
An XML Based Knowledge Management System for e-Collaboration and e-Learning

Varun Gopalakrishna1, Ashwin K Bhagavatula1, Lih-Sheng Turng2*
1Department of Electrical and Computer Engineering

2Department of Mechanical Engineering
University of Wisconsin-Madison

Madison, WI 53706

ABSTRACT

This paper presents the development, key features, and the
implementation principles of a sustainable and scaleable
knowledge management system (KMS) prototype for creating,
capturing, organizing, and managing digital information in the
form of Extensible Markup Language (XML) documents and
other popular file formats. It is aimed to provide a platform for
global, instant, and secure access to and dissemination of
information within a knowledge-intensive organization or a
cluster of organizations through Internet or intranet. A three-tier
system architecture was chosen for the KMS to provide
performance and scalability while enabling future development
that supports global, secure, real-time, and multi-media
communication of information and knowledge among team
members separated by great distance. An XML Content Server
has been employed in this work to store, index, and retrieve
large volumes of XML and binary content.

Keywords: Knowledge Management System (KMS), Native
XML Databases, Search Utility, Extensible Style Sheet
Language (XSL) Transformations.

INTRODUCTION

During the last decade, the Internet and the World Wide Web
(Web) have greatly changed our daily lives and reshaped the
landscape of business and commerce. In this information age,
traditional pillars of economic power – capital, land, plant, and
labor – are no longer the main determinants of business success.
Companies are beginning to realize that their competitive edge
actually relies on the brainpower or the "intellectual capital" of
their employees and management. Knowledge management
(KM) is the discipline by which organizations manage and re-
use their enterprise-wide knowledge to gain a competitive edge
[1,2]. When the right information is delivered to the right people
at the right time, the intangible information transforms into
knowledge based on which rational decisions can be made. This
paper presents the development of a KMS prototype, which
provides a framework to facilitate the creation, capturing,
organization, and sharing of knowledge for various knowledge
domains. The following sections provide an overview about the
XML technologies involved and the specific implementation
details of the KMS such as the three-tier architecture and main
features of the system, a Web-based client Application
Programming Interface (API), and the server’s Component
Object Model (COM) objects. The need for XML as a data
notation system for such a system rather than HTML is also
emphasized.

.XML Data Formats
Knowledge management can be facilitated by the availability of

*Corresponding author

a common, processable message format and mechanisms for
establishing relationships between messages and their context
which effectively embodies the data about the information
itself. Being a generic representation of content, XML
materializes the concept of “write content once, re-use at will,”
leading to the evolution of the next generation of XML
application and Web Services [3].

Using XML as a notation system for the actual data formats
means that substantive properties of the information are
represented as a meta-data scheme encoded with the actual
information. This would ensure that the primary data structure
remains unambiguous. Therefore, not only can data be mined
from backend systems but can be indexed for searching and can
be personalized for each user accessing the data. The semi-
constructed nature of data works well for integrating
heterogeneous data and modeling varying sources, thereby
making it suitable for general and intuitive knowledge
representation. Implemented in conjunction with platform-
independent protocols, XML facilitates exchange of data and
ease of Web-based software development. It is designed to
improve the functionality of the Web by providing more
flexible and adaptable information identification. XML allows
the flexible development of user-defined document types. It also
provides a robust, non-proprietary, persistent, and verifiable file
format for the storage and transmission of text and data both on
and off the Web.

XML facilitates applications in which intelligent Web agents
attempt to tailor information discovery to the needs of
individual users and to distribute a significant proportion of the
processing load from the Web server to the Web client. These
are the fundamental features that could be exploited in the
design and creation of a knowledge management system. With
the inherent structure of XML data, the KMS is well suited to
existing hierarchic classification of knowledge allowing
incorporation of a high level of dependency and inheritance
among knowledge.

Difference between HTML and XML
Early generalizations about XML have led many to believe that
XML is just a method for extending HTML by adding new tags.
In fact, XML and HTML exist in entirely different layers of
markup technology. HTML is a tag language (conceptually, a
markup language) – a set of standard delimiters with
standardized meanings [4]. Dedicating a small set of tags allows
users to leave the language specification out of the document
and makes it much easier to build applications, but this ease is
at the expense of severely limiting HTML in several important
respects, such as extensibility, structure, and validation [5].

On the other hand, XML differs from HTML in three major
respects, namely (1) customized tag and attribute names, (2)
document structures can be nested to any level of complexity,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 1 15

(3) XML documents contain Document Type Declaration
(DTD’s) or schemas for use by applications that need to
perform structural validation.

While HTML will continue to play an important role for the
content it currently represents, many new applications require a
more robust and flexible infrastructure. XML leads HTML to
XHTML. XHTML family document types are XML based, and
ultimately are designed to work in conjunction with XML-based
user agents [6].

Native XML Databases (NXD)
A Native XML Database primarily defines a logical model for
an XML document. It stores and retrieves documents in
accordance with this model. Any such reference model must
include elements, attributes, parsed character data (PCDATA),
and document order to be directly processed by applications
such as Web Services without an additional translational layer.
The NXD’s preserve document order, processing instructions,
comments, character data (CDATA) sections and entity usage.
The NXD’s also support features like transactions, security,
multi-user access, programmatic API’s, and query languages,
which would be pivotal in the design and creation of any
content management system.

With no dependence on a predetermined structure, such a
content server can store and retrieve heterogeneous document
types and is well suited to applications where data varies in
content and structure. Hence such a database is used to build a
versatile prototype. However any application that needs data in
a different format must parse the XML rendered by the NXD.

There are several reasons for storing data in an NXD. In
particular, the XML content destined for information retrieval
applications is semi-structured rendering it inefficient for
mapping to a relational database. It enables higher retrieval
speed (since storage strategies use physical pointers between
parts allowing the documents to be retrieved without any logical
joins). It also exploits XML specific capabilities (support for
XML queries).

These relational database models are ill suited for rich and
hierarchical XML content due to the inherent storage as a
Binary Large Object (BLOB) which leads to high usage of
memory, higher error rates and, in turn, lower processor
performance. Storing and indexing XML documents in their
native form eliminates these problems and increases the
performance of the applications that depend on the data. XPath
could be used for querying collection of documents. However, it
is not intended to be a database querying language since it lacks
grouping, sorting and cross document joins.

ARCHITECTURE OF KMS

The decisive factor in selecting the optimal storage strategy for
any enterprise application is the nature of the content and means
to exploit its features. The need for a database for such a
content/knowledge management system is governed by the
usage of XML. It could be used as a data transport (data centric
documents) or as documents (document centric documents) that
serve as integral building blocks. The data centric documents
are highly structured as opposed to unstructured varying length
document centric documents. With XML as a data transport
would mean that it would suffice to use a relational database
and software to transfer the data between XML documents and
the database. The use of integral XML documents, however,

would entail a Native XML Database (NXD) that allows us to
preserve physical document structure, support document level
transactions and execute queries in an XML query language.
This is possible due to the inherent “database” format features
of XML in that it is self describing, portable (Unicode), and
with description of data in terms of trees or graph structures [7].
The KMS (built on top of an NXD) is designed to use the key
components of XML and its surrounding technologies, namely,
storage, schemas, query languages and their programming
interfaces.

Three-tier System Architecture
The present KMS implementation employs the three-tier system
architecture to provide performance and scalability. In
particular, the client tier is responsible for the presentation of
data, receiving user events, and controlling the user interface.
This is primarily made possible through the ASP.NET pages
that execute on the server and generate markup such as HTML,
WML or XML that is sent to the browser (Figure 1). The
applications use ASP pages that apply an XSL style sheet to the
XML documents retrieved from the document base in order to
convert the documents to HTML and display them with the
Web browser. With most Web browser supporting XSLT
processing, the client side XSLT processing increases the
application efficiency.

 End User

→

Figure 1 Data Flow Diagram

The client applications were developed programmatically using
each of the API components and the API utility components.
The API components provide methods and properties for
building applications that communicate with the server. These
components are dedicated to managing the server as opposed to
the API utility components, which enable the server to manage
a list of items it receives and returns. Each of these components
provided a well defined interface to perform specific tasks such
as providing access to the server and its administration services,
document base installation, connecting to a specified document
base, etc.

The second tier (also known as the Application-server tier)
protects the data from direct access by the clients. The
application layer consists of the logic and transaction
capabilities between the user interface and the data layers [8].
The Server COM API is used for manipulating and querying
XML. Web-based or stand-alone applications can be created
that use the server's capabilities, enabling the client applications
communicate with the server. The end users can access the
document bases of this system through the Internet, intranet and
the wireless networks using custom user interfaces. Other
applications or computers can access them through the API. The
Web server employed is the Microsoft IIS for Windows and

NXD Database
Software

AASSPP..NNeett
CCoonnttrrooll

XXMMLL →→HHTTMMLL

Web Browser

Web Browser

HTTP
URL request

HTTP

HTTP

SOAP

XML

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 116

ASP is used as the Web application server to provide fast
programming of interfaces and links to databases for the Web
environment.

The main feature of this KMS prototype implementation is that
the system is neatly structured, and that there is a well-planned
definition of the software boundaries between the different tiers
(Figure 2). The KMS architecture incorporates an NXD as its
last (data-server) tier. The XML streams flow into the server
where it is dynamically indexed and stored natively. The NXD
is employed to store, index, and retrieve large volumes of XML
and binary content. Unlike most XML repositories, the server
works in a manner wherein it doesn’t touch the native XML
instance, rather it parses the XML instance and builds indices
based on markup [3]. The result is a streamlined database
structure, which gives rise to superior content indexing and
content retrieval performance. Its design with XML at its core
makes it highly versatile. The applications use the server as
XML document management software. Some of the prominent
features of this NXD are use of a smart proxy, background
indexing, and thread management.

MAIN KMS FEATURES

The user can browse the contents of the KMS either via a “top-
down” approach using the automatically updated table-of-
contents (tree of documents) or through the “bottom-up”
approach with the built-in search engine as shown in Figure 3.
The information access and management functions are
implemented programmatically in the KMS that allow
authorized users to check-in and check-out documents. The
document base has a document repository, managing the check-
in, check-out, and versioning of XML documents that are held
as self-contained entities in the database schema. Information
can be securely checked in/out, classified, and organized with
meta information provided by the users, making it possible to
create an ever-increasing base of expertise. The checked-in
documents are programmatically saved to the server. The
check-out utility works in two different modes (normal and
locked operation modes).

The KMS provides an

Web Server

 Server Client API

Service
requested

Client Tier /
Application

COM+ Application

Server

Service requested XML Document returned

Middle
Tier /
Application

Server
Tier

ASP
Pages

XSL
Style
Sheet

XML Document
Converted to HTML
and returned

Windows XP, W2K, NT4

Service
requested

XML
Document
returned

Document
Base

db

 Web Browser

 Figure 2 KMS’s Three-tier Architecture.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 1 17

 XSLT
Transformation XML

Docs

 Stylesheet

The KMS provides an intuitive user interface wherein it
manages the growth of user-developed information by
providing the administrative and editing tools necessary for
authorized users to generate customized knowledge on the fly

for the XML Repository. Automatic indexing (using an Index
Definition Document) that synchronizes index content with
application processes is programmatically achieved which
enables search on the XML knowledge repository, thereby,

Figure 3 A Search Query yielding XML Documents

resulting in relevant documents in result spaces with abstracts
and highlighted key words (cf. Figure 3). The dynamic indexing
capabilities of TEXTML Server updates document indexes as
documents are added to a document base, making it possible to
search and retrieve documents immediately and optimize server
resources. In addition to the search capability, navigational aids
in the form of JavaScript driven hierarchical menu trees are
provided to supplement the search with traditional hierarchical
organization of topics. Queries to search the document bases are
written in XML.

This KMS model includes arbitrary levels of nesting and
complexity, as well as complete support for mixed content and
semi-structured data. This model is automatically mapped by the
NXD into the underlying storage mechanism. The mapping used
will ensure that the XML specific model of the data is
maintained. The KMS incorporates efficient indexing through
the server’s capability to logically group semantically yet
syntactically different elements or attributes in the same index. It
can index document properties and efficiently combine queries
across indexes of multiple types. The indexing procedure can
dynamically update indexes incrementally and automatically
based on multiple criteria. With only specific information to be
indexed, there is a decrease in the database overhead.

Administering the interactive document bases of this system
enables the client applications to communicate with the server.
The end users access these document bases using a custom
interface and other applications enable access through the API.

An XML utilities module checks the validity of the XML (using
a validating reader) documents that need to be added to the
document base. This module could also be used for primary
XML document manipulation (as retrieved by any XPATH
expression) or to apply effective XSL transformations (Figure 4)
and generate the processed output to an output file.

 Output Media

Figure 4 Transforming XML Documents

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 118

Server Services

CLIENT API IMPLEMENTATION

The server is integrated to Microsoft Component Services (CS).
It runs within CS environments and uses COM facilities of CS to
perform all of its functions. An IIS is used as the Web server.
The COM API includes both the server components (dedicated
to the server) and components for any user application. The API
components are used to develop applications that interact with
the server. The server API hosts the server functions and the
proxy (client API) hosts the service components that
communicate with the server API. The components used in each
of the client applications are classified as the server components,
which are service components dedicated to the server. The other
general components are not dedicated to the server. These
components are effectively used to develop the client API to
communicate with the server.

Based on the available interfaces each of the associations of the
namespace prefix with a relevant URI reference is declared and
specific libraries invoked. XML namespaces provide a simple
method for qualifying element and attribute names used in XML
documents by associating them with namespaces identified by
URI references. The client application has been developed on
the Microsoft .NET platform in C#. To enable ASPX debugging
and compatibility, the “compilation debug” and “aspcompat”
parameters are set to "true," respectively. Also the trace-enabled
parameter is set to true to enable application trace logging.

Structure of the Document Base
The Document Base has a repository, which hosts all the
documents as opposed to any structure of the documents itself.
This is governed by the Index Definition document, a system
document that contains the structure of the indexes created. This
structure is dependent on the structure of the XML documents.
The structure of the index could be defined using any of the
optional reference lists, indexes, units, or descriptions. The
indexes are associated with validation lists/stop lists, which
serve as a guide/semantic delimiters for the user to perform
keyword searches on the document bases. The stop lists are
ignored during the indexing process. The indexes defined could
be of various types such as the word, string, date, time, etc. Any
index would need a dictionary of indexed terms and a list of
occurrences specifying the relative position within each
document. During the indexing process the server searches each
XML element for these indexable values within the depth of the
element relationships defined.

The structure of the indexes is analyzed for every search
operation, which requires a check-out of the index definition
document effectively as a system document. This also entails a
persistFile object to attach the content and copy the relevant
document to the local disk. Upon modification, the document
could then be programmatically checked-in, which is a primary
step for any indexing process. This is followed by an update of
the document base using a DocBaseAdminServices object

Creation of Document Bases
This process is outlined in the process diagram plotted in Figure
5. This entails connecting to the target server with the new
document base. With access to the server’s administration
services, the document base is installed. One needs to instantiate
a ClientServices object that enables communication with the
server, a PowerServices object that provides access to the
server’s application services, a ServerServices object that
provides access to the server’s services, and a
ServerAdminServices object that provides access to the server’s
administration services. With the creation of every document
base, one needs to define the structure of the indexes in the
Index Definition document.

Check-In Utility
With connectivity to the server and the document base
established, each of the user documents are checked in as shown
in the process diagram (Figure 5). This requires creation of a
dynamic list to add each of the documents to the document base.
With a persistFile object (to retrieve the document’s content)
created and the contents of the file loaded into this object, each
of the files is processed by moving the content to a Document
object. This document object has the document’s filename,
Mime type and content assigned to it. Finally, this document
object is added to the dynamic list created. When all the files are
added to the document list, they are then added to the document
base using the DocumentServices object’s SetDocuments
method. This check-in feature can be used for adding both
standard XML documents and the system documents such as the
Index Definition document. As documents are checked-in, each
one is parsed and indexes are built as specified by the index
definition document.

Figure 5 Objects instantiated in sequence using each of the

Server API components. DocumentServices: provides
access to the services for managing documents in the
document base. SearchServices: provides access to the
search services. ResultSpace: used to manage the
results of the query

A file upload utility is used to prompt the user to check in
documents to a specified destination. By ensuring that the Web
server has write access to the file server, these documents are
also stored on the file server. Since the KMS has a built-in
hierarchical structure of documents (similar to the UNIX

 DB

Browser

Document Services

Object

 Set Documents

 DB

Create Object

Object

Object

Object getDocumentServices

Search Services

Object

get_SearchServices

SearchDocuments

Connect Server

ConnectDocBase

DocBaseServices

Client Services

Result Space

Object

Method

Server API Component

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 1 19

directory structure) one could store the same document under
multiple categories. This multi-category check-in is incorporated
with the help of a repository, which is used to retrieve the
category of each of the documents that needs to be either
searched or checked in.

Figure 6 KMS Architecture

The ability to logically group related elements and attributes into
indexes enables precise queries and optimized performance. A
Java/COM API could be employed for the client application
(Figure 6). This prototype incorporates use of this dynamic
indexing capability.

One of the primary methods of this global repository class is to
fetch the filenames sharing a specified category. Using the XML
utilities module each of the file lists is stored in a predetermined
location on the file server. This could be viewed as “virtual”
categorizing of data since the server actually interfaces with a
flat structured repository for all the user documents. The tree
diagram for multi-category search/check-in is as shown in
Figure 6.

 Design

 X Design Y Design

 fileA.xml fileB.xml

Figure 7 Tree Structure for Multi-Category Search Path for

fileB.xml- (/Design/MoldDesign/fileB.xml)

Search Utility
The programming interface is shown in Figure 5. The search
results obtained with an XML query are stored in each of the
result spaces (logical locations) generated. The index queries
search the content of the associated index as opposed to the
document queries that search the document base resulting in
retrieval of the documents using these references. Complex text
and Meta data searches can be performed with complex queries
on a single or multiple keys incorporating various operators,
wildcards and combining result spaces. The SearchServices
object’s SearchDocuments method generates the search results
for a given query. The result files are generated using a
persistFile object as before and the XML utilities module used to
parse it and store it in XML format. The module is also used to
translate the result XML files using XSL transformations.

Checkout Utility
To edit any document, it must be requested from the server
using the Server API, and have the server copy the document on
a local drive. This would effectively mean that a file “check-out”
is performed. A dynamic list to update the names of the
documents to be checked out is created. Using the
DocumentServices object’s (provides access to the document
services) GetDocuments method, the specified file chosen by the
user is thereby called from the server. When this file is checked
out, any user has only read access to the locked document. The
checkout utility works in two different modes (normal and
locked operation modes). In the latter mode, the document base
refuses all modification operations but allows the user to view
and search its content. This is a feature incorporated to control
content editing.

APPLICATIONS

An organization’s ability to learn faster than its competitors may
be its own sustainable advantage. Such a prototype would enable
network enabled transfer of skills and knowledge for Internet-
based collaboration or Web-based learning (see, e.g., [9-12]). Its
potential also lies in Distance learning with specified document
security provided. This would entail restricted access to
authorized users or instructors. In a collaborative project, each of
the participants would have access to the other updated
documents by their teammates. For e-learning applications, such
a system could be used for transfer of data among various
departments with categorized information about student records.
These applications provide an ideal example for reusability with
the knowledge framework for an organization mentioned earlier.
This is similar in concept to a reusable Web service.

CONCLUSIONS AND FUTURE WORK

A KMS prototype has been designed and developed to provide a
collaborative environment for any knowledge-intensive
organization to create, capture, organize, and share knowledge.
Through the use of an NXD server and the various documents
administration features, it enables organizations seamlessly
integrate KMS with their proprietary databases and help the
organization to consolidate knowledge scattered in database
records, electronic files, and papers. Future work on the KMS
involves building a high level of intelligence into the search
engine in terms of its ability to retrieve relevant search results
(based on documents most viewed, with highest number of
keyword occurrences, etc.) across categorized data. It is needed
to ensure that the system be scalable wherein it can store, index,
and retrieve millions of documents. Powerful multi-criterion
sorting needs to be implemented allowing a customization of the
order in which results are presented.

 Java/COM API

 Search
 Security
 Check-in
 Check-out
 Replication

 Repository

 Word
 String
 Date
 Time
 .
 .
 .
 .

Application

 User Interface

Courtesy: Ixiasoft

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 120

ACKNOWLEDGEMENTS

This research was supported by the Applied Research Program
of the University of Wisconsin Systems. The authors are
thankful to Ixiasoft for making the TEXTML Server available
for the development of KMS.

REFERENCES

[1] Liebowitz, J. and Wilcox, L. C., ed., Knowledge

Management and Its Integrative Elements, CRC Press
LLC, 1997.

[2] Liebowitz, J., ed., Knowledge Management Handbook,

CRC Press LLC, 1999.

[3] The XML Content Server, Ixiasoft Technical Paper, June

2002, www.ixiasoft.com

[4] Jon Bosak Four Myths about XML, Sun Microsystems

IEEE Computer, (Vol. 31, No. 10, October 1998, pp. 120-
22).

 [5] Jon Bosak, XML, Java, and the future of the Web, Sun

Microsystems, March 10, 1997.

[6] XHTML™ 1.0 the Extensible HyperText Markup

Language (2nd Edition) A Reformulation of HTML 4 in
XML 1.0 W3C Recommendation 26 January 2000.

[7] Diane Humetewa, Daniel Baker Web Based Knowledge

Management Systems, GITA Conference 2001.

[8] Michael C Daconta, Leo J Obrst, Kevin T Smith, The

Semantic Web: A guide to the future of Web Services,
XML and Knowledge Management, Wiley Europe.

[9] Joseph M Firestone Enterprise Information Portals and

Knowledge Management, Butterworth-Heinemann; 1st
Edition, October 2002.

[10] Adam Freeman, Allen Jones Microsoft .NET XML Web

Services, Microsoft Press, October 2002.

[11] Turng, L. S., et al., “Application of Internet and Web

Technologies for Management of Molding Know-How,”
Society of Plastics Engineers Tech. Papers, 46, pp. 596-
600, 2000.

[12] Turng, L. S. and DeAugistine, D., “A Web-based

Knowledge Management System for the Injection Molding
Process,” Plastics Engineering, pp. 47-50, December
1999.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 1 21

