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ABSTRACT 

 
Due to the high connectivity and great convenience, many E-
commerce application systems have a high transaction volume. 
Consequently, the system state changes rapidly and it is likely 
that customers issue transactions based on out-of-date state 
information. Thus, the potential of transaction abortion 
increases greatly. To address this problem, we proposed an M3-
transaction model. An M3-transaction is a generalized 
transaction where users can issue their preferences in a request 
by specifying multiple criteria and optional data resources 
simultaneously within one transaction.  
In this paper, we introduce the transaction grouping and group 
evaluation techniques. We consider evaluating a group of M3-
transactions arrived to the system within a short duration 
together. The system makes optimal decisions in allocating data 
to transactions to achieve better customer satisfaction and lower 
transaction failure rate. We apply the fuzzy constraint 
satisfaction approach for decision-making. We also conduct 
experimental studies to evaluate the performance of our 
approach. The results show that the M3-transaction with group 
evaluation is more resilient to failure and yields much better 
performance than the traditional transaction model. 

 
Keywords: Transaction Processing, Fuzzy constraint 
satisfaction, Criteria-based transaction, Group evaluation, 
Preference query 
 
 

1 INTRODUCTION 
 
Due to the high connectivity of the Internet, on-line transaction 
processing systems are anticipated to deal with highly 
concurrent accesses that involve multiple database systems. 
Recent researches in transaction processing have focused on 
efficient execution of such systems. Among the potential 
methods in improving performance for transaction processing, 
reducing transaction failure rate can be an effective approach. A 
major cause for transaction failure is due to the application 
logic in the transaction itself. For example, a transaction issued 

based on out-of-date information can cause its abortion.  
 
Consider a typical on-line transaction flow. Usually, the user 
first browses the database to obtain the state information. Then 
she issues an update transaction to obtain the desired resources. 
If the state information becomes out-of-date when the update 
transaction arrives to the database, the transaction is likely to be 
aborted. Subsequently, a user may be forced to modify the 
query repeatedly, resulting in a low level of customer 
satisfaction and high communication cost. This problem can be 
exacerbated when the system has a high volume of concurrent 
accesses. Also, the impact of transaction failure becomes more 
significant when we consider widely distributed systems or 
access from mobile devices. In both cases, the high 
communication cost can significantly raise the request reissuing 
cost. In the mobile transactions cases, the probability of 
transaction aborts increases since the requests are more likely to 
have been issued based on the stale information cached on the 
client devices where caching is a common practice due to 
frequent disconnections. 
 
Some approaches have been proposed to improve the potential 
problem with excessive transaction aborts. The basic idea is to 
put more information into a transaction to let a user express 
more sophisticated preferences. The flexible transaction model 
allows a user to define alternative sets of subtransactions [5]. If 
a more preferential choice cannot be committed, the next 
preferential one will be executed and, hence, it is less likely to 
abort. The preference query model proposed in [9] allows users 
to define multiple preferences in one query. All search 
conditions of a preference query is first evaluated, and then the 
results are ranked according to the preferences. The most 
preferred nonempty set of results is then returned to the client. 
The advantage of this mechanism is that the users can specify 
their intents more expressively and, hence, are released from 
reformulating successive requests for reaching their acceptable 
responses.  
 
Putting more information into queries not only reduces the 
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chances of transaction aborts, but also offers the opportunities 
for global optimization. The system can consider a group of 
concurrent queries at the same time and try to satisfy as many 
of them as possible by looking at a global picture. Consider an 
example of ticket selling for a sports event. Assume that there is 
only one row, row r, with 5 consecutive seats in a section of the 
stadium for the event; while there are several rows with 3 
consecutive seats. Customer X requests 5 consecutive seats and 
customer Y requests 3 consecutive seats. If Y's transaction 
arrives first, then it is possible that the system assigns the seats 
in row r to Y, especially if Y puts row r as its first preference. 
Subsequently, when X's transaction arrives, there will be no 5 
consecutive seats available to satisfy its request. If transactions 
for customers X and Y arrive almost at the same time and the 
system can analyze them and make appropriate decision for the 
seat assignment, the transaction failure can be avoided and 
customer satisfaction can be maximized. However, to the best 
of our knowledge, there is no research work on optimizing 
concurrent update transactions.  
 
In this paper, we proposed a new transaction model, M3-
Transaction (M3 stands for independent Multi-relation, Multi-
criterion, and Multi-quantification) as an integrated mechanism 
to enhance the conventional models for high volume on-line 
transaction processing. Multi-criterion construct allows users to 
specify preferences in a transaction to reduce transaction abort 
rate. Multi-quantification construct, IM-Top m−n (specifies that 
the first L tuples satisfying the criterion are to be output, m ≤ L 
≤ n) facilitates users in specifying the desired cardinality of the 
target relation in a highly flexible way. Also, independent multi-
relation construct provides expressive power and convenience 
for users to define additional source relations. With the ability 
of defining multiple preferences and alternate data sources, an 
M3-Transaction is less likely to fail and can achieve better 
customer satisfaction. To further optimize customer satisfaction 
level and further reduce transaction abort rate, we consider 
group evaluation, i.e., consider evaluating multiple transactions 
at the same time. M3-transaction facilitates the group evaluation 
since it supports criteria based selection and allows easy 
extraction of criteria. 
 
In this paper, we discuss an optimization mechanism in 
processing M3-transactions. Our approach can be applied to 
other criteria-based transaction models with preference 
specifications. In the next section, the decision-making 
mechanisms we use for the group evaluation will be discussed. 
In Section 3, we show the experimental results of our approach 
and compare different decision-making algorithms. Section 4 
concludes the paper. 
 
2 GROUP EVALUATION FOR M3-TRANSACTIONS 

 
Although M3-transactions can be processed individually, group 
evaluation can further increase the customer satisfaction and 
reduce the transaction failure rate. We consider M3-transactions 
that request for consumable resources in databases. A 
consumable resource is a data entry in a table that, once 
assigned to one transaction, cannot be assigned to another 
transaction. Clients may issue transactions with conflicting 
resources demands. In group evaluation, we need to assign 
resources in an optimized way that resolves most conflicts in 
client requests. We separate group evaluation for M3-

transactions into two steps, transaction grouping and resource 
assignment decision-making.  
 
2.1 Transaction grouping 
The rule for transaction grouping is based on the data set to be 
retrieved by concurrent transactions. A transaction, Ti, is 
assigned to a transaction group TG, if there is a transaction, Tj, 
in TG such that the data set retrieved for update by Ti is 
overlapping with that of Tj. Thus, the critical problem of 
grouping is how to determine the data set to be retrieved by 
each transaction. We adopt the approach in [8] to build 
approximation of data sets to be accessed by analyzing the 
predicates of criteria, i.e. use the search predicates to 
characterize the data sets. Then, whether the data sets are 
overlapping is estimated by determining the jointness of their 
search predicates. A naïve approach to analyze a criterion is to 
ignore all join predicates, just extract the search predicates and 
convert them into disjunctive normal form for efficient conflict 
testing. For example, in the criterion “Dept.budget > 10000 and 
Dept.dno = Employee.dno and Employee.age > 40”, the 
“Dept.budget > 10000” and “Employee.age > 40” are extracted 
and the join predicate “Dept.dno = Employee.dno” is 
disregarded. Obviously, this criterion is joint with another 
criterion “Employee.age > 30”. So the two transactions with 
them should be divided into one group. More sophisticated 
approaches can be found in the predicate lock literature [7] [4]. 
 
2.2 Mapping the M3-transaction criteria to the FCSP  
 
After concurrent transactions are divided into groups, the 
system will find an optimal resource assignment for each group. 
Consider a transaction group, TG, of t transactions, where TG = 
{T1, T2, …, Tt}. Let MCi denote the multi-criteria search 
condition of Ti, where MCi contains pi levels of preferences and 

MCi ≡ Ci
1 or-else Ci

2 or-else … or-else ip

iC  (Ci
j is a 

preference/criterion specified in MCi and Ci
j has a higher 

priority than Ci
k, 1≤ j < k ≤ pi). Also, assume that every 

transaction Ti in TG specifies a bounded quantity using the IM-
Top m−n construct and mi and ni denote the lower and upper 
bounds respectively. Let SSi denote the set of all possible 
solutions that can satisfy Ti, SSi = { ,i il k

iS ⏐ ,i il k

iS  satisfies il

iC ∧ 

|D( ,i il k

iS )| = ki ∧ mi ≤ ki ≤ ni, 1 ≤ li ≤ pi}, where ,i il k

iS is the 

solution that satisfies the li-th criterion, il

iC , of Ti with a 

cardinality ki (ki tuples are assigned to Ti), D( ,i il k

iS ) is the set of 

data items involved in ,i il k

iS  and |D( ,i il k

iS )| returns its cardinality. 

We measure the satisfaction level of a solution ,i il k

iS  to the 
transaction Ti by its satisfied criterion level li and its cardinality 
ki. We say the solution 1, in

iS  fully satisfies Ti since it satisfies the 
first level of criterion with ni tuples. Other solutions 

,i il k

iS (≠ 1, in

iS ), mi ≤ ki ≤ ni, 1 ≤ li ≤ pi, only partially satisfy Ti. In 

the extreme, ,i ip m

iS  provides the lowest satisfaction level to Ti. 
Obviously, due to the conflict resource demands and the limited 
resource availability, not all concurrent transactions can be fully 
satisfied; some of them have to be partially satisfied or even not 
satisfied at all. The group evaluation is to find a data assignment 
solution which can maximize the satisfaction level of all 
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transactions. More precisely, let s = {si | 1 ≤ i ≤ t} denote the 

final solution set for transaction group TG, where si =
* *

,i il k

i
S , and 

li
* and ki

* are the level of the criterion and the cardinality 
selected in the final solution for Ti, respectively. So the group 
evaluation is to find an optimal solution s* that minimizes li

* 
and maximizes ki

* for each transaction Ti. 
 
In order to guide the search for the optimal solution, we use the 
fuzzy constraint satisfaction problem (FCSP) approach to model 
the group evaluation. We first map the transaction space to a set 
of variables. Let X = {x1, x2, …, xt} be the set of variables and 
each xi represent a transaction Ti. SSi (the set of solutions for Ti) is 
the domain for xi, and si, where si ∈ SSi, is the final solution for xi. 
The requirement that no data item can be assigned to more than 
one transaction is expressed as a crisp constraint on X, i.e. D(si) 
∩ D(sj) = φ, for all i, j, i ≠ j. We associate fuzzy constraints on 
each xi ∈ X to express the satisfaction level of the solution si ∈ s 
to each transaction Ti. Here we first describe the three 
objectives, O1, O2, and O3, for group evaluation. We then define 
the corresponding fuzzy constraints for these objectives in the 
following subsections. 
Objective O1: Satisfy as many transactions within a group as 
possible. A solution a dominates another solution b if TN(a) > 
TN(b), where TN(x) returns the number of transactions satisfied 
in solution x. 
Objective O2: Satisfy as high a criterion level of a transaction 
as possible. Here, we use the leximin ordering approach [3] to 
define this objective. The leximin ordering approach combines 
the egalitarianism, which maximizes the minimal individual 
utility, and utilitarianism, which maximizes the sum of the 
individual utilities. It first compares the solutions according to 
egalitarianism, and then discriminates more among them via 
utilitarianism. Let L(x) = {li

x | 1 ≤ i ≤ t}, 1 ≤ li
x ≤ pi, denote the 

set of final criterion levels selected in solution x. We order the 
elements in L(x) decreasingly to obtain a sorted list SL(x) = (sl1

x, 
sl2

x,…, slt
 x) where sli

 x ≥ sli+1
 x. A solution a dominates another 

solution b if ∃i ∀ j < i, slj
a
 = slj

b and sli
a
 < sli

b. 
Objective O3: Satisfy as high a cardinality requested by a 
transaction in its IM-Top statement as possible. Similar to O2, 
we use the leximin ordering to define O3. Let N(x) = {ki

 x | 1 ≤ i 
≤ t}, mi ≤ ki

x ≤ ni, denote the number of resources obtained by 
each transaction in the solution x. We order the elements in N(x) 
increasingly to obtain a sorted list SN(x) = (sn1

x, sn2
x

,…, snk
x) 

where sni
x ≤ sni+1

x. A solution a dominates another solution b if 
∃i ∀ j < i, snj

a
 = snj

b and sni
a
 > sni

b.  
 
2.2.1 Fuzzy modeling based on priorities of transactions 
 
When data resources are scarce and not all transactions can be 
satisfied, some transactions need to be dropped during the 
evaluation. The dropping process is carried out according to the 
transaction priorities. We use a heuristic function ΦD to 
determine the priorities of transactions and, then, decide which 
transactions are to be satisfied. ΦD is defined as follows,  

( )
( )

( ) |

i i

D i

i
i

m conf T
Φ  x  = 

|D T p

×

×
 

where xi is the variable representing the transaction Ti, mi is the 
bottom bound of IM-Top function specified in the transaction Ti, 
|D(Ti)| is the number of the data items available involved by Ti, 
conf(Ti) is the conflict degree of Ti and pi is the number of 

criteria in MCi. The conflict degree is determined by the number 
of transactions, which is estimated by the predicate jointnesses 
between criteria of transactions, conflicting with Ti. The number 
of data available for each transaction can be estimated from the 
data state information maintained by the system. The rationale 
of ΦD is that the more resources a transaction intends and the 
scarcer the resources are, the more likely the transaction cannot 
be satisfied. And the more a transaction conflicts with other 
transactions, the more data competition could be reduced when 
the transaction is dropped. Also, the fewer criteria MCi contains, 
the less flexible the transaction is. Therefore, the higher the 
value ΦD (xi) is, the lower the priority will be assigned to 
transaction Ti. Let Rank(ΦD (xi)) → ri, 1≤ ri ≤ t, denote the rank 
of ΦD (xi) where Rank 1 is the highest priority while Rank t is 
the lowest one. The priorities are uniformly mapped to [b1, b2] 
by a function ΦR as follows, 

1 2
2 2 1( )= ( ) , 1 , 0 1

1R i i i

b b
x r t b r t b b

t

−
Φ ∗ − + ≤ ≤ ≤ < ≤

−
 

where b1 and b2 are the upper and the lower priority bounds 
respectively.  

We use the fuzzy model and prioritized constraints [2] to 
model the transaction priorities for O1. Consider a crisp 
constraint, cci on each xi ∈ X to require that the transaction Ti 
should be satisfied. In the case that not all cci, 1 ≤ i ≤ t, can be 
satisfied, some of them have to be dropped. To decide which 
one is preferred, we define the priority of each cci according to 
the priority of its corresponding transaction Ti. Let P(cci) denote 
the priority of cci, where P(cci) = ΦR (xi). More specifically, 
P(cci) indicates the level of importance that cci is satisfied. Now, 
the prioritized constraint (cci, P(cci)) can be represented by a 
fuzzy constraint pci such that, 

  µpci (si) = 1               if a solution si satisfies cci 

               = 1− P(cci)        if a solution si violates cci 
Thus, the constraint cci is considered as satisfied at least to 
degree 1−P(cci), no matter whether si satisfies it or not. 
 
2.2.2 Fuzzy modeling based on transaction criteria 
 
Here, we apply the fuzzy model to model O2. A fuzzy constraint 
sci is associated to each variable xi ∈ X to express the 
satisfaction level of solutions in SSi in terms of the selected 
criteria levels of Ti. Each sci is defined by a membership 

function µsci that maps each solution set ,*il

iS = { ,i il k

iS ⏐ ,i il k

iS ∈ 

SSi ∧ mi ≤ ki ≤ ni} to a membership value in [0, 1], where ,*il

iS is 

a subset of SSi and all its members satisfy il

iC . The membership 
function µsci is defined as follows, 

1,* 1( ) ,  1
i

i i

i

p
l a p

i isc i iS l l pµ −
−

∗= ≤ ≤  

where a1 is a constant. The rationale of constructing µsci as a 
power function is that we assume the shape of the customer 
satisfaction curve for his preferences follows the curve of a 
power function, i.e. a customer may consider that the 
satisfaction degree of the second preference is much less than 
the first one, but the satisfaction degree of the 10th preference 
has no big difference with that of the 9th one. We also assume 
that the more preference levels an MCi contains, the less will be 
the differences between satisfaction levels. Thus, we use pi, the 
number of criteria in the MCi, as a parameter in µsci for this 
purpose. To further control the drop rate of the curve, we 
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introduce a1 as a factor which can be adjusted by the user.      
 
 
2.2.3 Fuzzy modeling based on requested cardinalities  
 
Similar to the fuzzy modeling for criteria, we apply the same 
approach to the requested cardinalities. A fuzzy constraint rci is 
associated to each xi ∈ X to express the satisfaction levels of the 
solutions in SSi in terms of the requested cardinality of Ti. Each 
rci is defined by a membership function µrci that maps each 

solution set *, ik

iS = { ,i il k

iS ⏐ ,i il k

iS ∈ SSi ∧ 1 ≤ li ≤ pi} to a 
satisfaction level in a linearly ordered set K (with top denoted 1 

and bottom denoted 0), where *, ik

iS is the subset of SSi and the 
cardinality of its members is ki. Similar to µsci, we define the 
membership function µ rci as follows, 

2

1
*, ( 1 ) 1( ) ( 1) , 

i i

i i i

i

m n
k a n m

i i i i irc iS n k m l nµ
− −

∗ − + −= − + ≤ ≤  
where a2 is a constant and is to control the curve drop rate.  
 
Note that the FCSP is known to be NP-complete and its 
computational cost is in proportion to the scale number of the 
valuation set [2]. Regarding the requested cardinalities, the big 
potential difference between ni and mi can make the number of 
different scales in the valuation set very big, resulting in high 
computation cost for group evaluation. To control its cost, we 
further map the valuation set K to another set F with coarser 
scales as follows,  

*, *,

*,

1
( ( ))  ( )  

2 *
1

 ( ) , 0
2 *

for ,  s.t.  

                           

i i

i

k k

F i i

k

i

i i

i

rc rc

rc

i i
S if S

F F F
i

or S F
F F

i

i

µ µ

µ

Φ = − <

− ≤ ≤ ≤

∀

 
In this way, each value in K is rounded to a scale in F which is 
closest to it.  
 
2.2.4 Decision making process 
 
In order to reduce the search space for group evaluation, we 
divide the search process into two steps. In the first step, we fix 
the request cardinalities at the lowest level and search for an 
optimal group solution based on the fuzzy modeling for the 
criteria and priorities of transactions. In the second step, we fix 
the criteria selections obtained in the first step and find optimal 
cardinalities for all transactions based on the fuzzy modeling on 
requested cardinalities.   
 
We first use the prioritized fuzzy constraints [2] to integrate the 
two fuzzy constraints, for multiple criteria and priorities of 
transactions, together. That is, we define the priority for each 
fuzzy constraint sci by applying the approach proposed in Sub-
section 2.2.1 and then attach the priority P(sci) computed to 
each sci. This process is modeled by the prioritized fuzzy 
constraint fci as follows.  

µfci (
,*il

iS ) = max (1− P(sci), µsci(
,*il

iS )) 

The meaning of µfci(
,*il

iS ) is that the satisfaction level for a 

solution set ,*il

iS is at least 1− P(sci), regardless of to what extent 
it satisfies the criteria of Ti. Essentially, the fuzzy constraint set, 
{fci| 1≤ i ≤ t}, models O1 and O2 together.   

 
We now define the objective function for the first step. The 
satisfaction level of a group solution s = {si | 1 ≤ i ≤ t} to a 
transaction group TG is denoted by Satstep1(s) and measured by 
the satisfaction degree of the least satisfied fuzzy constraint, i.e. 
Satstep1(s) = min1≤ i ≤ t (µfci (

,i il k

iS )), where ki is a cardinality with 
the lowest satisfaction level for Ti in F, i.e. ¬∃ ji s.t. 0 < 
ΦF( *,( )i

i

j

rc iSµ ) < ΦF( *,( )i

i

k

rc iSµ ). Thus, the optimal group 

solution s* obtained in this step is a solution that maximizes the 
satisfaction level of the least satisfied constraint, i.e. Satstep1(s*) 
= maxs {min1≤ i ≤ t (µfci (

,i il k

iS ))}. 
To search s*, we use the algorithm proposed in [2], which is 

based on the Depth-First Branch and Bound approach. The 
search space of this algorithm is a tree where the root is an 
empty assignment, internal nodes denote partial solutions of 
variables and leaves are the complete ones. During the search, 
variables are instantiated one by one. Solutions for each 
variable xi are incrementally computed based on the state 
information and indexed for efficient retrieving. For each 
solution s represented by a leaf, its Satstep1(s) is computed. The 
current best Satstep1(s) is used as a lower bound, blow. In addition, 
Satstep1(spartial) of the partial solution spartial denoted by the 
current internal node is computed and compared with blow. 
When Satstep1(spartial) ≤ blow, the branches with the current node 
as root are pruned.  

Based on the optimal solution obtained in the first step, 
denoted by sstep1

*, we further try to increase the satisfaction 
level in terms of cardinalities of the transactions, while abiding 
to the criterion levels determined in sstep1

*. We first define the 
objective function for the second step. The satisfaction level of 
a group solution s is measured by Satstep2(s) = min1≤ i ≤ t (ΦF 

(µrci(
*

,i il k

iS )), where li
* is the criterion level determined by sstep1

* 
and mi ≤ ki ≤ ni. Thus, the optimal group solution s* obtained in 
this step is a solution with the maximal Satstep2(s), i.e. Satstep2(s*) 

= maxs {min1≤ i ≤ t (ΦF (µrci(
*

,i il k

iS )))}. The search algorithm of 
this step is the same as that of the first one. 

 
2.3 The Leximin ordering approach 
 
The min-optimal approach discussed in Section 2.2.4 uses the 
egalitarianism approach that only takes into account the 
satisfaction level of the least satisfied transaction and does not 
consider the satisfaction level of other transactions in the group 
and, hence, the group solutions generated are coarse. Here, we 
adopt the leximin Ordering (LO) [3] to refine min-optimal 
solutions. Let SD(s) = {sdi

s| sdi
s = µfci(si), 1 ≤ i ≤ t} denote the 

set of satisfaction degrees of si in the solution s generated in the 
first step. We order the elements in SD(s) in an increasing order 
to obtain a sorted vector SSD(s) = (ssd1

s, …, ssdt
s) where ssdi

s ≤ 
ssdi+1

s. A solution a dominates another solution b, denoted as a 
≥lex b, if ∃i ∀ j < i ssdj

a
 = ssdj

b and ssdi
a
 > ssdi

b. The solution 
refinement for the second step is the same. To search a leximin-
optimal solution, we use the algorithm proposed in [11], which 
is also based on the Depth-First Branch and Bound approach. In 
this algorithm, the leximin ordering is used to compare the 
satisfaction degree vectors of the partial or complete solutions. 
The satisfaction degree vector of the current best solution is 
taken as the lower bound, blow. The satisfaction degree vector of 
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the current one, denoted as SDcur, is used as an overestimation 
of the maximum vector of satisfaction degrees among leaves 
descending from the current node. When SDcur ≤lex blow, pruning 
occurs.  
 
Note that the computational cost of the leximin optimal problem 
is much higher than the corresponding FCSP because its 
computational cost is in proportion to the number of possible 
different leximin vectors, which grows exponentially with both 
the number of constraints in the FCSP and the number of scales 
in the valuation set [6]. Therefore, in order to guarantee the 
response time when the system load is high, suboptimal 
solutions have to be considered, e.g. setup a time out and seek 
the best suboptimal solution within the time bound or set an 
adaptive upper bound to stop the search earlier.  
 

3 SIMULATION RESULTS 
 
We have conducted preliminary experiments to evaluate the 
performance of the decision making algorithms for the M3-
transaction and compare it with the traditional transaction. The 
simulation was conducted on a single database system. We 
choose the example of tickets selling for our simulation. The 
sports stadium consists of 50,000 seats, divided into 25 sections. 
Each section consists of 100 rows with 20 seats in each row. 
The information for the stadium and all the seats are stored in 
an Oracle 9i database. The system consists of one server and 
multiple clients. Clients communicate with the server using the 
HTTP protocol and the server is programmed in Java and 
interacts with the database through JDBC. The clients are 
simulated by a client program, which issues synthetic M3-
transactions simulating multiple clients. The inter-arrival rate of 
the transactions generated by the client program follows the 
Poisson distribution. 
 
The client program keeps a view of the database and refreshes it 
periodically. This is to simulate the scenario that the clients may 
get out-of-date information due to the large number of 
concurrent accesses or data caching. The time between two 
successive refreshes is called “View Refresh Time”. Clients 
issue transactions based on their current view of the database. 
Each M3-transaction is specified by the following parameters: 
total number of seats desired, number of consecutive seats 
desired among them, section preference (indicates the preferred 
range of sections), and row preference (indicates the preferred 
range of rows). The number of seats and number of consecutive 
seats desired are randomly selected from a range based on a 
uniform distribution. The 25 sections in the stadium are divided 
into three segments to simulate the price-based seat selections. 
The desired segment in a transaction is generated randomly. To 
generate the row range preferences, a row and the 
corresponding section within a segment are chosen such that 
they have a possibility of satisfying the seating requirement and 
are as close to the front as possible. This is done to ensure that 
the regions at the front have a higher chance of being selected 
than the ones at the back, which simulates the real world 
behavior of a client preferring a front row to the one at the back.  
 
We designed two experimental setups to evaluate the 
performance of the M3-transaction model and compare it with 
that of the traditional transactions. 
 

Clients Send Traditional Transactions. This setup simulates 
the traditional transaction processing systems. First, the client 
generates a traditional transaction that obtains the most 
preferred set of data items based on the state of the database 
(which may be out-of-date). If the transaction fails, the client 
generates another transaction to obtain an alternative set of data 
based on the user preference and the state of the database 
(which may have been renewed). This continues till one 
transaction succeeds. Note that with each time of the new 
transaction creation, the number of consecutive seats is relaxed 
by one until no requirement for the consecutive seats.  
 
Clients Send M3-transactions. In this setup, the client first 
generates the multi-criteria selection condition, MC, based on 
the state of the database to specify the client’s alternative 
preferences. Then, the corresponding M3-transaction (with 
selection condition MC) is sent directly to the server. The server 
processes the M3-transactions using the FCSP approach and the 
LO approach. If an M3-transaction fails, the client will generate 
new M3-transactions iteratively until one succeeds. 
 
For the second setup, we only collect transactions when the 
number of newly arrived transactions is larger than a trigger 
value. The parameters of the mapping functions are set as 
follows, b1= 0.8 and b2 = 0.2 for ΦR, a1 = 3/2 for µsci, a2 = 3/2 
for µrci and F = 5 for ΦF. To improve the performance of the 
FCSP and the LO algorithms, we integrate the simple 
BackJumping algorithm [1] into the Branch and Bound search 
and use some heuristic to guide the search process. The 
heuristic prunes inferior choices and selects transactions with 
lower priorities and solutions with the highest satisfaction 
degree . Also, we set up an adaptive upper bound for the search.  
 
The performance metric used for the purpose of comparison is 
the average response time T.  The response time of a request is 
the total processing times of all transactions issued for the 
request, including the failed transactions and the last transaction 
that obtains the desired data items successfully. Figure 1 shows 
the experimental results and compares the performance of 
traditional transaction processing and M3-transactions 
processing at various transaction arrival rates, with view refresh 
times of 500 msec and 1000 msec (Figure 2). We set the 
collection trigger value to 2 when the arrival rate is less than 6 
ps, 3 when the arrival rate is 6-8 ps, 4 when the arrival rate is 
10-14 ps, and 6 when the arrival rate is 16 ps or higher. There is 
an exponential increase in T for traditional transactions. This 
could be attributed to the fact that at higher transaction arrival 
rates, more clients are likely to see the same view of the 
database and thus potentially issue requests with intersecting 
choice sets, increasing the failure rate of transactions. Also from 
the figure, we can see that the higher the view refresh times, the 
larger the values of T. The reason for this is that as view refresh 
time increases, more clients issue transactions based on a staler 
view of the database and, hence, increasing the likelihood of 
failure. From the experimental results, we can see that M3-
transactions (processed by the FCSP approach) are more 
resilient to failure and yield much better performance.  
 
On the other hand, from the figures, we can see that there are 
sudden increases in T for group evaluation based on the LO 
approach. This is due to the high computation cost incurred in 
this approach. When the transaction arrival rate increases to a 
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certain level (30 ps with the view refresh time 500 msec and 26 
ps with view refresh times 1000 msec), the number of 
transactions collected in a transaction group increases, to a 
certain extent (about 11 in this study), and, hence, the time 
needed for decision making becomes very long. As a result, 
many transactions are forced to wait for the decision making 
process. After several rounds, hundreds of transactions may be 
suspended and, hence, overloading the system. However, the 
experimental results (not shown in the figures) show that the 
LO approach yields limited improvements to the solutions 
obtained from the FCSP approach (only 0.2% - 0.6% 
transaction groups can be improved). This could be attributed to 
the heuristic which always tries to select the solution with the 
highest satisfaction level. So, in this study, the FCSP method is 
much more efficient than the LO approach, and it can obtain 
high quality solutions when appropriate heuristic is used. 
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Figure 1. performance comparison (500 msec refresh rate) 
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Figure 2. Performance comparison (1000 msec refresh rate) 
 
We have also conducted a simulation to further measure the 
performance of the decision making process. We set an upper 
bound for group size. If the number of transactions in a group 
exceeds the given bound, the system divides the group into 
smaller groups. Figure 3 shows the average decision time 
incurred with various group-size bounds, with arrival rate of 16 
ps, view refresh times of 500 msec, and the collection trigger 
values of 20 and 30. Figure 4 shows the average response time 
of the same simulation. The results show that the average 

decision time increases exponentially as the maximum group 
size increases. The average response time is dominated by the 
collection delays when the group size is less than 9 for LO and 
14 for FCSP. But when the maximum group size increases, the 
average response time increases exponentially due to the 
significantly increased decision time. So, from this simulation, 
we can see that the system should adjust the collection trigger 
value dynamically according to the system loads since the 
collection delays affect the response time significantly. Also, the 
maximum group size should be restricted even though it implies 
decreased degree in optimization. 
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 Figure 3. Decision Time comparison 
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Figure 4. Respone time comparison 

 
4 SUMMARY AND FUTURE WORK 

 
In our previous work [10], we have introduced the M3-
transaction model which can reduce transaction failure rate and 
increase the customer satisfaction. An M3-transaction allows 
customers to specify their preferences in advance and, hence, 
avoids iteratively submitting transactions in the case of failure.  
 
In this paper, to increase the customer satisfaction and 
further reduce transaction failure rate, we propose the 
group evaluation technique for the M3-transaction. We consider 
a group of M3-transactions that arrive to the system within a 
short duration together and decide the optimal data allocation 
for them. The decision-making mechanism is based on the 
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FCSP model. The experimental results show that the M3-
transactions are more resilient to failure and yield much better 
performance. The results also show that the FCSP method is 
efficient and can achieve solutions with high quality when 
appropriate heuristic is used. 
 
Future work for the M3-transaction research is considered in 
two directions. First, the techniques for searching solutions for 
each criterion only basing on the database state information 
need to be further studied. Second, we will extend the group 
evaluation for the multidatabase system.  
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