
Channel Bonding in Linux Ethernet Environment
using Regular Switching Hub

Chih-wen Hsueh, Hsin-hung Lin and Guo-Chiuan Huang
{chsueh, lsh, hgc89}@cs.ccu.edu.tw

Real-Time Systems Laboratory
Department of Computer Science and Information Engineering

National Chung Cheng University
Chiayi, Taiwan 621, R.O.C.

Abstract

Bandwidth plays an important role for quality of service in
most network systems. There are many technologies developed
to increase host bandwidth in a LAN environment. Most of them
need special hardware support, such as switching hub that supports
IEEE Link Aggregation standard. In this paper, we propose a
Linux solution to increase the bandwidth between hosts with
multiple network adapters connected to a regular switching hub.
The approach is implemented as two Linux kernel modules in
a LAN environment without modification to the hardware and
operating systems on host machines. Packets are dispatched to
bonding network adapters for transmission. The proposed ap-
proach is backward compatible, flexible and transparent to users
and only one IP address is needed for multiple bonding network
adapters. Evaluation experiments in TCP and UDP transmission
are shown with bandwidth gain proportionally to the number of
network adapters. It is suitable for large-scale LAN systems with
high bandwidth requirement, such as clustering systems.

Keywords: IEEE 802.3, channel bonding, Link Aggregation, LAN,
bandwidth.

1. Introduction

Bandwidth is critical in most network systems, especially
for those with large data and communication transmission, for
example, clustering and parallel systems. There are many products
developed to increase host bandwidth in a LAN environment,
such as CISCO EtherChannel [1], Intel Link Aggregation [2],
Sun Trunking [3], Linux Bonding [4], etc. Although bandwidth
can be increased using these approaches, most of them need
special hardware support which means extra costs are needed.
For example, a switching hub with Link Aggregation Standard [5]
support is few times more expensive than a regular one.

Nowadays, low-end network adapters and switching hubs are
very inexpensive. They support 100BASE-TX and Full-Duplex
and still have very high filtering/forwarding rates. Network band-
width of a host can be easily increased by using multiple network
adapters simultaneously. However, one IP address is needed for
each adapter so that it is not practical in large-scale systems. In
this paper, we present an approach to make use of capability of
regular switching hubs to increase the bandwidth of connected
hosts.

The proposed approach is implemented as two Linux kernel
modules [6], [7], [8], [9] between IP layer [10], [11], [12] and

Supported in part by a research grant from the ROC National Science
Council under Grants NSC-89-2213-E-194-056

physical Ethernet interface drivers. One module creates a pseudo
Ethernet device when loaded and bonds multiple physical Ether-
net interfaces. It receives packets from IP layer and dispatches
them to the underlying physical Ethernet interfaces. The other
module maintains an IP/MAC addresses table, which contain
mappings between each IP address and its corresponding MAC
addresses of multiple bonding physical Ethernet interfaces in a
LAN environment. When the pseudo device transmits a packet,
it queries the IP/MAC addresses table and changes the source
and destination MAC addresses of the packet accordingly. The
host bandwidth of multiple network adapters is merged within a
single IP address. The bandwidth is increased proportionally to the
number of bonding network adapters without any modification to
hardware and operating system.

The rest of this paper is organized as follows. The next section
describes background knowledge of packet handling. Section 3
details the design and implementation of the proposed approach in
a Linux LAN environment. In Section 4, we measure and analyze
the results of the proposed approach. This paper is concluded in
Section 5.

2. Background
In order to have a clear view of how packets are handled before

transmission, we introduce the packet handling in a switching hub
and Linux network traffic control in this Section.

Packet Handling in Switching Hub
The Ethernet switch controller in a switching hub controls the

flow of input packets. We take RealTek RTL8308B controller
as an example to illustrate the packet handling in a switching
hub. RealTek RTL8308B is an 8-port 10/100Mbps Ethernet switch
controller [13]. It can operate in full-duplex mode and supports
non-blocking 148800 packets/second wire speed forwarding rate
and IEEE 802.3x flow control. The brief architecture of RealTek
RTL8308B is shown in Figure 1. RealTek RTL8308B has a built-
in 2MB bits DRAM as packet storage buffer. When a packet is
coming, the received data flows into FIFO queue first and then is
moved into Packet Buffer by the DMA Engine. The address look-
up table consists of 8K entries of hash table and 128 entries of
CAM. When a packet is received from a port, the switching logic
hashes the destination MAC address to get a location index to the
8K-entry hash table and at the same time compares the destination
MAC address with the contents of the 128-entry CAM. If a valid
location index is found in the hash table or the CAM comparison
is match, the received packet is forwarded to the corresponding
destination port. Otherwise, the packet is broadcasted to all ports
and the switching logic hashes the MAC address to get a location

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 35

Switching

Logic

Packet

Buffer

Space

Address-Lookup

Engine

8K-entry

Address

Table

DMA

Engine

RMII

10/100

MAC

FIFOs,

Queue,

Flow

Control

…

RMII

10/100

MAC

FIFOs,

Queue,

Flow

Control

8 ports

128-entry Address CAM

Fig. 1. Brief Architecture of Switching Hub (RealTek RTL8308B)

FTP, Telnet,

SMTP, …

DNS, SNMP,

NFS, …

TCP UDP

IPICMP IGMP

Network

Interface
ARP RARP

Transmission Media

Application

Layer

Transport

Layer

Network

Layer

Data Link

Layer

Physical

Layer

Fig. 2. Linux Network Protocol Stack

index to the hash table. If a hash collision occurs, the MAC
address will be put into the 128-entry CAM.

Packet Flow in Linux Protocol Stack
As shown in Figure 2, Linux protocol stack is based on

TCP/IP and is normally considered as a 4-layer system [10].
In Linux, a packet is represented by a common data structure
called socket buffer structure throughout all protocol layers. By
this way, parameters and payloads of a packet would not need to
be copied between different protocol layers. Figure 3 illustrates the
abstraction of the traffic path in Linux. A packets is first sent from
an application to the transport layer (TCP or UDP layer) through
a socket when the application sends some data. After the packet is
handled in transport layer, it is then sent to the network layer (IP
layer). The route of packets is determined in the network layer.
If the destination of the packet is another computer, the network
layer sends it to the data link layer. The data link layer sends
packets via an available output device which is usually a network
adapter.

When a packet is arrived, the input interface checks whether
the packet is for this computer, for example, a network adapter
checks the destination MAC address field when receiving a packet.
If so, the network interface driver sends the packet to the network
layer. The network layer checks the destination of the packet. If
the packet is for this computer, the network layer sends it to the
transport layer and finally to the application. Otherwise, the packet
is sent back to an output device.

Application Layer

sends packet to

socket

Application Layer

receives the packet

Socket Layer

sends packet

to transport layer

Socket Layer

sends packet

to application

Transport Layer

sends packet

to network layer

sends packet

to transport layer

looks up route

to destination

sends packet

to device

IP Layer

Forward Packet

Transport Layer

sends packet

to socket

device transmits packet device receives packet

Fig. 3. Linux Traffic Path

3. Design and Implementation
The proposed approach is implemented as two Linux kernel

modules, BondingPlus and ARP+. BondingPlus is responsible for
dispatching packets to bonding network adapters. ARP+ maintains
a one-to-many mapping table between an IP address and MAC
addresses of bonding network adapters in a LAN environment.

BondingPlus
As shown in Figure 4, BondingPlus is a pseudo Ethernet driver

which resides between IP layer and physical Ethernet interface
drivers. When the pseudo driver is loaded into kernel, it creates
a pseudo Ethernet device and registers it to kernel. We assign the
pseudo device an IP address and a netmask as a usual network
device. We can bond multiple physical Ethernet interfaces as
slave devices of the pseudo device to the Ethernet interface pool
(slave list) created by BondingPlus module. The MAC address
of the pseudo device is set as the MAC address of its first
slave device. Therefore, network packets which are transmitted
by physical Ethernet interfaces are considered as transmitted by
the pseudo Ethernet device. The pseudo device is to dispatch
packets from IP layer to multiple physical Ethernet interfaces in
its slave list. It is responsible for modifying the attributes of a
socket buffer, including source MAC address, destination MAC
address and output device. Then, BondingPlus finds an active
physical Ethernet interface from its slave list to send out the
socket buffer and finds an active physical Ethernet interface of
the receiving host to receive the packets. The selection of output
network adapter of the sending host and the input adapter of the
receiving host is implemented in a round-robin manner. Other
scheduling algorithms can be adopted for additional purposes,
such as sending real-time packets[14].

ARP+
When a socket buffer is to be sent on the pseudo network

driver, the kernel will fill the destination MAC address obtained
by the ARP protocol to the Ethernet header of this socket buffer.
Without modification to the ARP protocol, the bandwidth of the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 336

IP Layer

Linux BondingPlus Module

IP/MAC

Addresses Table

(ARP+ Table)
Input

Queue

Physical

Ethernet

driver

NIC

Queue

Physical

Ethernet

driver

NIC

Queue

Physical

Ethernet

driver

NIC

Queue

Physical

Ethernet

driver

NIC

Queue

…

ARP+ Module

Fig. 4. Pseudo Ethernet Driver

Ethernet

destination addr

Ethernet

source addr

frame

type

Sender

IP addr

Sender

MAC addr

Sender

MAC addr

Sender

MAC addr
…

Ethernet Header ARP+ Header

arpp_hln, hardware address length

arpp_pln, protocol address length

arpp_nha, number of hardware address

type, ARP+ packet type

0x700A

6 bytes 6 2 2 2 2 2 4 6 6 6

Fig. 5. ARP+ Protocol Packet Type

multiple slave Ethernet interface will not be merged since ARP
protocol is an one-to-one mapping between an IP address and
its corresponding MAC address so that we always obtain the
same MAC address of a designated IP address from the ARP
protocol. This means that although we can send out packets
through multiple physical Ethernet interfaces, but we always send
packets to the same Ethernet interface of a receiving host. In other
words, although the outgoing bandwidth of a sending host can
be increased, the incoming bandwidth of a receiving host is not
increased.

To solve this problem, we design a APR+ protocol [14], through
which a sending host knows all the MAC addresses of network
adapters bonding to a designated IP address of a destination host.
The pseudo Ethernet driver maintains a table (ARP+ table) of
mappings between each IP address and its corresponding MAC
addresses of multiple physical Ethernet interfaces in a LAN
environment using the ARP+ protocol. As shown in Figure 5,
we design a proprietary packet (ARP+ packet) which can only
be understood and interpreted by the proposed pseudo Ether-
net driver without interfering other existing protocols. When a
host is loaded with the pseudo Ethernet driver, it broadcasts
a ARPP BROADCAST packet containing all the MAC ad-
dresses of its physical Ethernet interfaces. When a host receives
the broadcasted packet, the pseudo Ethernet driver unicasts a
ARPP REPLY packet to notify the newly joined host with
all its MAC addresses. Thus, a newly joined host is able to
obtain the MAC address lists of all other hosts in the same LAN
environment. An ARPP CHANGE or an ARPP CLEAR
packet is broadcasted to notify other hosts to modify or clear the
entry of their ARP+ table respectively. Since the mapping table
is only created once and updated when network configuration is
changed, the broadcasting overhead is negligible.

TABLE I
TEST BED

System Parameters Settings
CPU Intel Celeron 1.2GHz

Memory 256MB
Operating System Mandrake 8.1

Kernel Version 2.4.18
Network Adapter Intel 21143, 82559
Switching Hub DLink DES-1024R+

0 100 200 300 400

1

2

3

4

N
u
m

b
e
r

o
f
B

o
n
d
in

g
 A

d
a
p
te

rs

Bandwidth (Mb/s)

Intel 82259

Intel 21143

Fig. 6. TCP Transmission

Backward Compatible
The proposed approach is transparent to users and is backward

compatible to hosts without channel bonding. If a host is not
loaded with the proposed modules, which means it can not
interpret ARP+ packet and will not reply so that there will be
a null entry in the ARP+ tables for other hosts with channel
bonding. However, the MAC address can still be obtained through
the original ARP protocol. Hosts with channel bonding are able
to send packets to the one without it. Moreover, since the MAC
address of the pseudo Ethernet device is set as the MAC address
of the first physical Ethernet interface in its slave list. The host
without channel bonding is able to obtain the MAC address of
hosts with channel bonding using ARP protocol and sends packets
to them. Consequently, the bandwidth of the host without channel
bonding is not increased. In order to avoid the bonding physical
Ethernet interfaces to reply an ARP request, which may confuse
other hosts, NOARP flag is set to all slave devices and the ARP
request is only replied by the pseudo Ethernet device.

Performance Evaluation
We perform the following experiments to evaluate the band-

width improvement when multiple network adapters are bonded
into a system. The experiment environment contains two hosts
whose system parameters are listed in Table 1. Two hosts were
directly connected to the switching hub with four network adapters
respectively.

Two types of network adapters, Intel 21143 and Intel 82559, are
tested in both TCP and UDP transmission in a LAN environment.
The drivers of Intel 21143 and Intel 82559 network adapters used
in the experiments are ”tulip” and ”eepro100” respectively which
can be found in Linux kernel source tree. The performance is
measured by Netperf [15] package, a networking performance
benchmark, using a client/server architecture. The client program
of Netperf runs on a host generates packets to the server program
on the other host. As shown in Figure 6 and Figure 7, the
bandwidth of TCP and UDP transmission is increased propor-
tionally to the number of bonding adapters. The bandwidth of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3 37

0 100 200 300 400

1

2

3

4

N
u
m

b
e
r

o
f
B

o
n
d
in

g
 A

d
a
p
te

rs

Bandwidth (Mb/s)

Intel 82559

Intel 21143

Fig. 7. UDP Transmission

0 20 40 60 80 100

1

2

3

4

B
o
n
d
in

g
 A

d
a
p
te

r
ID

Bandwidth (Mb/s)

Intel 82559

Intel 21143

Fig. 8. Load Balancing in TCP Transmission

UDP transmission is slightly higher than TCP because of its less
overhead.

We measure the bandwidth of each bonding adapters using
Netperf. Figure 8 and Figure 9 show the results of the experiments.
The bandwidth contribution of each adapters is almost equivalent
both in TCP and UDP transmission. Outgoing and incoming
network packets are equally distributed on all bonding adapters
and thus load balancing on each bonding adapters is achieved in
the proposed approach.

We evaluate the overhead of the proposed approach by per-
forming the following experiments. We measure network and CPU
utilization with one adapter on each host. We compare the results
of the proposed approach with the one without channel bonding.
We first measure the bandwidth of the adapter using Netperf.
As shown in Table 2, the proposed approach only decreased the
bandwidth of a adapter by 0.05%. Besides, we send and receive
packets for 60 seconds using Netperf and measure the overhead on
CPU utilization. The results are shown in Table 3. Our approach
only increases 6.6% of CPU time in average. Therefore, the
overhead of the proposed approach is little and can be neglected.

0 20 40 60 80 100

1

2

3

4

B
o
n
d
in

g
 A

d
a
p
te

r
ID

Bandwidth (Mb/s)

Intel 82559

Intel 21143

Fig. 9. Load Balancing in UDP Transmission

TABLE II
BANDWIDTH OVERHEAD

BondingPlus Without With
Bandwidth 94.05Mb/s 94.01Mb/s

TABLE III
SYSTEM UTILIZATION OVERHEAD

BondingPlus Without With
Minimum User Time 0s 0s
Maximum User Time 0s 0s

Minimum System Time 2.11s 2.33s
Maximum System Time 2.32s 2.49s
Average System Time 2.25s 2.40s

4. Conclusion
We proposed a new inexpensive approach to increase band-

width of hosts connected to a regular switching hub in a LAN
environment. Packets can be sent and received via multiple
bonding network adapters with only one IP address. There is no
modification to hardware and operating systems. The proposed
approach is implemented as two Linux kernel modules and is
backward compatible, flexible and transparent to users. An one-
to-many mapping table of an IP address and its corresponding
MAC addresses of multiple bonding network adapters in the LAN
environment are kept by the ARP+ module in order to obtain
the MAC addresses of a designated IP address. Packets from
IP layer are dispatched by the proposed BondingPlus module
to its underlying bonding network adapters and received by
destination host in a round-robin manner. Bandwidth of a host
can be increased proportionally to the number of bonding network
adapters. It is suitable for large-scale systems in a LAN with high
bandwidth requirement, such as clustering systems.

References
[1] “Etherchannel,” CISCO SYSTEMS. [Online]. Available:

http://www.cisco.com/en/US/tech
[2] “Intel link aggregation,” Intel Corporation. [Online]. Available:

http://www.intel.com/support/express/switches/53x/31460.htm
[3] “Sun trunking,” Sun Microsystems. [On-

line]. Available: http://wwws.sun.com/products-n-
solutions/hw/networking/connectivity/suntrunking

[4] T. Davis, Linux Bonding. [Online]. Available:
http://sourceforge.net/projects/bonding

[5] IEEE 802.3 CSMA/CD Access Method, IEEE Std., 2000. [Online].
Available: http://www.ieee802.org/3

[6] T. Aivazian, Linux Kernel 2.4 Internals. [Online]. Available:
http://www.tldp.org/LDP/lki/index.html

[7] D. P. Bovet and M. Cesati, Understanding the LINUX KERNEL.
O’REILLY, 2001.

[8] J. Crowcroft and I. Phillips, TCP/IP and Linux Protocol Implemen-
tation. WILEY, 2002.

[9] A. Rubini and J. Corbet, LINUX DEVICE DRIVERS: Second Edition.
O’REILLY, 2001.

[10] R. Stevens, TCP/IP Illustrated Volume 1. Addison-Wesley Pub Co,
1994.

[11] G. R. Wright and W. R. Stevens, TCP/IP Illustrated Volume 2.
Addison-Wesley Pub Co, 1995.

[12] D. Comer, Internetworking with TCP/IP Vol.1: Principles, Protocols,
and Architecture. Prentice Hall, 2000.

[13] “The rtl8308b specifications,” REALTEK CORPORATION. [On-
line]. Available: http://www.realtek.com.tw/downloads/downloads1-
3.aspx?Keyword=rtl8308

[14] H. hung Lin, C. wen Hsueh, and G.-C. Huang, “Bondingplus: Real-
time message channel in linux ethernet environment using regular
switching hub,” in The 9th International Conference on Real-Time
and Embedded Computing Systems and Applications, Feb. 2003.

[15] R. Jones, Netperf. [Online]. Available: http://www.netperf.org/

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 3SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 338

