A Synthesized Framework for Formal Verification of Computing Systems

Nikola Bogunovic, Igor Grudenic, Edgar Pek
Faculty of Electrical Engineering and Computing, Universftgagreb,
Zagreb, 10000, Croatia

ABSTRACT

Design process of computing systems gradually evolved to a
level that encompasses formal verification techniques.
However, the integration of formal verification technigueto

a methodical design procedure has many inherent
miscomprehensions and problems. The paper explicates the
discrepancy between the real system implementation and the
abstracted model that is actually used in the formafication
procedure. Particular attention is paid to the seamless
integration of all phases of the verification procedure that
encompasses definition of the specification language and
denotation and execution of conformance relation between the
abstracted model and its intended behavior. The concealed
obstacles are exposed, computationally expensive steps
identified and possible improvements proposed.

Keywords: Formal methods, System engineering, System
modeling, System verification.

1. INTRODUCTION

Analysis and design of computer-based systems is esbential
still based on the process that encompasses diverse ihforma
steps. More specifically, these steps are the fornounladf
requirements (what the system should and should not do),
specification and analysis, design (how would the systems
achieve its goals), coding (the actual programming), unit
testing, integration and systems testing. Correctnasgjigarly
validated by simulation and testing. However, such an apgproac
can only prove the presence of bug, but never its absence.

Formal methods applied in developing computer-based systems
are mathematical procedures for describing and verifying
system properties and its behavior. Hence, formal vatidic is

the process of ensuring that formal model of the dedigp {
implementation) satisfies a formal specificatidBpé¢ with
mathematical certainty, or plainly that an implemenotati
conforms to specification. The possible conformance ioakst
are equivalencies, various simulation relations, (Idpica
satisfaction, (logical) implication, refinement, etc. riRal
verification guarantees beyond any doubt a correct relation
between mathematical objedtap and Spec However, it does
not establish the correctness of a real implementatidraated

by Imp.

In this paper we will formally define the abstracted modi¢he
examined computer-based systeimp) by adopting state
machine descriptions from the automata theory. The concept
will be restricted to finite (but extensive) stateteyss. Since
real implementation procedures differ from this formal
description, a mapping from some design (programming)

18 SYSTEMICS, CYBERNETICS AND INFORMATICS

language to state machine description is needed. Nexuilive
define the specification languagspe¢ that, best to our
knowledge, captures the intended behavior of the finite stat
system. The possible adopted conformance relation will be
restricted to formal logical concepts of satisfactiamd
implication. The goal of this paper is to show the felisitof a
seamless integration of real system implementatioo the
verification process that encompasses transformation to a
formal model [mp), possible definition of interesting system
behavior in terms of formal specificatioBfeg, and finally the
conformance betweelmp and Spec The outlined synthesized
process has some notable and concealed obstacles with
computationally very expensive steps that will be identifiad
possible improvements proposed.

2. IMPLEMENTATION MODEL

A state machine SM) is a simple mathematical model,
fundamental and ubiquitous in computer-based systems. A
programming language is one way to describe a state meachi
The execution of a program corresponds to an execution of the
state machine it describes. A software system is a eongpéte
machine with a huge state space. Notable examples of such
systems are reactive programs that maintain an ongoing
interaction with their environment. In addition to input/output
relations, such programs must be specified and verifiéztins

of their behavior.

A state system (machin&V, as defined in this paper, is a 6-
touple(S, I, O, N, § Y) whereSis the set of statekthe set of
input bit-patternsO the set of output bit-patternsl the next
state relation (often reduced to a functid®),/7 Sis the non-
empty set of initial states antthe output function. ISis finite,
thenSMis a finite state machine. Havilgto be a relation, we
can more easily model nondeterminism. An execution fragment
is a finite or infinite sequend@, S, ...) of states such th#or

all i (s, s«1) is a step ofSM An execution (trace) is an
execution fragment starting with an initial state&St A state is
reachableif it is a state of an execution. The behavior of the
systemSMis the set of all traces & With a model that has
both finite and infinite traces, whenever one proves some
property about the behavior it describes, one usually have to
structure the proof into two parts, one to handle the ftrétee
case and one to handle the infinite trace case. If one tcaeeo
the infinite traces one cannot talk about certain system
properties like deadlock or fairness. To do so requirdgig@n
additional structure (e.g. fairness constraints) to trioe
behavior of the sate system. The paper concentratesrityima
on the finite-trace models that encompass (possibly iefinit
collection of finite traces.

Given a state machine model of a system, one can fgrmall
reason about properties of the model (not the real sysseif).i

VOLUME 1 - NUMBER 6



The most important is the property of a truthfulness of
associated expressions in any reachable state (oA sates)
along the trace of a system (ex. "Starting from thées, can

the system ever reach a state for which a deadlock is
imminent?"). Hence, with each state there is an astsotset of
expressions given in some formal logic. The simplestskioid
expressions are atomic formulae in the propositional logic,
defined from a set of valid proposition®\R). A labeling
function L:S-.2*% is introduced to associate with each state
(member ofS) an interpretation of the atomic propositions from
the setAP, i.e. throughL we know for each state which atomic
propositions are assigned true. As the system evolubstiwie

in discrete steps (change states) one can reason about its
behavior. The aggregated model of a system implenamtir

only a part of it) can be callestate machine with labeling
(SMD. It denotes the usual Kripke structure [1] or the
equivalent automaton.

A Kripke structure directly corresponds to anregular
automaton, where all the states are accepting. Spdlgifiea
Kripke structure (S, § R, L), where R is a total transition
relation, can be transformed into an automatonsAS({1}, A,

{1}, SO{1}). In this notation the input alphabet is denoted by
¥=2"" Sis the set of states addis the transition relation. Fig.1
depicts a particular Kripke structure and the corresponding
finite automaton [2]. In the sequel we will use the t8RiL to
denote the class of analogues transition structures latighing

on arcs or states).

{p, a} {p}

{a}

Figure 1. Kripke structure (top) and the equivalent automaton
(bottom).

SYSTEMICS, CYBERNETICS AND INFORMATICS

3. FORMAL SPECIFICATION LANGUAGE

A formal specification languageSL provides a notation
(syntactic domain), a universe of objects (semantic d9ma
and a precise rule definitions that specify which objecisfgat
each specificationSL is a triple<Syn, Sem, Sat>whereSyn
and Semare sets an®at /7 Syn x Semis a relation between
them [3]. The more explicit specification language impties
better-defined formal method. Specification language that is
fundamentally advantageous in specifying system behavior
should belong to the family of temporal logic. In this paper
concentrate on the branching discrete time temporal logic,
computation tree logic (CTL) formulae [4].

Formula in CTL temporal logic can be true for some stafe
the underpinning model (denoted by tB#&IL) and false for
other states. Formulae my change their truth values as the
system evolves from state to state. CTL formulaebaii from
atomic prepositions, standard Boolean operators, and tampor
operators. Atomic propositions express state properfigbeo
system (e.g. signal “valid_user” is set to true in plaeticular
state). Temporal operators describe when these propeaties
to be satisfied. Each temporal operator consists of th pa
quantifier and a temporal modality. The path quantiffer
indicates that a property is true for all computatiomaceés,
paths), andE denotes that it is true for some computation (trace,
path). The temporal modality describes ordering of events i
time of computation, and can be one of the followiRg{in
some future and possibly current sta@)in every state)X (in
the next state)J (strong until). In CTL one can easily express
properties such as: "For any state, if a valid_user occurs
(requesting validation), it will eventually be answered":

AG [ (valid_user=true)= AF (answer=true) |
Any CTL formula¢ could be interpreted within the giv&ML
structure as specifying a set of states, namely thotes dor
which (SML, s /= ¢) holds, or formally:

Q(¢) TS is a set of states such thatfi¢ {s | SML, s /= #}.
Usually we require that the initial state is included, & 7
Q(#). Clearly, the verification procedure encompasses
exploration of states as the system evolves from thalistate
S in discrete time steps.

4. DEVELOPING SML MODEL

In hardware engineering, the introduction of description
languages (HDL), like Verilog [5], has made it simpled&sign
systems in terms of their behavior as well as their
implementation. In addition, using behavioral descriptions
makes it easy to write abstractions of designs and emants.
Abstractions, which can be used to reduce system complexity,
are an important aspect of hierarchical synthesis/vetiditaf
large systems. Most HDLs are designed for simulationtlagid
semantics are either defined in terms of simulatésults or left
undefined. The lack of formal semantics makes it hargplya
advanced verification techniques to existing designs writien i
these HDLs, since it is hard to guarantee the same loghavi
the synthesized and verified circuits. To make it posstbl
utilize verification algorithms one needs to bridge the gap
between HDLs and the formal models (suchSAdL). One
distinct solution to this problem is given in [6].

By using timed finite state machines to model behaviors of

Verilog programs, authors separated the problem of detieign
whether the program is "implementable" from the problem of

VOLUME 1 - NUMBER 6 19



deciding if a program is "synthesizable". The extradtee:d
finite state machines (0BMLs) can model almost arbitrary
programs, built from the defined subset of Verilog. Hosvev
the extracted time@&MLs are not optimal in any sense, rather
they only closely emulate Verilog program. Control flgraphs
(CFG) represent the execution of a Verilog progr&fG are
defined as multi graphs = (V, + V,, E), whereV, is the set of

all distinct pausesy. is the set of all conditional statements and
E is the set of edgesF(vi, W) JE iff w TV, + V..

Conceptually, the product of two sets of machines; timing
machines and untimed machines logically models Verilog
process. Timing machines determine how long a program can
stay in a certain state, using values of logical expmessin
conditional statements. Untimed machines use program context
and transitions of timing machines to compute the next state
variables and resolve contention among variable updates.

Software engineering deals with the development of large
often complex information processing systems. The
development process can hardly be carried out with modeling
and description techniques that are based solely on
programming languages [7]. As an aftereffect special timage
languages like SDL [8] and UML [9] have become popular. All
these approaches are too syntax oriented and lack a proper and
simple semantic foundation. Consequently, the tool support for
design validation and verification remains shallow, evengho

the theoretical foundations are today quite powerful. What is
needed however, is a mathematical theory that will give
semantics to the description techniques. Unfortunatelyt af lo
work in the future is needed to achieve this goal.

Prevailing practices in attempting to verify software igles
follow two approaches. In automated reasoning about a pnogra
fragment, a software tool carries out symbolic exeocutf a
program or verifies that a program has certain required
properties. Such a software verification tool must hapeoper
representation of an interested program fragment. dRews
tools based on Automated Theorem Proving (ATP) reghie t
program fragment to be represented as the set of lodgeases.
Logical representation of even a very small progfeagment
requires many input clauses that must be generated by hand.
Hence, what the user is trying to verify is not an imgletad
program fragment, but rather its image generated by amiafo
method.

The other approach exploit a special modeling language (e.g.
SMV, [10]) that has a synchronous data-flow semanticscand
verify programs in this language with respect to tempogit
formulas Speg. CTL class of the specification language is
given in the previous section. The input language of SMV is
designed to allow the description of finite state systemm
supports parallel assignment syntax. The semantics of
assignment is similar to that of single assignment dat
languages. A program fragment can be viewed as a syftem
simultaneous equations, whose solutions determine the next
state. Again, a verification process is carried out aotthe
actual programming language implementation, but on the
specific SMV representation, developed informally and
resembling a program fragment. What is needed here is an
automatic, possibly sound and complete transformation of the
SMV program into a final implementable language, or a
transformation of a software design (given in the pasicul
programming or specification language) into the SMV
description (analogous to the development of a finitdée sta
machine model from the Verilog description in hardware
engineering).

20 SYSTEMICS, CYBERNETICS AND INFORMATICS

5. DEDUCTIVE VERIFICATION

Theorem proving is a technique where both the system and its
desired properties are expressed as formulas in some
mathematical logic. This logic is given byfarmal system
which defines a set of axioms and a set of inference.rules
Theorem proving is the process of finding a proof of a prgpert
from the axioms of the system. There are many references
covering various types of proof systems such as: natural
deduction, axiomatic systems, tableau, etc. We hypothegire

the procedural semantics of proof systems is essdntitie
verification process, and therefore our focus is on the
resolution-based deduction, explicated by the following -well
known algorithm (for the predicate logic):

Deduction {
Define_implementation_as_wff_formulas_{E ah
Define_property_as_wff_formulas_[H b}
Form_the_set {F J={E 0 —-{Hp};

Convert {F .} to clauses {K ;};
r epeat
Chose_clauses_k1_and_k2_from_{K ih

New-k := resolve(k1, k2);

New-k' := simplify(New-k, {K i

{K;} = simplify({K i }, New-k");
unti |
(empty_clause_found R
no_more_deductions);
if
(empty_clause) return "proved";
el se

return "no_contradiction";}

There are many difficulties in executing this algorithm, thet
most notable are clausal representation, selectrategy and
resolution with equalities. In the sequel we will brredixplain
each of them.

Clausal representation of a computing system ranges drom
apparent low-level hardware description, to a detailechbsljim
description of a program. Even though theoretically sound,
representing program statedj of a software design as a logic
predicate is very tedious and frustrating. When definingnger
of the predicat®S in addition to the current instruction symbol
(current_ins}, one needs to define functions to construct a list
of names and values of variables in that stze {/al9y:
PS(current_inst, var_vals)
A huge additional step in presenting a program to an autaimat
theorem prover is to write the clausal representatiorevery
statement in the program. A simple assignment state(&h
may have the predicate form:
AS(name, as_var, as_exp, hext_inst)
Where name defines the statemengs_var is the variable
assigned toas_expdefines the expression to be evaluated, and
next_instis the next instruction to be executed. General axiom
that says: "in statp applying the assignmeatleads to the state
g', may have the predicate logic well formed form:
(PS(p1, p2)y/AS(al,a2, a3,a4)y= PS(ql, g2)
or in the normalized clause form:
-PS(pl, p2Y7/-AS(al,a2, a3,a4))/PS(ql, g2)

A selection strategy fdk1 andk2 is chosen according to some
heuristics on the nature of the application (ad hoc approach).

Finally, equality is a special relation (reflexive, syatnt and
transitive), very important to symbolize many theoremsain

VOLUME 1 - NUMBER 6



natural way. To properly use the equality relation iheotem
prover its features must be specified with a set of axiom
leading to an extension of the formula set. Moreover, duhag
execution of the proving process this method generates
numerous useless clauses. Other approaches employ the
paramodulatiorinference rule, or some form mwriting, [11].
Paramodulation rule is an extension to non-unit of the egquali
substitution which says that if a clauSecontains ternt and a

unit clause iss=t then inferC with s replacing one single
occurrence oft. There are problems of over-generation of
paramodulants, resulting again in an uncontrolled grofvtheo
size of terms. There is a need to restrict the apjliisabf the
paramodulation. A partial solution comes from the theory of
rewriting systems. The basic idea of rewriting systesso
orient equations into rewrite rules with a partial ordefined

on first order terms, i.e. allow substitutions of eqeams only

in some directions. In this way an equat®rt is used as a
rewrite rules=t that can be used only to rewrite instances of
with instances of (and not vice versa).

An advantage of deductive verification though, is that it lman
used for reasoning about infinite state systems. Thectasle
automated to a limited extent. In the process of findiqmoof,

the human user often gains invaluable insight into the system
and the property being proved. However, because of the
undecidability of a general mathematical logic, no liogih be
placed on the amount of time or memory that may be neaded
order to find proof. In particular, the theory of comput#pili
shows that there cannot be an algorithm that decides whether an
arbitrary computer program terminates. This limits wdeat be
verified automatically. Nevertheless, theorem provere
increasingly being used today in the mechanical verificaifon
safety critical properties of hardware and software dssig

6. VERIFICATION BY MODEL CHECKING

In the classical proof-based verification, the systencresn

is a set of formulag™ (in a suitable logic) and the specification
is another formul#@. The verification method consists of trying
to find a proof that”™ |- ¢ (i.e. by applying allowable rules to
the set/, derived). In a model-based approach [2], [10], [12], a
finite modelM in an appropriate logic represents the system.
The specification property is again represented by fornpula
The verification method consists of computing whether a model
M logically satisfiesh (i.e.M |= ¢). The model-based approach
is potentially simpler that the proof-based approach,itfis
based on a single modd, rather than a possibly infinite class
of them. In model checking one is not concerned with semantic
entailment (" |= ¢), or with proof theory { |- ¢), but rather
with the notion ofsatisfaction i.e. the satisfaction relation
between the model and a formula {= ¢).

The modelM is a transition system and the propertesire
formulas in temporal logic. Since computing processes are
predominantly state transition systems, they can be
appropriately modeled by th8ML formalism. Clearly, the
model checking technique requires an exploration of states as
the system evolves from the initial stagérsdiscrete time steps.
All possible successor states are given by the rel&idlle use
the notatiorR(s)to denote the sett{S | (s,t)7R}. From this, it
is easy to derive the Boolean immediate neighboring fomcti
as given in [12]:

n: SXS - B, with7(s, t) = TRUE if (s, t)/R,

SYSTEMICS, CYBERNETICS AND INFORMATICS

where B={0, 1}. The functions clearly gives the set of
neighboring states H(S):
H(S) = {t | L= 7(s, )=TRUE} @

Assuming the above formal preliminaries, we can comghee t
set of all reachable states RC, given the set adélirdtates §

Let us denote the set RC to comprise recursively allritial

sets (9 united with all the states that are immediate suocess
of so far reachable states. The traditional breadth-first
computation to derive the set of reachable states is givéhe
following algorithm:

find_reach (S o
RC:=0; New:=S g;
do{
RC:= RC 0O New;
Next := H(New);
New := Next\RC;
} while(New # 0O);
return RC;}

The presented algorithm is expressed in terms of opesatio

the sets of states. Finite states can conveniently bermepted
using bit vectors data types. Assuming that all bit vector
operations needed for the above algorithm 1@kdQ| ) time,
where QIS, and that in the worst case only one state is
discovered "reachable" per iteration, the overall complesi

O( |QF ). However, the number of reachable states is in the
worst case exponential in the number of register sighéts),(
rendering this approach to state space exploration unrdalizab

A much more efficient computer representation and
manipulation ofSML structure is achieved by Reduced Ordered
Binary Decision Diagrams (ROBDD), or BDD for short. B
were first studied as a useful representation of boolean
expressions. Binary decision diagrams have their roothdan
decomposition of Boolean functions given by the Shannon
expansion with respect to a variable:
f= X f><i + Xilfxi' (2)

with cofactors:

f)(i (le ey )ﬁ) = f(X11 ce X1, 11 Xidy oony )ﬁ)

fuir (X1, <o %) = F(Xe, ooey X2y Oy Xy oeny X0)-

The expansion formula can be represented by a binary tree with
root node x and left branch as the cofactgr,fand right branch

as the cofactor,f . Recursive application of the Shannon
expansion theorem, while keeping strict variable ordenivit
identification of isomorphic sub-graphs and removal of
redundant nodes, concludes the building of a BDD. The power
of BDD representation is that it does not explicitly enurteera
Boolean function values, but rather values are givendnny

all paths to the terminal node (rendering exponential number of
paths by a linear number of nodes). Such a Boolean function
representation is canonical, but its size can criticddigend on

the variable ordering.

The key to exploiting the power of BDD representation is to
express a problem in a form where all mathematical tshgre
represented as Boolean functions. Let B = {0, 1} an&EtB"

be a set of points of the Boolean space. It is possildefine a
function xs : B" - B, called thecharacteristic functiorof S,
that has the value of 1 exactly for the points bffEt are in S:
KB, xOS = xs(x)=1 (3)

VOLUME 1 - NUMBER 6 21



The definition of the characteristic function can be extertided
subsets of an arbitrary finite set Q, by providing an thjec
mapping E : Q- B" . Such a mapping is called a binary
encoding of Q. In many applications, the domains have a hatura
encoding, e.g. the binary encoding of finite integers.

The set of states in a computing systems are not repedsen
explicitly, but rather sets are represented by their chersiit
functions and subsequently by BDDs. This approach is known
assymbolicor implicit analysis. The key point is that the BDD
representing a set of states may be quit small. Focdhect
interpretation of a set as a BDD, we should a-prioriafizet of
encoding (placeholder) variables {d<i<n }, and assume all
characteristic functions be expressed in them.

Likewise, for a binary relatiolR 7 @ x Q , we define its
characteristic functionyz : Q; x @, - B. Given different sets
of variables to identify the elements of; G@Qnd Q, the

characteristic function is:

XRXT s Ko Yo s W) S XQ1(Xas oen K) - X2V o M) (D)
This generalizes to n-ary relations.

It is now straightforward to give the calculation ofet of next
states given the set of present statgsa@d the transition
relationR:

Next(Q) = Li [R(%, ¥) LQu(x) ] ©)

By performing an existential abstraction, we extract dhly
second elements of pairs. The above operation is performed
with BDDs (representing characteristic functions):

X = Trueif L [xr E){Ql]

7.METHODS OF IMAGE COMPUTATION

In the previous section it was shown that the model checking
technique requires an exploration of states as the systaue ev
from the initial state sin discrete time steps. Given ti$#ML
structure by the set of states and the transition rel&jwmne

can (in principle) easily compute the set of st&@ebat satisfy
basic temporal properties, namely EX, EG, EU, [12]:

Q(EXf) =R*(Q(f)
Computing of Q(EG f) is given as an algorithm:

25 EG(CTL f){

ki=0;Z «:=S;

do{

Z «1:=Q(f) nR™*(Z«);
if (Z v1=Zy) returnZy;
k++;

} forever;

}

Computing of Q(EU f, g) is given by another algorithm:

25 EU(CTLf, CTL g){

ki=0;Z «:=0;

do{

Z «1:7Q(@) 0Q(f) nR' (ZW)
if (Z v1=Zy) returnZy;

k++;

} forever;

}

22 SYSTEMICS, CYBERNETICS AND INFORMATICS

While examining above algorithms, it is observed that basic
operations include set operations such as union and intersecti
These operations can be computed in time proportional to the
product of number of BDD nodes representing the sets. It is
obvious that the largest set to be represented is thygveet by

the inverse transition relation "R Although the presented
algorithms are constructed using the inverse transitiation,

the same can be done using forward transition relatiameter
image computatiariThis paper will address the latter.

Transtion function method

The Transition function, introduced in [13] was the first one
used in the image computation process. Image computation is
defined by the following expression:

(L Y = H(9)0S) (©)

I<isn

where x are all present state variables Xx ... x,), i is one of
the next state variable§,is the next state function as given
before, andS(x) is the set of states for which image
computation is takerS(x)andf; are represented as BDDs, and
the same goes for the result of the image computationthEor
simplicity we shall mark the following expression agbit

relation): T =y, = f,(X).

Since the product of th& (Relational product) is very large
when represented as BDD and the result of the image
computation is not, it is necessary to avoid its size siquio To
prevent size explosion, the constraint operatdiq used which

can reduce the amount of memory needed. Another two
methods for minimizing the amount of used memory are
Domain partitioning and Co-domain partitioning, both based on
recursive division of the computation.

The Domain partitioning is a method in which division loé t
problem given by (6) is made regarding current state vasabl
as shown in following expression:

® =0x( [ (T), 0S) 0x( [ ()., 0S.,)

Isisn Isisn
where v is one of the current state variablgs(®dexv in the
expression denotes Shannon cofactor with respect to the
variablev. The Co-domain partitioning is the division method
made on next state variables in the same manner asrti@ndo
partitioning:

©=|voo g m, 09| 1lvo g ., 09|

I<isn I<isn
where v is one of the next state variables. It was sHoyn{13]
that Domain partitioning outperforms Co-domain partitiorimg
most of the cases. However there are cases in whiclofahe
methods runs for extremely long time (didn't finish) whthe
other gives the results in reasonable time.

Transtion relation method

The Transition relation method is based on calculation of
conjunctions in the expression (6), which regularly mightite

in BDD size explosion. To avoid the explosion, the following

theorem (distribution of existential quantification over

conjunction) is used:

4 f (x y) Dg(n)] =04 f (x.y) Dg(y) ™
If the theorem (7) is applied to the expression (6)an be
observed that (6) can be simplified during the computation. If

VOLUME 1 - NUMBER 6



conjunctions are taken in such an order that results of
conjunctions can be existentially quantified as soon ashpessi
the intermediate results during the image computation would be
smaller in size. There have been a number of implemented
algorithms that address quantification schedule due to many
possible criterions of picking conjuncts. The criterion sthdng

as simple as possible, should be independent on any other
optimization criteria (such as variable ordering) and should
perform well for any circuit and any given current state.[14]

Hybrid method

Even by using early and efficient quantification schedulens the
is still a class of systems that can't be travessil transition
relation method.

A dependence matri® is defined as a matrix in which rows
represent bit relation§i and current state s&t while columns
represent current state variables. Elements of theixmare
defined a(i,j)=1 if the function bounded biyth row depends

on variable bounded bythe column and(i,j)=0 otherwise.
Systems that can't be traversed with transition relatiethod
have dependence matrix close to full since there is nortsma
schedule for the case in which every bit relation dependd on a
variables.

The solution lies in division of the matrix into two suldries.
The division is made as in the Domain partitioning manner, [15]
that is one of the submatrices is calculated by settingeraur
state variable totrue, and the other one by setting variabl®
false. The resultant matrices were shorter for thaneol that
was bounded to splitting variableand possibly not as full as
the matrix before the division. In the case of full resglti
matrices, the division process can run iteratively. WViige
resulting submatrices come close to the triangular faha,
Transition relation method is being applied. In order doide
whether the conjunction should be made or not, a Normalized
average lifetime (NAL) is being used.

8. CONCLUSION

In this paper we have presented a feasibility analysisrmal
verification methods in the design of computing systems that
can be abstracted by state transition models. The anabsibe
summarized in two directions: (a) along the computingesyst

to be verified (hardware or software) and (b) along the
employed verification method (deductive or model checking).

It is essential to note that the verification is emptbyot on the
implemented system itself, but on the abstra&®id model. In
this respect hardware systems are in better position Hiece
introduction of description languages (HDL) has made ip&m
to design systems in terms of their behavior as welthas
implementation. Behavioral descriptions are the basis fo
writing transition abstractions of designs and environments.

Software systems are much more difficult to verify. fEhis no
automatic method for abstracting a common programming
language fragment into a formal model. A user is compete
manually generate the logical (clausal) description of the
interested program fragment (in the case of deductive
verification), or carry out a coexisting programming in a

SYSTEMICS, CYBERNETICS AND INFORMATICS

language that can be automatically abstracte8Ma (in the
case of model checking verification).

Focusing on the deductive verification method, the most
difficult steps that require careful, precise and ever rdéve
approach are the clausal symbolic representation, seectio
strategy, and resolution with equalities.

In the model checking approach we have identified the image
computation as potentially expensive operation (even with
BDDs). We have presented three methods from the literatur
and examined their performance. Image computation by the
Hybrid method shows a potential for improvement whenerri
out on a distributed system, since it can be made #&\bkthat

is higher than the BDD package level. Because the Hybrid
method does the splitting as the first step, it is possible
compute each of the subtasks on different machines.

9. REFERENCES

[1] P.Wolper, "Temporal Logic Can Be More Expressive",
Information and ContrgINo. 56, 1983, pp. 72-99.

[2] Clarke, E. et alModel CheckingThe MIT Press, 1999.

[3] J.V.Guttag et al, "Some Remarks on Putting Formal
Specification to Productive UseScience of Computer
Programming Vol. 2, No. 1, Oct. 1982, pp. 53-68.

[4] E. A. Emerson, "Temporal and modal logic", in J.Van
Leeuwen (ed.),Handbook of Theoretical Computer
Science Volume B, Formal Models and Semantics, The
MIT Press,1990, pp.995-1072.

[5] D.E. Thomas, P.R. Moorby, "The Verilog Hardware
Description Language", Kluwer Academic Publishers,
1991.

[6] S-T. Cheng et al, "Compiling Verilog into Timed Rni
State Machine",Proc. of the 4th IEEE International
Verilog HDL Conference, IVC'95Santa Clara, 1995,
p.32-39.

[71 M.Broy, Toward a Mathematical Foundation of Software
Engineering Methods, IEEE Trans. On Software
Engineering Vol. 27, No.1, January 2001, pp.42-57.

[8] "Specification and Description Language (SDL),
Recommendation Z.100", Technical report, CCITT, 1988.

[9] G. Booch et al, "The Unified Modeling Language",

Addison-Wesley, 1999.

K.L.McMillan, The SMV System, Carnegie-Mellon

University, 1992.

Newborn, M., Newborn, M., Automated Theorem

Proving: Theory and Practige&Springer Verlag, 2001.

[12] Janssen, L.J.Mlogics for Digital Circuit Verification

Ph.D. Thesis, Eindhoven Tech. University, 1999.

Coudert, O. and Madre, J.C.. “A unified framework for

the formal verification of sequential circuits”,

Proceedings of the IEEE International Conference on

Computer Aided Desigpp. 126-129, November 1990.

D. Geist and I. Beer: “Efficient model checking by

automated ordering of transition relation partitions.”,

Computer Aided  Verification, 6th International

Conference, CAV'94 Proceedingsol. 818 of Lecture

Notes in Computer Science, pp. 299--310, 1994.

Moon IH. Et al, “To split or to conjoin: the qties in

image computation”, Proc. of thBesign automaton

conferencepp. 23-28, 2000.

[10]

[11]

[13]

[14]

[15]

VOLUME 1 - NUMBER 6 23



