
A Synthesized Framework for Formal Verification of Computing Systems

Nikola Bogunovic, Igor Grudenic, Edgar Pek
Faculty of Electrical Engineering and Computing, University of Zagreb,

Zagreb, 10000, Croatia

ABSTRACT

Design process of computing systems gradually evolved to a
level that encompasses formal verification techniques.
However, the integration of formal verification techniques into
a methodical design procedure has many inherent
miscomprehensions and problems. The paper explicates the
discrepancy between the real system implementation and the
abstracted model that is actually used in the formal verification
procedure. Particular attention is paid to the seamless
integration of all phases of the verification procedure that
encompasses definition of the specification language and
denotation and execution of conformance relation between the
abstracted model and its intended behavior. The concealed
obstacles are exposed, computationally expensive steps
identified and possible improvements proposed.

Keywords: Formal methods, System engineering, System
modeling, System verification.

1. INTRODUCTION

Analysis and design of computer-based systems is essentially
still based on the process that encompasses diverse informal
steps. More specifically, these steps are the formulation of
requirements (what the system should and should not do),
specification and analysis, design (how would the systems
achieve its goals), coding (the actual programming), unit
testing, integration and systems testing. Correctness is regularly
validated by simulation and testing. However, such an approach
can only prove the presence of bug, but never its absence.

Formal methods applied in developing computer-based systems
are mathematical procedures for describing and verifying
system properties and its behavior. Hence, formal verification is
the process of ensuring that formal model of the design (Imp -
implementation) satisfies a formal specification (Spec) with
mathematical certainty, or plainly that an implementation
conforms to specification. The possible conformance relations
are equivalencies, various simulation relations, (logical)
satisfaction, (logical) implication, refinement, etc. Formal
verification guarantees beyond any doubt a correct relation
between mathematical objects Imp and Spec. However, it does
not establish the correctness of a real implementation abstracted
by Imp.

In this paper we will formally define the abstracted model of the
examined computer-based system (Imp) by adopting state
machine descriptions from the automata theory. The concept
will be restricted to finite (but extensive) state systems. Since
real implementation procedures differ from this formal
description, a mapping from some design (programming)

language to state machine description is needed. Next, we will
define the specification language (Spec) that, best to our
knowledge, captures the intended behavior of the finite state
system. The possible adopted conformance relation will be
restricted to formal logical concepts of satisfaction and
implication. The goal of this paper is to show the feasibility of a
seamless integration of real system implementation into the
verification process that encompasses transformation to a
formal model (Imp), possible definition of interesting system
behavior in terms of formal specification (Spec), and finally the
conformance between Imp and Spec. The outlined synthesized
process has some notable and concealed obstacles with
computationally very expensive steps that will be identified and
possible improvements proposed.

2. IMPLEMENTATION MODEL

A state machine (SM) is a simple mathematical model,
fundamental and ubiquitous in computer-based systems. A
programming language is one way to describe a state machine.
The execution of a program corresponds to an execution of the
state machine it describes. A software system is a complex state
machine with a huge state space. Notable examples of such
systems are reactive programs that maintain an ongoing
interaction with their environment. In addition to input/output
relations, such programs must be specified and verified in terms
of their behavior.

A state system (machine) SM, as defined in this paper, is a 6-
touple (S, I, O, N, S0, Y), where S is the set of states, I the set of
input bit-patterns, O the set of output bit-patterns, N the next
state relation (often reduced to a function), S0 ⊆ S is the non-
empty set of initial states and Y the output function. If S is finite,
then SM is a finite state machine. Having N to be a relation, we
can more easily model nondeterminism. An execution fragment
is a finite or infinite sequence (s0, s1, …) of states such that for
all i (si, si+1) is a step of SM. An execution (trace) is an
execution fragment starting with an initial state of SM. A state is
reachable if it is a state of an execution. The behavior of the
system SM is the set of all traces of SM. With a model that has
both finite and infinite traces, whenever one proves some
property about the behavior it describes, one usually have to
structure the proof into two parts, one to handle the finite trace
case and one to handle the infinite trace case. If one cannot see
the infinite traces one cannot talk about certain system
properties like deadlock or fairness. To do so requires adding an
additional structure (e.g. fairness constraints) to trace the
behavior of the sate system. The paper concentrates primarily
on the finite-trace models that encompass (possibly infinite)
collection of finite traces.

Given a state machine model of a system, one can formally
reason about properties of the model (not the real system itself).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 618

The most important is the property of a truthfulness of
associated expressions in any reachable state (or a set of states)
along the trace of a system (ex. "Starting from the state si, can
the system ever reach a state for which a deadlock is
imminent?"). Hence, with each state there is an associated set of
expressions given in some formal logic. The simplest kinds of
expressions are atomic formulae in the propositional logic,
defined from a set of valid propositions (AP). A labeling
function L:S→2AP is introduced to associate with each state
(member of S) an interpretation of the atomic propositions from
the set AP, i.e. through L we know for each state which atomic
propositions are assigned true. As the system evolves with time
in discrete steps (change states) one can reason about its
behavior. The aggregated model of a system implementation (or
only a part of it) can be called state machine with labeling
(SML). It denotes the usual Kripke structure [1] or the
equivalent automaton.

A Kripke structure directly corresponds to an ω-regular
automaton, where all the states are accepting. Specifically, a
Kripke structure (S, S0, R, L), where R is a total transition
relation, can be transformed into an automaton A=(Σ, S∪{ l}, ∆,
{ l}, S∪{ l}). In this notation the input alphabet is denoted by
Σ=2AP, S is the set of states and ∆ is the transition relation. Fig.1
depicts a particular Kripke structure and the corresponding
finite automaton [2]. In the sequel we will use the term SML to
denote the class of analogues transition structures (with labeling
on arcs or states).

Figure 1. Kripke structure (top) and the equivalent automaton
(bottom).

3. FORMAL SPECIFICATION LANGUAGE

A formal specification language SL provides a notation
(syntactic domain), a universe of objects (semantic domain),
and a precise rule definitions that specify which objects satisfy
each specification. SL is a triple <Syn, Sem, Sat>, where Syn
and Sem are sets and Sat ⊆ Syn × Sem is a relation between
them [3]. The more explicit specification language implies the
better-defined formal method. Specification language that is
fundamentally advantageous in specifying system behavior
should belong to the family of temporal logic. In this paper we
concentrate on the branching discrete time temporal logic, i.e.
computation tree logic (CTL) formulae [4].

Formula in CTL temporal logic can be true for some states of
the underpinning model (denoted by the SML) and false for
other states. Formulae my change their truth values as the
system evolves from state to state. CTL formulae are built from
atomic prepositions, standard Boolean operators, and temporal
operators. Atomic propositions express state properties of the
system (e.g. signal “valid_user” is set to true in the particular
state). Temporal operators describe when these properties have
to be satisfied. Each temporal operator consists of a path
quantifier and a temporal modality. The path quantifier A
indicates that a property is true for all computations (traces,
paths), and E denotes that it is true for some computation (trace,
path). The temporal modality describes ordering of events in
time of computation, and can be one of the following: F (in
some future and possibly current state), G (in every state), X (in
the next state), U (strong until). In CTL one can easily express
properties such as: "For any state, if a valid_user occurs
(requesting validation), it will eventually be answered":

AG [(valid_user=true) � AF (answer=true)]
Any CTL formula ϕ could be interpreted within the given SML
structure as specifying a set of states, namely those states Q for
which (SML, s

�
= ϕ) holds, or formally:

Q(ϕ) ⊆ S is a set of states such that Q(ϕ) = {s | SML, s
�
= ϕ}.

Usually we require that the initial state is included, i.e. s0 ∈
Q(ϕ). Clearly, the verification procedure encompasses
exploration of states as the system evolves from the initial state
s0 in discrete time steps.

4. DEVELOPING SML MODEL

In hardware engineering, the introduction of description
languages (HDL), like Verilog [5], has made it simple to design
systems in terms of their behavior as well as their
implementation. In addition, using behavioral descriptions
makes it easy to write abstractions of designs and environments.
Abstractions, which can be used to reduce system complexity,
are an important aspect of hierarchical synthesis/verification of
large systems. Most HDLs are designed for simulation and their
semantics are either defined in terms of simulation results or left
undefined. The lack of formal semantics makes it hard to apply
advanced verification techniques to existing designs written in
these HDLs, since it is hard to guarantee the same behavior of
the synthesized and verified circuits. To make it possible to
utilize verification algorithms one needs to bridge the gap
between HDLs and the formal models (such as SML). One
distinct solution to this problem is given in [6].

By using timed finite state machines to model behaviors of
Verilog programs, authors separated the problem of determining
whether the program is "implementable" from the problem of

s0 s1

s2

{p, q} {p}

{q}

s2

s0

{p}
{q}{p, q}

{p, q}
{q}{p, q}

s1

l

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 6 19

deciding if a program is "synthesizable". The extracted timed
finite state machines (or SMLs) can model almost arbitrary
programs, built from the defined subset of Verilog. However,
the extracted timed SMLs are not optimal in any sense, rather
they only closely emulate Verilog program. Control flow graphs
(CFG) represent the execution of a Verilog program. CFG are
defined as multi graphs G = (Vp + Vc, E), where Vp is the set of
all distinct pauses, Vc is the set of all conditional statements and
E is the set of edges, e=(v1, v2) ∈ E iff v2 ∈ Vp + Vc.
Conceptually, the product of two sets of machines; timing
machines and untimed machines logically models Verilog
process. Timing machines determine how long a program can
stay in a certain state, using values of logical expressions in
conditional statements. Untimed machines use program context
and transitions of timing machines to compute the next state
variables and resolve contention among variable updates.

Software engineering deals with the development of large and
often complex information processing systems. The
development process can hardly be carried out with modeling
and description techniques that are based solely on
programming languages [7]. As an aftereffect special modeling
languages like SDL [8] and UML [9] have become popular. All
these approaches are too syntax oriented and lack a proper and
simple semantic foundation. Consequently, the tool support for
design validation and verification remains shallow, even though
the theoretical foundations are today quite powerful. What is
needed however, is a mathematical theory that will give
semantics to the description techniques. Unfortunately, a lot of
work in the future is needed to achieve this goal.

Prevailing practices in attempting to verify software designs
follow two approaches. In automated reasoning about a program
fragment, a software tool carries out symbolic execution of a
program or verifies that a program has certain required
properties. Such a software verification tool must have a proper
representation of an interested program fragment. Reasoning
tools based on Automated Theorem Proving (ATP) require the
program fragment to be represented as the set of logical clauses.
Logical representation of even a very small program fragment
requires many input clauses that must be generated by hand.
Hence, what the user is trying to verify is not an implemented
program fragment, but rather its image generated by an informal
method.

The other approach exploit a special modeling language (e.g.
SMV, [10]) that has a synchronous data-flow semantics and can
verify programs in this language with respect to temporal logic
formulas (Spec). CTL class of the specification language is
given in the previous section. The input language of SMV is
designed to allow the description of finite state systems and
supports parallel assignment syntax. The semantics of
assignment is similar to that of single assignment data flow
languages. A program fragment can be viewed as a system of
simultaneous equations, whose solutions determine the next
state. Again, a verification process is carried out not on the
actual programming language implementation, but on the
specific SMV representation, developed informally and
resembling a program fragment. What is needed here is an
automatic, possibly sound and complete transformation of the
SMV program into a final implementable language, or a
transformation of a software design (given in the particular
programming or specification language) into the SMV
description (analogous to the development of a finite state
machine model from the Verilog description in hardware
engineering).

5. DEDUCTIVE VERIFICATION

Theorem proving is a technique where both the system and its
desired properties are expressed as formulas in some
mathematical logic. This logic is given by a formal system,
which defines a set of axioms and a set of inference rules.
Theorem proving is the process of finding a proof of a property
from the axioms of the system. There are many references
covering various types of proof systems such as: natural
deduction, axiomatic systems, tableau, etc. We hypothesize that
the procedural semantics of proof systems is essential to the
verification process, and therefore our focus is on the
resolution-based deduction, explicated by the following well-
known algorithm (for the predicate logic):

Deduction {
Define_implementation_as_wff_formulas_{E a};
Define_property_as_wff_formulas_[H b};
Form_the_set_{F c}={E a} ∪ ¬{H b};
Convert_{F c}_to_clauses_{K i };
repeat

Chose_clauses_k1_and_k2_from_{K i };
New-k := resolve(k1, k2);
New-k' := simplify(New-k, {K i });
{K i } := simplify({K i }, New-k');

until
(empty_clause_found OR
no_more_deductions);

if
(empty_clause) return "proved";

else
return "no_contradiction";}

There are many difficulties in executing this algorithm, but the
most notable are clausal representation, selection strategy and
resolution with equalities. In the sequel we will briefly explain
each of them.

Clausal representation of a computing system ranges from an
apparent low-level hardware description, to a detailed symbolic
description of a program. Even though theoretically sound,
representing program state (PS) of a software design as a logic
predicate is very tedious and frustrating. When defining terms
of the predicate PS, in addition to the current instruction symbol
(current_inst), one needs to define functions to construct a list
of names and values of variables in that state (var_vals):

PS(current_inst, var_vals)
A huge additional step in presenting a program to an automated
theorem prover is to write the clausal representation for every
statement in the program. A simple assignment statement (AS)
may have the predicate form:

AS(name, as_var, as_exp, next_inst)
Where name defines the statement, as_var is the variable
assigned to, as_exp defines the expression to be evaluated, and
next_inst is the next instruction to be executed. General axiom
that says: "in state p applying the assignment a leads to the state
q", may have the predicate logic well formed form:

(PS(p1, p2) ∧ AS(a1,a2, a3,a4)) � PS(q1, q2)
or in the normalized clause form:

¬PS(p1, p2) ∨ ¬AS(a1,a2, a3,a4)) ∨ PS(q1, q2)

A selection strategy for k1 and k2 is chosen according to some
heuristics on the nature of the application (ad hoc approach).

Finally, equality is a special relation (reflexive, symmetric and
transitive), very important to symbolize many theorems in a

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 620

natural way. To properly use the equality relation in a theorem
prover its features must be specified with a set of axioms,
leading to an extension of the formula set. Moreover, during the
execution of the proving process this method generates
numerous useless clauses. Other approaches employ the
paramodulation inference rule, or some form of rewriting, [11].
Paramodulation rule is an extension to non-unit of the equality
substitution which says that if a clause C contains term t and a
unit clause is s=t then infer C with s replacing one single
occurrence of t. There are problems of over-generation of
paramodulants, resulting again in an uncontrolled growth of the
size of terms. There is a need to restrict the applicability of the
paramodulation. A partial solution comes from the theory of
rewriting systems. The basic idea of rewriting systems is to
orient equations into rewrite rules with a partial order defined
on first order terms, i.e. allow substitutions of equal terms only
in some directions. In this way an equation s=t is used as a
rewrite rule s� t that can be used only to rewrite instances of s
with instances of t (and not vice versa).

An advantage of deductive verification though, is that it can be
used for reasoning about infinite state systems. The task can be
automated to a limited extent. In the process of finding a proof,
the human user often gains invaluable insight into the system
and the property being proved. However, because of the
undecidability of a general mathematical logic, no limit can be
placed on the amount of time or memory that may be needed in
order to find proof. In particular, the theory of computability
shows that there cannot be an algorithm that decides whether an
arbitrary computer program terminates. This limits what can be
verified automatically. Nevertheless, theorem provers are
increasingly being used today in the mechanical verification of
safety critical properties of hardware and software designs.

6. VERIFICATION BY MODEL CHECKING

In the classical proof-based verification, the system description
is a set of formulas Γ (in a suitable logic) and the specification
is another formula ϕ. The verification method consists of trying
to find a proof that Γ �− ϕ (i.e. by applying allowable rules to
the set Γ, derive ϕ). In a model-based approach [2], [10], [12], a
finite model M in an appropriate logic represents the system.
The specification property is again represented by formula ϕ.
The verification method consists of computing whether a model
M logically satisfies ϕ (i.e. M �= ϕ). The model-based approach
is potentially simpler that the proof-based approach, for it is
based on a single model M, rather than a possibly infinite class
of them. In model checking one is not concerned with semantic
entailment (Γ �= ϕ), or with proof theory (Γ �− ϕ), but rather
with the notion of satisfaction, i.e. the satisfaction relation
between the model and a formula (M �= ϕ).

The model M is a transition system and the properties ϕ are
formulas in temporal logic. Since computing processes are
predominantly state transition systems, they can be
appropriately modeled by the SML formalism. Clearly, the
model checking technique requires an exploration of states as
the system evolves from the initial state s0 in discrete time steps.
All possible successor states are given by the relation R. We use
the notation R(s) to denote the set { t∈S | (s,t)∈R}. From this, it
is easy to derive the Boolean immediate neighboring function,
as given in [12]:

η: S×S → B, with η(s, t) = TRUE if (s, t) ∈ R,

where B={0, 1}. The function η clearly gives the set of
neighboring states H(S):
H(S) = {t | ∃s∈S η(s, t)=TRUE} (1)

Assuming the above formal preliminaries, we can compute the
set of all reachable states RC, given the set of initial states S0.
Let us denote the set RC to comprise recursively all the initial
sets (S0) united with all the states that are immediate successors
of so far reachable states. The traditional breadth-first
computation to derive the set of reachable states is given in the
following algorithm:

find_reach (S 0){
RC:=∅; New:=S 0;
do {

RC:= RC ∪ New;
Next := H(New);
New := Next\RC;
} while (New ≠ ∅);

return RC;}

The presented algorithm is expressed in terms of operations on
the sets of states. Finite states can conveniently be implemented
using bit vectors data types. Assuming that all bit vector
operations needed for the above algorithm take O(|Q|) time,
where Q⊆S, and that in the worst case only one state is
discovered "reachable" per iteration, the overall complexity is
O(|Q|2). However, the number of reachable states is in the
worst case exponential in the number of register signals (bits),
rendering this approach to state space exploration unrealizable.

A much more efficient computer representation and
manipulation of SML structure is achieved by Reduced Ordered
Binary Decision Diagrams (ROBDD), or BDD for short. BDDs
were first studied as a useful representation of boolean
expressions. Binary decision diagrams have their roots in the
decomposition of Boolean functions given by the Shannon
expansion with respect to a variable:

f = xi fxi + xi ' fxi' (2)
with cofactors:

fxi (x1, …, xn) = f(x1, …, xi-1, 1, xi+1, …, xn)
fxi' (x1, …, xn) = f(x1, …, xi-1, 0, xi+1, …, xn).

The expansion formula can be represented by a binary tree with
root node xi, and left branch as the cofactor fxi , and right branch
as the cofactor fxi' . Recursive application of the Shannon
expansion theorem, while keeping strict variable ordering, with
identification of isomorphic sub-graphs and removal of
redundant nodes, concludes the building of a BDD. The power
of BDD representation is that it does not explicitly enumerate
Boolean function values, but rather values are given by tracing
all paths to the terminal node (rendering exponential number of
paths by a linear number of nodes). Such a Boolean function
representation is canonical, but its size can critically depend on
the variable ordering.

The key to exploiting the power of BDD representation is to
express a problem in a form where all mathematical objects are
represented as Boolean functions. Let B = {0, 1} and let S ⊆ Bn

be a set of points of the Boolean space. It is possible to define a
function χS : Bn → B, called the characteristic function of S,
that has the value of 1 exactly for the points of Bn that are in S:
∀x∈Bn, x ∈ S ⇔ χS (x) = 1 (3)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 6 21

The definition of the characteristic function can be extended to
subsets of an arbitrary finite set Q, by providing an injective
mapping E : Q → Bn . Such a mapping is called a binary
encoding of Q. In many applications, the domains have a natural
encoding, e.g. the binary encoding of finite integers.

The set of states in a computing systems are not represented
explicitly, but rather sets are represented by their characteristic
functions and subsequently by BDDs. This approach is known
as symbolic or implicit analysis. The key point is that the BDD
representing a set of states may be quit small. For the correct
interpretation of a set as a BDD, we should a-priori fix a set of
encoding (placeholder) variables {di | 0 ≤ i < n }, and assume all
characteristic functions be expressed in them.

Likewise, for a binary relation R ⊆ Q1 × Q2 , we define its
characteristic function: χR : Q1 × Q2 → B. Given different sets
of variables to identify the elements of Q1 and Q2, the
characteristic function is:
χR(x1, …, xn, y1, …, ym) ≤ χQ1(x1, …, xn) . χQ2(y1, …, ym) (4)
This generalizes to n-ary relations.

It is now straightforward to give the calculation of a set of next
states given the set of present states Q1 and the transition
relation R:
Next(Q1) = ∃xi [R(xi , yj) ∧ Q1(xi)] (5)
By performing an existential abstraction, we extract only the
second elements of pairs. The above operation is performed
with BDDs (representing characteristic functions):

χnext = True if ∃xi [χR ∧ χQ1]

7. METHODS OF IMAGE COMPUTATION

In the previous section it was shown that the model checking
technique requires an exploration of states as the system evolve
from the initial state s0 in discrete time steps. Given the SML
structure by the set of states and the transition relation R, one
can (in principle) easily compute the set of states Q that satisfy
basic temporal properties, namely EX, EG, EU, [12]:

Q(EX f) = R-1 (Q(f))

Computing of Q(EG f) is given as an algorithm:

2S
 EG (CTL f){

 k:=0; Z k:=S;
 do {
 Z k+1:=Q(f) ∩ R -1

 (Z k);
 if (Z k+1=Zk) return Z k;
 k++;
 } forever;
}

Computing of Q(EU f, g) is given by another algorithm:

2S
 EU (CTL f, CTL g){

 k:=0; Z k:= ∅;
 do {
 Z k+1:=Q(g) ∪(Q(f) ∩R-1

 (Z k));
 if (Z k+1=Zk) return Z k;
 k++;
 } forever;
}

While examining above algorithms, it is observed that basic
operations include set operations such as union and intersection.
These operations can be computed in time proportional to the
product of number of BDD nodes representing the sets. It is
obvious that the largest set to be represented is the set given by
the inverse transition relation R-1. Although the presented
algorithms are constructed using the inverse transition relation,
the same can be done using forward transition relation, termed
image computation. This paper will address the latter.

Transition function method

The Transition function, introduced in [13] was the first one
used in the image computation process. Image computation is
defined by the following expression:

))())(((
1

xSxfyx ii
ni

∧⇔∃ ∧
≤≤

 (6)

where x are all present state variables (x1, x2 … xn), yi is one of
the next state variables, fi is the next state function as given
before, and S(x) is the set of states for which image
computation is taken. S(x) and fi are represented as BDDs, and
the same goes for the result of the image computation. For the
simplicity we shall mark the following expression as Ti(bit

relation):)(xfyT iii ⇔= .

Since the product of the Ti (Relational product) is very large
when represented as BDD and the result of the image
computation is not, it is necessary to avoid its size explosion. To
prevent size explosion, the constraint operator (↓) is used which
can reduce the amount of memory needed. Another two
methods for minimizing the amount of used memory are
Domain partitioning and Co-domain partitioning, both based on
recursive division of the computation.

The Domain partitioning is a method in which division of the
problem given by (6) is made regarding current state variables
as shown in following expression:

))(())(()6(
11

vvi
ni

vvi
ni

STxSTx ¬¬
≤≤≤≤

∧∃∨∧∃= ∧∧
where v is one of the current state variables(xj). Index v in the
expression denotes Shannon cofactor with respect to the
variable v. The Co-domain partitioning is the division method
made on next state variables in the same manner as the domain
partitioning:

��

�
��

�

∧∃∧∨��
�

��

�

∧∃∧= ¬
≤≤≤≤

∧∧))(())(()6(
11

STxvSTxv vi
ni

vi
ni

where v is one of the next state variables. It was shown by [13]
that Domain partitioning outperforms Co-domain partitioning in
most of the cases. However there are cases in which one of the
methods runs for extremely long time (didn’t finish) while the
other gives the results in reasonable time.

Transition relation method

The Transition relation method is based on calculation of
conjunctions in the expression (6), which regularly might result
in BDD size explosion. To avoid the explosion, the following
theorem (distribution of existential quantification over
conjunction) is used:

[] [])(),()(),(ygyxfxygyxfx ∧∃=∧∃ (7)

If the theorem (7) is applied to the expression (6), it can be
observed that (6) can be simplified during the computation. If

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 622

conjunctions are taken in such an order that results of
conjunctions can be existentially quantified as soon as possible,
the intermediate results during the image computation would be
smaller in size. There have been a number of implemented
algorithms that address quantification schedule due to many
possible criterions of picking conjuncts. The criterion should be
as simple as possible, should be independent on any other
optimization criteria (such as variable ordering) and should
perform well for any circuit and any given current state [14].

Hybrid method
Even by using early and efficient quantification schedulers there
is still a class of systems that can’t be traversed with transition
relation method.

A dependence matrix D is defined as a matrix in which rows
represent bit relations Ti and current state set S, while columns
represent current state variables. Elements of the matrix are
defined as D(i,j)=1 if the function bounded by i-th row depends
on variable bounded by j-the column and D(i,j)=0 otherwise.
Systems that can’t be traversed with transition relation method
have dependence matrix close to full since there is no “smart”
schedule for the case in which every bit relation depends on all
variables.

The solution lies in division of the matrix into two submatrices.
The division is made as in the Domain partitioning manner [15],
that is one of the submatrices is calculated by setting current
state variable v to true, and the other one by setting variable v to
false. The resultant matrices were shorter for the column that
was bounded to splitting variable v and possibly not as full as
the matrix before the division. In the case of full resulting
matrices, the division process can run iteratively. When the
resulting submatrices come close to the triangular form, the
Transition relation method is being applied. In order to decide
whether the conjunction should be made or not, a Normalized
average lifetime (NAL) is being used.

8. CONCLUSION

In this paper we have presented a feasibility analysis of formal
verification methods in the design of computing systems that
can be abstracted by state transition models. The analysis can be
summarized in two directions: (a) along the computing system
to be verified (hardware or software) and (b) along the
employed verification method (deductive or model checking).

It is essential to note that the verification is employed not on the
implemented system itself, but on the abstracted SML model. In
this respect hardware systems are in better position since the
introduction of description languages (HDL) has made it simple
to design systems in terms of their behavior as well as their
implementation. Behavioral descriptions are the basis for
writing transition abstractions of designs and environments.

Software systems are much more difficult to verify. There is no
automatic method for abstracting a common programming
language fragment into a formal model. A user is compelled to
manually generate the logical (clausal) description of the
interested program fragment (in the case of deductive
verification), or carry out a coexisting programming in a

language that can be automatically abstracted to SML (in the
case of model checking verification).

Focusing on the deductive verification method, the most
difficult steps that require careful, precise and ever diverse
approach are the clausal symbolic representation, selection
strategy, and resolution with equalities.

In the model checking approach we have identified the image
computation as potentially expensive operation (even with
BDDs). We have presented three methods from the literature
and examined their performance. Image computation by the
Hybrid method shows a potential for improvement when carried
out on a distributed system, since it can be made at the level that
is higher than the BDD package level. Because the Hybrid
method does the splitting as the first step, it is possible to
compute each of the subtasks on different machines.

9. REFERENCES

[1] P.Wolper, "Temporal Logic Can Be More Expressive",
Information and Control, No. 56, 1983, pp. 72-99.

[2] Clarke, E. et al, Model Checking, The MIT Press, 1999.
[3] J.V.Guttag et al, "Some Remarks on Putting Formal

Specification to Productive Use", Science of Computer
Programming, Vol. 2, No. 1, Oct. 1982, pp. 53-68.

[4] E. A. Emerson, "Temporal and modal logic", in J.Van
Leeuwen (ed.), Handbook of Theoretical Computer
Science, Volume B, Formal Models and Semantics, The
MIT Press,1990, pp.995-1072.

[5] D.E. Thomas, P.R. Moorby, "The Verilog Hardware
Description Language", Kluwer Academic Publishers,
1991.

[6] S-T. Cheng et al, "Compiling Verilog into Timed Finite
State Machine", Proc. of the 4th IEEE International
Verilog HDL Conference, IVC'95, Santa Clara, 1995,
p.32-39.

[7] M.Broy, Toward a Mathematical Foundation of Software
Engineering Methods, IEEE Trans. On Software
Engineering, Vol. 27, No.1, January 2001, pp.42-57.

[8] "Specification and Description Language (SDL),
Recommendation Z.100", Technical report, CCITT, 1988.

[9] G. Booch et al, "The Unified Modeling Language",
Addison-Wesley, 1999.

[10] K.L.McMillan, The SMV System, Carnegie-Mellon
University, 1992.

[11] Newborn, M., Newborn, M., Automated Theorem
Proving: Theory and Practice, Springer Verlag, 2001.

[12] Janssen, L.J.M, Logics for Digital Circuit Verification,
Ph.D. Thesis, Eindhoven Tech. University, 1999.

[13] Coudert, O. and Madre, J.C.. “A unified framework for
the formal verification of sequential circuits”,
Proceedings of the IEEE International Conference on
Computer Aided Design, pp. 126-129, November 1990.

[14] D. Geist and I. Beer: “Efficient model checking by
automated ordering of transition relation partitions.”,
Computer Aided Verification, 6th International
Conference, CAV'94 Proceedings, vol. 818 of Lecture
Notes in Computer Science, pp. 299--310, 1994.

[15] Moon IH. Et al, “To split or to conjoin: the question in
image computation”, Proc. of the Design automaton
conference, pp. 23-28, 2000.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 6 23

