

Optimizing Concurrent M3-Transactions:
A Fuzzy Constraint Satisfaction Approach

Peng LI

Department of Computer Science, Western Kentucky University
Bowling Green, KY 42101, USA

and

Zhonghang XIA

Department of Computer Science, Western Kentucky University
Bowling Green, KY 42101, USA

and

I-Ling YEN

Department of Computer Science, University of Texas at Dallas
Richardson, TX 75080, USA

ABSTRACT

Due to the high connectivity and great convenience, many E-
commerce application systems have a high transaction volume.
Consequently, the system state changes rapidly and it is likely
that customers issue transactions based on out-of-date state
information. Thus, the potential of transaction abortion
increases greatly. To address this problem, we proposed an M3-
transaction model. An M3-transaction is a generalized
transaction where users can issue their preferences in a request
by specifying multiple criteria and optional data resources
simultaneously within one transaction.
In this paper, we introduce the transaction grouping and group
evaluation techniques. We consider evaluating a group of M3-
transactions arrived to the system within a short duration
together. The system makes optimal decisions in allocating data
to transactions to achieve better customer satisfaction and lower
transaction failure rate. We apply the fuzzy constraint
satisfaction approach for decision-making. We also conduct
experimental studies to evaluate the performance of our
approach. The results show that the M3-transaction with group
evaluation is more resilient to failure and yields much better
performance than the traditional transaction model.

Keywords: Transaction Processing, Fuzzy constraint
satisfaction, Criteria-based transaction, Group evaluation,
Preference query

1 INTRODUCTION

Due to the high connectivity of the Internet, on-line transaction
processing systems are anticipated to deal with highly
concurrent accesses that involve multiple database systems.
Recent researches in transaction processing have focused on
efficient execution of such systems. Among the potential
methods in improving performance for transaction processing,
reducing transaction failure rate can be an effective approach. A
major cause for transaction failure is due to the application
logic in the transaction itself. For example, a transaction issued

based on out-of-date information can cause its abortion.

Consider a typical on-line transaction flow. Usually, the user
first browses the database to obtain the state information. Then
she issues an update transaction to obtain the desired resources.
If the state information becomes out-of-date when the update
transaction arrives to the database, the transaction is likely to be
aborted. Subsequently, a user may be forced to modify the
query repeatedly, resulting in a low level of customer
satisfaction and high communication cost. This problem can be
exacerbated when the system has a high volume of concurrent
accesses. Also, the impact of transaction failure becomes more
significant when we consider widely distributed systems or
access from mobile devices. In both cases, the high
communication cost can significantly raise the request reissuing
cost. In the mobile transactions cases, the probability of
transaction aborts increases since the requests are more likely to
have been issued based on the stale information cached on the
client devices where caching is a common practice due to
frequent disconnections.

Some approaches have been proposed to improve the potential
problem with excessive transaction aborts. The basic idea is to
put more information into a transaction to let a user express
more sophisticated preferences. The flexible transaction model
allows a user to define alternative sets of subtransactions [5]. If
a more preferential choice cannot be committed, the next
preferential one will be executed and, hence, it is less likely to
abort. The preference query model proposed in [9] allows users
to define multiple preferences in one query. All search
conditions of a preference query is first evaluated, and then the
results are ranked according to the preferences. The most
preferred nonempty set of results is then returned to the client.
The advantage of this mechanism is that the users can specify
their intents more expressively and, hence, are released from
reformulating successive requests for reaching their acceptable
responses.

Putting more information into queries not only reduces the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 17

chances of transaction aborts, but also offers the opportunities
for global optimization. The system can consider a group of
concurrent queries at the same time and try to satisfy as many
of them as possible by looking at a global picture. Consider an
example of ticket selling for a sports event. Assume that there is
only one row, row r, with 5 consecutive seats in a section of the
stadium for the event; while there are several rows with 3
consecutive seats. Customer X requests 5 consecutive seats and
customer Y requests 3 consecutive seats. If Y's transaction
arrives first, then it is possible that the system assigns the seats
in row r to Y, especially if Y puts row r as its first preference.
Subsequently, when X's transaction arrives, there will be no 5
consecutive seats available to satisfy its request. If transactions
for customers X and Y arrive almost at the same time and the
system can analyze them and make appropriate decision for the
seat assignment, the transaction failure can be avoided and
customer satisfaction can be maximized. However, to the best
of our knowledge, there is no research work on optimizing
concurrent update transactions.

In this paper, we proposed a new transaction model, M3-
Transaction (M3 stands for independent Multi-relation, Multi-
criterion, and Multi-quantification) as an integrated mechanism
to enhance the conventional models for high volume on-line
transaction processing. Multi-criterion construct allows users to
specify preferences in a transaction to reduce transaction abort
rate. Multi-quantification construct, IM-Top m−n (specifies that
the first L tuples satisfying the criterion are to be output, m ≤ L
≤ n) facilitates users in specifying the desired cardinality of the
target relation in a highly flexible way. Also, independent multi-
relation construct provides expressive power and convenience
for users to define additional source relations. With the ability
of defining multiple preferences and alternate data sources, an
M3-Transaction is less likely to fail and can achieve better
customer satisfaction. To further optimize customer satisfaction
level and further reduce transaction abort rate, we consider
group evaluation, i.e., consider evaluating multiple transactions
at the same time. M3-transaction facilitates the group evaluation
since it supports criteria based selection and allows easy
extraction of criteria.

In this paper, we discuss an optimization mechanism in
processing M3-transactions. Our approach can be applied to
other criteria-based transaction models with preference
specifications. In the next section, the decision-making
mechanisms we use for the group evaluation will be discussed.
In Section 3, we show the experimental results of our approach
and compare different decision-making algorithms. Section 4
concludes the paper.

2 GROUP EVALUATION FOR M3-TRANSACTIONS

Although M3-transactions can be processed individually, group
evaluation can further increase the customer satisfaction and
reduce the transaction failure rate. We consider M3-transactions
that request for consumable resources in databases. A
consumable resource is a data entry in a table that, once
assigned to one transaction, cannot be assigned to another
transaction. Clients may issue transactions with conflicting
resources demands. In group evaluation, we need to assign
resources in an optimized way that resolves most conflicts in
client requests. We separate group evaluation for M3-

transactions into two steps, transaction grouping and resource
assignment decision-making.

2.1 Transaction grouping
The rule for transaction grouping is based on the data set to be
retrieved by concurrent transactions. A transaction, Ti, is
assigned to a transaction group TG, if there is a transaction, Tj,
in TG such that the data set retrieved for update by Ti is
overlapping with that of Tj. Thus, the critical problem of
grouping is how to determine the data set to be retrieved by
each transaction. We adopt the approach in [8] to build
approximation of data sets to be accessed by analyzing the
predicates of criteria, i.e. use the search predicates to
characterize the data sets. Then, whether the data sets are
overlapping is estimated by determining the jointness of their
search predicates. A naïve approach to analyze a criterion is to
ignore all join predicates, just extract the search predicates and
convert them into disjunctive normal form for efficient conflict
testing. For example, in the criterion “Dept.budget > 10000 and
Dept.dno = Employee.dno and Employee.age > 40”, the
“Dept.budget > 10000” and “Employee.age > 40” are extracted
and the join predicate “Dept.dno = Employee.dno” is
disregarded. Obviously, this criterion is joint with another
criterion “Employee.age > 30”. So the two transactions with
them should be divided into one group. More sophisticated
approaches can be found in the predicate lock literature [7] [4].

2.2 Mapping the M3-transaction criteria to the FCSP

After concurrent transactions are divided into groups, the
system will find an optimal resource assignment for each group.
Consider a transaction group, TG, of t transactions, where TG =
{T1, T2, …, Tt}. Let MCi denote the multi-criteria search
condition of Ti, where MCi contains pi levels of preferences and

MCi ≡ Ci
1 or-else Ci

2 or-else … or-else ip

iC (Ci
j is a

preference/criterion specified in MCi and Ci
j has a higher

priority than Ci
k, 1≤ j < k ≤ pi). Also, assume that every

transaction Ti in TG specifies a bounded quantity using the IM-
Top m−n construct and mi and ni denote the lower and upper
bounds respectively. Let SSi denote the set of all possible
solutions that can satisfy Ti, SSi = { ,i il k

iS ⏐ ,i il k

iS satisfies il

iC ∧

|D(,i il k

iS)| = ki ∧ mi ≤ ki ≤ ni, 1 ≤ li ≤ pi}, where ,i il k

iS is the

solution that satisfies the li-th criterion, il

iC , of Ti with a

cardinality ki (ki tuples are assigned to Ti), D(,i il k

iS) is the set of

data items involved in ,i il k

iS and |D(,i il k

iS)| returns its cardinality.

We measure the satisfaction level of a solution ,i il k

iS to the
transaction Ti by its satisfied criterion level li and its cardinality
ki. We say the solution 1, in

iS fully satisfies Ti since it satisfies the
first level of criterion with ni tuples. Other solutions

,i il k

iS (≠ 1, in

iS), mi ≤ ki ≤ ni, 1 ≤ li ≤ pi, only partially satisfy Ti. In

the extreme, ,i ip m

iS provides the lowest satisfaction level to Ti.
Obviously, due to the conflict resource demands and the limited
resource availability, not all concurrent transactions can be fully
satisfied; some of them have to be partially satisfied or even not
satisfied at all. The group evaluation is to find a data assignment
solution which can maximize the satisfaction level of all

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 518

transactions. More precisely, let s = {si | 1 ≤ i ≤ t} denote the

final solution set for transaction group TG, where si =
* *

,i il k

i
S , and

li
* and ki

* are the level of the criterion and the cardinality
selected in the final solution for Ti, respectively. So the group
evaluation is to find an optimal solution s* that minimizes li

*
and maximizes ki

* for each transaction Ti.

In order to guide the search for the optimal solution, we use the
fuzzy constraint satisfaction problem (FCSP) approach to model
the group evaluation. We first map the transaction space to a set
of variables. Let X = {x1, x2, …, xt} be the set of variables and
each xi represent a transaction Ti. SSi (the set of solutions for Ti) is
the domain for xi, and si, where si ∈ SSi, is the final solution for xi.
The requirement that no data item can be assigned to more than
one transaction is expressed as a crisp constraint on X, i.e. D(si)
∩ D(sj) = φ, for all i, j, i ≠ j. We associate fuzzy constraints on
each xi ∈ X to express the satisfaction level of the solution si ∈ s
to each transaction Ti. Here we first describe the three
objectives, O1, O2, and O3, for group evaluation. We then define
the corresponding fuzzy constraints for these objectives in the
following subsections.
Objective O1: Satisfy as many transactions within a group as
possible. A solution a dominates another solution b if TN(a) >
TN(b), where TN(x) returns the number of transactions satisfied
in solution x.
Objective O2: Satisfy as high a criterion level of a transaction
as possible. Here, we use the leximin ordering approach [3] to
define this objective. The leximin ordering approach combines
the egalitarianism, which maximizes the minimal individual
utility, and utilitarianism, which maximizes the sum of the
individual utilities. It first compares the solutions according to
egalitarianism, and then discriminates more among them via
utilitarianism. Let L(x) = {li

x | 1 ≤ i ≤ t}, 1 ≤ li
x ≤ pi, denote the

set of final criterion levels selected in solution x. We order the
elements in L(x) decreasingly to obtain a sorted list SL(x) = (sl1

x,
sl2

x,…, slt
 x) where sli

 x ≥ sli+1
 x. A solution a dominates another

solution b if ∃i ∀ j < i, slj
a
 = slj

b and sli
a
 < sli

b.
Objective O3: Satisfy as high a cardinality requested by a
transaction in its IM-Top statement as possible. Similar to O2,
we use the leximin ordering to define O3. Let N(x) = {ki

 x | 1 ≤ i
≤ t}, mi ≤ ki

x ≤ ni, denote the number of resources obtained by
each transaction in the solution x. We order the elements in N(x)
increasingly to obtain a sorted list SN(x) = (sn1

x, sn2
x

,…, snk
x)

where sni
x ≤ sni+1

x. A solution a dominates another solution b if
∃i ∀ j < i, snj

a
 = snj

b and sni
a
 > sni

b.

2.2.1 Fuzzy modeling based on priorities of transactions

When data resources are scarce and not all transactions can be
satisfied, some transactions need to be dropped during the
evaluation. The dropping process is carried out according to the
transaction priorities. We use a heuristic function ΦD to
determine the priorities of transactions and, then, decide which
transactions are to be satisfied. ΦD is defined as follows,

()
()

() |

i i

D i

i
i

m conf T
Φ x =

|D T p

×

×

where xi is the variable representing the transaction Ti, mi is the
bottom bound of IM-Top function specified in the transaction Ti,
|D(Ti)| is the number of the data items available involved by Ti,
conf(Ti) is the conflict degree of Ti and pi is the number of

criteria in MCi. The conflict degree is determined by the number
of transactions, which is estimated by the predicate jointnesses
between criteria of transactions, conflicting with Ti. The number
of data available for each transaction can be estimated from the
data state information maintained by the system. The rationale
of ΦD is that the more resources a transaction intends and the
scarcer the resources are, the more likely the transaction cannot
be satisfied. And the more a transaction conflicts with other
transactions, the more data competition could be reduced when
the transaction is dropped. Also, the fewer criteria MCi contains,
the less flexible the transaction is. Therefore, the higher the
value ΦD (xi) is, the lower the priority will be assigned to
transaction Ti. Let Rank(ΦD (xi)) → ri, 1≤ ri ≤ t, denote the rank
of ΦD (xi) where Rank 1 is the highest priority while Rank t is
the lowest one. The priorities are uniformly mapped to [b1, b2]
by a function ΦR as follows,

1 2
2 2 1()= () , 1 , 0 1

1R i i i

b b
x r t b r t b b

t

−
Φ ∗ − + ≤ ≤ ≤ < ≤

−

where b1 and b2 are the upper and the lower priority bounds
respectively.

We use the fuzzy model and prioritized constraints [2] to
model the transaction priorities for O1. Consider a crisp
constraint, cci on each xi ∈ X to require that the transaction Ti
should be satisfied. In the case that not all cci, 1 ≤ i ≤ t, can be
satisfied, some of them have to be dropped. To decide which
one is preferred, we define the priority of each cci according to
the priority of its corresponding transaction Ti. Let P(cci) denote
the priority of cci, where P(cci) = ΦR (xi). More specifically,
P(cci) indicates the level of importance that cci is satisfied. Now,
the prioritized constraint (cci, P(cci)) can be represented by a
fuzzy constraint pci such that,

 µpci (si) = 1 if a solution si satisfies cci

 = 1− P(cci) if a solution si violates cci
Thus, the constraint cci is considered as satisfied at least to
degree 1−P(cci), no matter whether si satisfies it or not.

2.2.2 Fuzzy modeling based on transaction criteria

Here, we apply the fuzzy model to model O2. A fuzzy constraint
sci is associated to each variable xi ∈ X to express the
satisfaction level of solutions in SSi in terms of the selected
criteria levels of Ti. Each sci is defined by a membership

function µsci that maps each solution set ,*il

iS = { ,i il k

iS ⏐ ,i il k

iS ∈

SSi ∧ mi ≤ ki ≤ ni} to a membership value in [0, 1], where ,*il

iS is

a subset of SSi and all its members satisfy il

iC . The membership
function µsci is defined as follows,

1,* 1() , 1
i

i i

i

p
l a p

i isc i iS l l pµ −
−

∗= ≤ ≤

where a1 is a constant. The rationale of constructing µsci as a
power function is that we assume the shape of the customer
satisfaction curve for his preferences follows the curve of a
power function, i.e. a customer may consider that the
satisfaction degree of the second preference is much less than
the first one, but the satisfaction degree of the 10th preference
has no big difference with that of the 9th one. We also assume
that the more preference levels an MCi contains, the less will be
the differences between satisfaction levels. Thus, we use pi, the
number of criteria in the MCi, as a parameter in µsci for this
purpose. To further control the drop rate of the curve, we

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 19

introduce a1 as a factor which can be adjusted by the user.

2.2.3 Fuzzy modeling based on requested cardinalities

Similar to the fuzzy modeling for criteria, we apply the same
approach to the requested cardinalities. A fuzzy constraint rci is
associated to each xi ∈ X to express the satisfaction levels of the
solutions in SSi in terms of the requested cardinality of Ti. Each
rci is defined by a membership function µrci that maps each

solution set *, ik

iS = { ,i il k

iS ⏐ ,i il k

iS ∈ SSi ∧ 1 ≤ li ≤ pi} to a
satisfaction level in a linearly ordered set K (with top denoted 1

and bottom denoted 0), where *, ik

iS is the subset of SSi and the
cardinality of its members is ki. Similar to µsci, we define the
membership function µ rci as follows,

2

1
*, (1) 1() (1) ,

i i

i i i

i

m n
k a n m

i i i i irc iS n k m l nµ
− −

∗ − + −= − + ≤ ≤
where a2 is a constant and is to control the curve drop rate.

Note that the FCSP is known to be NP-complete and its
computational cost is in proportion to the scale number of the
valuation set [2]. Regarding the requested cardinalities, the big
potential difference between ni and mi can make the number of
different scales in the valuation set very big, resulting in high
computation cost for group evaluation. To control its cost, we
further map the valuation set K to another set F with coarser
scales as follows,

*, *,

*,

1
(()) ()

2 *
1

 () , 0
2 *

for , s.t.

i i

i

k k

F i i

k

i

i i

i

rc rc

rc

i i
S if S

F F F
i

or S F
F F

i

i

µ µ

µ

Φ = − <

− ≤ ≤ ≤

∀

In this way, each value in K is rounded to a scale in F which is
closest to it.

2.2.4 Decision making process

In order to reduce the search space for group evaluation, we
divide the search process into two steps. In the first step, we fix
the request cardinalities at the lowest level and search for an
optimal group solution based on the fuzzy modeling for the
criteria and priorities of transactions. In the second step, we fix
the criteria selections obtained in the first step and find optimal
cardinalities for all transactions based on the fuzzy modeling on
requested cardinalities.

We first use the prioritized fuzzy constraints [2] to integrate the
two fuzzy constraints, for multiple criteria and priorities of
transactions, together. That is, we define the priority for each
fuzzy constraint sci by applying the approach proposed in Sub-
section 2.2.1 and then attach the priority P(sci) computed to
each sci. This process is modeled by the prioritized fuzzy
constraint fci as follows.

µfci (
,*il

iS) = max (1− P(sci), µsci(
,*il

iS))

The meaning of µfci(
,*il

iS) is that the satisfaction level for a

solution set ,*il

iS is at least 1− P(sci), regardless of to what extent
it satisfies the criteria of Ti. Essentially, the fuzzy constraint set,
{fci| 1≤ i ≤ t}, models O1 and O2 together.

We now define the objective function for the first step. The
satisfaction level of a group solution s = {si | 1 ≤ i ≤ t} to a
transaction group TG is denoted by Satstep1(s) and measured by
the satisfaction degree of the least satisfied fuzzy constraint, i.e.
Satstep1(s) = min1≤ i ≤ t (µfci (

,i il k

iS)), where ki is a cardinality with
the lowest satisfaction level for Ti in F, i.e. ¬∃ ji s.t. 0 <
ΦF(*,()i

i

j

rc iSµ) < ΦF(*,()i

i

k

rc iSµ). Thus, the optimal group

solution s* obtained in this step is a solution that maximizes the
satisfaction level of the least satisfied constraint, i.e. Satstep1(s*)
= maxs {min1≤ i ≤ t (µfci (

,i il k

iS))}.
To search s*, we use the algorithm proposed in [2], which is

based on the Depth-First Branch and Bound approach. The
search space of this algorithm is a tree where the root is an
empty assignment, internal nodes denote partial solutions of
variables and leaves are the complete ones. During the search,
variables are instantiated one by one. Solutions for each
variable xi are incrementally computed based on the state
information and indexed for efficient retrieving. For each
solution s represented by a leaf, its Satstep1(s) is computed. The
current best Satstep1(s) is used as a lower bound, blow. In addition,
Satstep1(spartial) of the partial solution spartial denoted by the
current internal node is computed and compared with blow.
When Satstep1(spartial) ≤ blow, the branches with the current node
as root are pruned.

Based on the optimal solution obtained in the first step,
denoted by sstep1

*, we further try to increase the satisfaction
level in terms of cardinalities of the transactions, while abiding
to the criterion levels determined in sstep1

*. We first define the
objective function for the second step. The satisfaction level of
a group solution s is measured by Satstep2(s) = min1≤ i ≤ t (ΦF

(µrci(
*

,i il k

iS)), where li
* is the criterion level determined by sstep1

*
and mi ≤ ki ≤ ni. Thus, the optimal group solution s* obtained in
this step is a solution with the maximal Satstep2(s), i.e. Satstep2(s*)

= maxs {min1≤ i ≤ t (ΦF (µrci(
*

,i il k

iS)))}. The search algorithm of
this step is the same as that of the first one.

2.3 The Leximin ordering approach

The min-optimal approach discussed in Section 2.2.4 uses the
egalitarianism approach that only takes into account the
satisfaction level of the least satisfied transaction and does not
consider the satisfaction level of other transactions in the group
and, hence, the group solutions generated are coarse. Here, we
adopt the leximin Ordering (LO) [3] to refine min-optimal
solutions. Let SD(s) = {sdi

s| sdi
s = µfci(si), 1 ≤ i ≤ t} denote the

set of satisfaction degrees of si in the solution s generated in the
first step. We order the elements in SD(s) in an increasing order
to obtain a sorted vector SSD(s) = (ssd1

s, …, ssdt
s) where ssdi

s ≤
ssdi+1

s. A solution a dominates another solution b, denoted as a
≥lex b, if ∃i ∀ j < i ssdj

a
 = ssdj

b and ssdi
a
 > ssdi

b. The solution
refinement for the second step is the same. To search a leximin-
optimal solution, we use the algorithm proposed in [11], which
is also based on the Depth-First Branch and Bound approach. In
this algorithm, the leximin ordering is used to compare the
satisfaction degree vectors of the partial or complete solutions.
The satisfaction degree vector of the current best solution is
taken as the lower bound, blow. The satisfaction degree vector of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 520

the current one, denoted as SDcur, is used as an overestimation
of the maximum vector of satisfaction degrees among leaves
descending from the current node. When SDcur ≤lex blow, pruning
occurs.

Note that the computational cost of the leximin optimal problem
is much higher than the corresponding FCSP because its
computational cost is in proportion to the number of possible
different leximin vectors, which grows exponentially with both
the number of constraints in the FCSP and the number of scales
in the valuation set [6]. Therefore, in order to guarantee the
response time when the system load is high, suboptimal
solutions have to be considered, e.g. setup a time out and seek
the best suboptimal solution within the time bound or set an
adaptive upper bound to stop the search earlier.

3 SIMULATION RESULTS

We have conducted preliminary experiments to evaluate the
performance of the decision making algorithms for the M3-
transaction and compare it with the traditional transaction. The
simulation was conducted on a single database system. We
choose the example of tickets selling for our simulation. The
sports stadium consists of 50,000 seats, divided into 25 sections.
Each section consists of 100 rows with 20 seats in each row.
The information for the stadium and all the seats are stored in
an Oracle 9i database. The system consists of one server and
multiple clients. Clients communicate with the server using the
HTTP protocol and the server is programmed in Java and
interacts with the database through JDBC. The clients are
simulated by a client program, which issues synthetic M3-
transactions simulating multiple clients. The inter-arrival rate of
the transactions generated by the client program follows the
Poisson distribution.

The client program keeps a view of the database and refreshes it
periodically. This is to simulate the scenario that the clients may
get out-of-date information due to the large number of
concurrent accesses or data caching. The time between two
successive refreshes is called “View Refresh Time”. Clients
issue transactions based on their current view of the database.
Each M3-transaction is specified by the following parameters:
total number of seats desired, number of consecutive seats
desired among them, section preference (indicates the preferred
range of sections), and row preference (indicates the preferred
range of rows). The number of seats and number of consecutive
seats desired are randomly selected from a range based on a
uniform distribution. The 25 sections in the stadium are divided
into three segments to simulate the price-based seat selections.
The desired segment in a transaction is generated randomly. To
generate the row range preferences, a row and the
corresponding section within a segment are chosen such that
they have a possibility of satisfying the seating requirement and
are as close to the front as possible. This is done to ensure that
the regions at the front have a higher chance of being selected
than the ones at the back, which simulates the real world
behavior of a client preferring a front row to the one at the back.

We designed two experimental setups to evaluate the
performance of the M3-transaction model and compare it with
that of the traditional transactions.

Clients Send Traditional Transactions. This setup simulates
the traditional transaction processing systems. First, the client
generates a traditional transaction that obtains the most
preferred set of data items based on the state of the database
(which may be out-of-date). If the transaction fails, the client
generates another transaction to obtain an alternative set of data
based on the user preference and the state of the database
(which may have been renewed). This continues till one
transaction succeeds. Note that with each time of the new
transaction creation, the number of consecutive seats is relaxed
by one until no requirement for the consecutive seats.

Clients Send M3-transactions. In this setup, the client first
generates the multi-criteria selection condition, MC, based on
the state of the database to specify the client’s alternative
preferences. Then, the corresponding M3-transaction (with
selection condition MC) is sent directly to the server. The server
processes the M3-transactions using the FCSP approach and the
LO approach. If an M3-transaction fails, the client will generate
new M3-transactions iteratively until one succeeds.

For the second setup, we only collect transactions when the
number of newly arrived transactions is larger than a trigger
value. The parameters of the mapping functions are set as
follows, b1= 0.8 and b2 = 0.2 for ΦR, a1 = 3/2 for µsci, a2 = 3/2
for µrci and F = 5 for ΦF. To improve the performance of the
FCSP and the LO algorithms, we integrate the simple
BackJumping algorithm [1] into the Branch and Bound search
and use some heuristic to guide the search process. The
heuristic prunes inferior choices and selects transactions with
lower priorities and solutions with the highest satisfaction
degree . Also, we set up an adaptive upper bound for the search.

The performance metric used for the purpose of comparison is
the average response time T. The response time of a request is
the total processing times of all transactions issued for the
request, including the failed transactions and the last transaction
that obtains the desired data items successfully. Figure 1 shows
the experimental results and compares the performance of
traditional transaction processing and M3-transactions
processing at various transaction arrival rates, with view refresh
times of 500 msec and 1000 msec (Figure 2). We set the
collection trigger value to 2 when the arrival rate is less than 6
ps, 3 when the arrival rate is 6-8 ps, 4 when the arrival rate is
10-14 ps, and 6 when the arrival rate is 16 ps or higher. There is
an exponential increase in T for traditional transactions. This
could be attributed to the fact that at higher transaction arrival
rates, more clients are likely to see the same view of the
database and thus potentially issue requests with intersecting
choice sets, increasing the failure rate of transactions. Also from
the figure, we can see that the higher the view refresh times, the
larger the values of T. The reason for this is that as view refresh
time increases, more clients issue transactions based on a staler
view of the database and, hence, increasing the likelihood of
failure. From the experimental results, we can see that M3-
transactions (processed by the FCSP approach) are more
resilient to failure and yield much better performance.

On the other hand, from the figures, we can see that there are
sudden increases in T for group evaluation based on the LO
approach. This is due to the high computation cost incurred in
this approach. When the transaction arrival rate increases to a

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 21

certain level (30 ps with the view refresh time 500 msec and 26
ps with view refresh times 1000 msec), the number of
transactions collected in a transaction group increases, to a
certain extent (about 11 in this study), and, hence, the time
needed for decision making becomes very long. As a result,
many transactions are forced to wait for the decision making
process. After several rounds, hundreds of transactions may be
suspended and, hence, overloading the system. However, the
experimental results (not shown in the figures) show that the
LO approach yields limited improvements to the solutions
obtained from the FCSP approach (only 0.2% - 0.6%
transaction groups can be improved). This could be attributed to
the heuristic which always tries to select the solution with the
highest satisfaction level. So, in this study, the FCSP method is
much more efficient than the LO approach, and it can obtain
high quality solutions when appropriate heuristic is used.

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10121416 182022242628303234
Transaction Rate [per sec]

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[m
ill

is
ec

]

FCSP view refresh rate 500msec

Leximin Ordering view refresh
rate 500 msec
Traditional Transaction view
refresh rate 500msec

Figure 1. performance comparison (500 msec refresh rate)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Transaction Rate [per sec]

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[m
ill

is
ec FCSP view refresh rate 1000msec

Leximin Ordering view refresh rate
1000msec
Traditional Transaction view
refresh rate 1000msec

Figure 2. Performance comparison (1000 msec refresh rate)

We have also conducted a simulation to further measure the
performance of the decision making process. We set an upper
bound for group size. If the number of transactions in a group
exceeds the given bound, the system divides the group into
smaller groups. Figure 3 shows the average decision time
incurred with various group-size bounds, with arrival rate of 16
ps, view refresh times of 500 msec, and the collection trigger
values of 20 and 30. Figure 4 shows the average response time
of the same simulation. The results show that the average

decision time increases exponentially as the maximum group
size increases. The average response time is dominated by the
collection delays when the group size is less than 9 for LO and
14 for FCSP. But when the maximum group size increases, the
average response time increases exponentially due to the
significantly increased decision time. So, from this simulation,
we can see that the system should adjust the collection trigger
value dynamically according to the system loads since the
collection delays affect the response time significantly. Also, the
maximum group size should be restricted even though it implies
decreased degree in optimization.

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10 11 12 13 14 15

Max Number of Members in a Group
A

ve
ra

ge
 D

ec
is

io
n

Ti
m

e
in

[m
ill

is
ec

.]

FCSP (queue length > 20)

Leximin ordering (queue length >
20)
FCSP (queue length > 30)

 Figure 3. Decision Time comparison

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

3 5 7 9
Max Number of Members in a Group

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[m
ill

is
ec

.] FCSP (queue length > 20)
Lexi (queue length > 20)
FCSP (queue length > 30)
Lexi (queue length > 30)

Figure 4. Respone time comparison

4 SUMMARY AND FUTURE WORK

In our previous work [10], we have introduced the M3-
transaction model which can reduce transaction failure rate and
increase the customer satisfaction. An M3-transaction allows
customers to specify their preferences in advance and, hence,
avoids iteratively submitting transactions in the case of failure.

In this paper, to increase the customer satisfaction and
further reduce transaction failure rate, we propose the
group evaluation technique for the M3-transaction. We consider
a group of M3-transactions that arrive to the system within a
short duration together and decide the optimal data allocation
for them. The decision-making mechanism is based on the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 522

FCSP model. The experimental results show that the M3-
transactions are more resilient to failure and yield much better
performance. The results also show that the FCSP method is
efficient and can achieve solutions with high quality when
appropriate heuristic is used.

Future work for the M3-transaction research is considered in
two directions. First, the techniques for searching solutions for
each criterion only basing on the database state information
need to be further studied. Second, we will extend the group
evaluation for the multidatabase system.

5 REFERENCES

[1] E. Tsang, “Foundation of constraint satisfaction”, Academic

Press, 1993.
[2] D. Dubois, H. Fargier and H. Prade, “Possibility theory in

constraint satisfaction problems: handling priority,
preference and uncertainty”, Applied Intelligence, Vol. 6,
1996, pp. 287-309.

[3] D. Dubois, H. Fargier and H. Prade, “Refinements of the
maxmin approach to decision making in a fuzzy
environment”, Fuzzy Sets and System, Vol. 81, 1996, pp.
103-122.

[4] C. Elkan, “A decision procedure for conjunctive query
disjointness”, Proc. of the 8th ACM Symp. on Principles
of Database Systems, 1989, pp. 134--139.

[5] A.K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz,
“A multidatabase transaction model for interbase”,
Proc.16th Intl. Conf. on VLDB, 1990, pp. 507-518.

[6] M.P. Joao, M.P. Fernando, A.R. Rira, “Structure and
properties of leximin FCSP and its influence on
optimization algorithms”, Proc. of the Intl. Conf. on
IPMU, July 1998, pp. 188-194.

[7] A. Klug, “Locking expressions for increased database
concurrency”, Journal of the ACM, Vol. 30, No. 1,
January 1983, pp. 36-54.

[8] W. Schaad, H.-J. Schek, G. Weikum, “Implementation and
performance of multi-level transaction management in a
multidatabase environment”, RIDE, Taipeh, 1995.

[9] M. Lacroix, P. Lavency, “Preferences: putting more
knowledge into queries”, Proc.13th Intl. Conf. on VLDB
1987, pp. 217-225.

[10] P. Li, I. Yen, “M3-transaction: a new transaction model for
on-line applications with high access rate”, Dept. of
Computer Science, the Univ. of Texas at Dallas, Technical
Report No. UTDCS-22-02, Oct. 2002.

[11]P. Meseguer, J. Larrosa, “Solving fuzzy constraint
satisfaction problems”, Proc. of the 6th IEEE Intl. Conf.
on Fuzzy Systems, Vol. 3, 1997.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 23

