0.7084 

 
   

6. CONCLUSIONS 
 

The aggregation of the state vector used by a Markov chain 
estimation technique for the composition state of a Level 2 
fusion object was developed and implemented for an 
example application.  The technique leveraged database 
information on the potential classes in the given scenario.  
Unlike the initial work on this problem [8], the transition 
probabilities are more easily computed and the probabilities 
associated with the state elements are not dispersed to the point 
of uselessness over a large number of states.   The reduction in 
processing requirements resulted in a noticeably faster 
computational process than previously.  
 
The use of aggregation allows for the use of more 
computationally efficient approaches for generating the 
transition probabilities and, in the future, the development of the 
reports used by the updates.  In this latter case, the use of fuzzy 
logic or the use of binning or quantization of values can be 
investigated.   
 
The technique developed in this effort can be incorporated 
easily with a  Level 2 implementation that considers the number 

of targets being tracked, as in [6].    Aggregated groups provide 
the ability to determine if a detected target could be included in 
the group.  Also, these aggregated groups can provide a 
probability that a specific target type or types is missing from 
the detections. 
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