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ABSTRACT

A game is said to be “quantized" when the expepiagbff to
the player(s) is computed via the higher order oamdation
notion of quantum superposition followed by meamest
versus the randomization notion of probability digition. A
major motivation for quantizing a game is the pt&n
manifestation of Nash equilibria that are supetior those
already available in the game. Quantum superpasitiare
elements of a (projective) Hilbert space which, agha@ther
things, is an inner product space. The inner prodicthe
Hilbert space of quantum superpositions is useé temgive a
geometric characterization of Nash equilibrium inantized
versions of Hawk-Dove games, a class of games iohwihe
well known game Prisoners' Dilemma belongs.

1. INTRODUCTION

Multi-player game theory can informally be descdbas the
mathematical study of conflict and cooperation leetavarious
interacting individuals. Call the interaction game, the
individuals involvedplayers, and the ability of a player to
interact with the other players tpsrre strategies. Suppose also
that each player has stakes in the game callepayaffs and
that each player igational, that is, she will seek to maximize
her payoffs in a manner consistent with some peefes
relation over the payoffs. Alay of the game now entails the
choice of a pure strategy by each player the reguithich is a
tuple of pure strategies calledoare strategy profile. Payoff to
the players is determined by the particular puratetyy profile
employed. In this context, each player will choasepure
strategy that is a_best reptg his opponent’s choice of pure
strategy, thus maximizing his payoff. If every mayucceeds
in finding such a strategy, then the resulting psteategy

ts together with quantum operations on them. Theeafspure
quantum strategies results in a higher order rafmiion
between the pure strategy profiles gaantum superpositions
which are complex projective linear combinationBofeed by
measurement, that is, orthogonal projection. Expected paysff i
now computed via the probability distribution oveure
strategy profiles that results from measurementchSan
extension of a game is known @santization of the game, and
the resulting game itself is called a “quantumthg. Since the
fundamental idea behind game quantization is tfidoroning
guantum superposition of pure strategy profile®ilBt [2] has
recently proposed that pure quantum strategiesartyenon-
empty set. The area of research that studies quagames is
known as quantum game theory and a major considerat
the subject is the appearance of “new" optimaktlose to
optimal Nash equilibria in terms of quantum strgtpepfiles.
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profile is called aNash eqguilibrium. Identification of Nash
equilibria is a fundamental goal of multi-playemgatheory.

In a given game however, Nash equilibria are naessarily
optimal. Worse, they may not even exist. In suckesaVon
Neumann calls upon the players to enlarge theategily sets to
include mixed strategies, that is, randomization between their
pure strategies via probability distributions. Tiree of mixed
strategies results in probability distributions owhe pure
strategy profiles and the payoffs are now compateéxpected
payoffs. When the strategy sets of players aréefitihe merit of
using mixed strategies arises from Nash's famoe®rém
which state's that equilibrium always exists inrterof mixed
strategies. Moreover, it is often the case thah euilibrium is
optimal or close to optimal.

Enlarging the set of strategies available to tlzgeas in a game
is not merely a time honored heuristic. It is inctfaa
mathematically sound procedure in the followingsgerA game
can be viewed formally in terms of ifmyoff function which
takes a pure strategy profile topayoff profile, a tuple of real
numbers that assigns to each player the payofésponding to
the player's particular choice of strategy in ttrategy profile.
As such, the use of mixed strategies in a game atscio
extending the domain of the payoff function to uw
probability distributions, resulting in what is eft called a
“mixed" game. This extension is ““proper", ibathe extended
game can always be restricted to the pure strateégieecover
the original game. Proper extensions allow for aammegful
comparison between the results generated by tleadst game
and the original one. From now on, no distinctiafi lhe made
between a game and its payoff function.

Other extensions are possible. One extension, peabdy
Meyer [4] about a decade ago, allows players tbzetpure
guantum strategies, that is, sets of qudi
Unlike extensions to mixed games however, quanvizatare
not automatically proper. This somewhat subtle feag in the
past led to questions about the relevance of theh Mguilibria
that manifest in improperly quantized games to the
corresponding classical game. Such issues werenthgce
resolved by Bleiler in [2] via a mathematically rivetl approach

to quantization of games in terms of domain extamsin the
language of the Bleiler formalism for ““quantum mg,
guantizations from which the original game andrtiieed game
can be recovered upon restriction of the domain, are
respectively,proper and complete quantizations. Note that a
complete quantization is automatically proper. Bptbper and
complete quantizations make it game theoreticalgammgful

to speak of "new" Nash equilibria in quantizechga.
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Figure 1. A representative from the family of Habkve
games.

A complete quantization of the popular Hawk-Dovemga
Prisoner's Dilemma is proposed by Eisert, Wilkeasd
Lewenstien (EWL) in [3]. These authors show thanhew
optimal Nash equilibrium appears in the game foardum
strategy profiles consisting of a certain sub-clatgjuantum
strategies. However, when quantum strategy profitessisting
of the most general class of quantum strategieegoyed,
the only Nash equilibrium that manifests is the sub-optioma
in terms of the players' original pure strategidewever, a
further extension of the game to includaixed quantum
strategies, that is, probability distributions over the pure
guantum strategies of the players, results in &xNagiilibrium
in which each player gets a payoff close, but rptaé to, the
optimal payoff in the game.

Pure quantum strategy Nash equilibria in quanturwkdBove
games are typically computed by analyzing the prdiba
distributions over the outcomes that result frome th
measurement of a corresponding quantum superposam in
[3] for instance. In this article, the notion of $teequilibrium in
terms of pure quantum strategies of players in HBwke
games is characterized in terms of the geometrthefstate
space of quantum superpositions. Note that mixeaniyum
strategies are not quantum superposition, but rggtabability
distributions over pure quantum strategies. As suoixed
quantum strategies play no further role in thighart

2. HAWK-DOVE GAMES

Hawk-Dove games typically refer to a class of twiaypr
games in which each player has access to two gitateAs
Binmore [1] describes it, such games arise whennwonbers
of the same bird species compete for territory takie of
which isV > 0. Each bird can adopt a Hawkish or a Dovish
strategy. If both birds behave like Doves, theytdpe territory

1
with a value of—V each. If one behaves Dovish and the other
2
Hawkish, then the latter gets the entire territdfyboth birds
behave Hawkish, a fight, carrying a c&@t 0, ensues and the
resulting value of the territory that each bird sgeeduces

1
to—V - C. The strategic form of an arbitrary Hawk-Dove
2
game is given in Figure 1 in which the rows forma #irategies
of, say, player 1, and the columns form the stiategf player
Il. The first entry in each payoff vector in Figutas the payoff
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to player | while the second entry is the payoffpiayer II.
SettingV = 6 andC = 2 produces a popular form of Prisoners'
Dilemma.

Note that the values &f andC influence the behavior of Nash
equilibrium in Hawk-Dove games. For Prisoners' Bifea,
there exists only one Nash equilibrium in terms mire
strategies. Indeed, the pure strategy profile (HaMéwk) so
strongly dominates other pure strategy profiles éxtending

the game to the mixed game fails to produce any Newsh
equilibria [1]. As stated above, quantizing Prissh®ilemma a
la Eisert at al. and using mixed quantum strategiess rise to
Nash equilibria that are superior to (Hawk, Hawk).

3. QUANTUM HAWK-DOVE GAMES

A Hawk-Dove game is typically quantized (properlpy
identifying the set of outcomes

{(Dove, Dove), (Dove, Hawk), (Hawk, Dove), (Hawkattk)}
={(D,D),(D,H),(H,D),(H,H)}

of the game with an orthogonal baBis- {bl, b,,bs, b4} of the

state space of some appropriate quantum systenrewhe
state space is a projective Hilbert space. Thiswallfor the
forming of quantum superpositions of the outcomésthe
game. For the sake of notational simplicity, sugpdbe
identification preserves order. It is importantriote here that
the pair of outcomesH, D) and D, H), the best possible
outcomes in the game for player | and player Il respectiyelre

identified with the basis elemenl3; andb, , respectively.

A function F, referred to in the literature as cmantization
protocol [2], now maps the pure quantum strategies of the
players to a quantum superposition of the gametsoooes.
Measurement produces a probability distribution roviee
outcomes from which the expected payoffs to theyepka as
well as Nash equilibria are computed.

3.1 Nash Equilibrium

The state space of quantum superpositions is, anuther
things, an inner product space entertaining notairengle and
norm. As per the axioms of quantum mechanics, nmeasent
is the orthogonal projection of a quantum supetmsionto
elements of an orthogonal basis of the state splaceow
follows from elementary linear algebra that the Kenathe
angle between a quantum superposition and a Hasieet, the
larger the norm of the measurement along that elsizent.
Moreover, quantum mechanics views the norm of the
measurement of a quantum superposition along & leésinent
as the probability with which the quantum superposi
projects onto that basis element. Therefore, a tguan
superposition, upon measurement, will project witighest
probability onto an element of an orthogonal basis which it
forms the smallest angle. Such a basis elemerdiésést” to a
given quantum superposition.

More precise, lefbe the angle between a quantum
superpositiorP and an elemen of an orthogonal basisf the
state space. Then
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2
cosd = |P IZQ| (2)

relates the angle betweeR and Q to the norm of the
measurement of the quantum superposition al@ng follows
from Eq. (1) that the smaller the valuetbfthe larger the norm
of the measurement alor@ In the following discussion, this
inverse relationship between the angel and the nwilinbe
used interchangeably.

For quantum Hawk-Dove games, this mathematicalcktra
translates into each player seeking a pure quastrategy that
will produce, via the quantization protocol, a qiusn
superposition that is closest to his best posgibteome,_given
the pure quantum strategy of the other player.therowords,
each player will choose a pure quantum strategyishthe best
reply to his opponent’s choice of pure quantumtsgy If
every player succeeds in finding such a pure quarstategy,
then the resulting pure quantum strategy profile Nash
equilibrium.

Again, more precisely, let player | use the pureargum
strategyp and let player Il use the pure quantum stratqgy
Suppose that the paip,(q) is a pure quantum strategy Nash
equilibrium in a quantum Hawk-Dove game. The quaatibn
protocolF takes p, g) to a quantum superposition

S(p,q) = q1b1 +azb, +azby +ayb, 2

2

(b;| are complex number satisfying

wherea; = ‘S

(p.a)
Sal=1 @

2
In Eqg. (3), |ai| is the norm of the measurementaehq)

along the-th basis element, fdr<i < 4.

Now suppose player Il switches his pure quantuatesy to
g*. The pure quantum strategy pap, *) is mapped byF to

the quantum superpositi@t ) Sinceq is the best reply to
p.q

p, the Nash equilibrium paip(q) satisfies

2
‘S(p,q) Ebz‘z > S( p,q*) Ebz (4)

Similarly, if player | switches pure quantum stmteo p*. The
pure quantum strategy paip*( q) is mapped byF to the

guantum superposition}( .
p .

) and as Nash equilibriunp,(q)

also satisfies

5 Ebs\z

o) > s( ) b, (5)
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4. CONCLUSIONS

The game theoretic notion of Nash equilibrium iareleterized
in terms of the geometry of the state space of muman
superpositions. In future, a more general set ufi be
developed for arbitrary two player, two strategymga and
indeed possibly form player, n strategy games. Potential
applications of the geometric of Nash equilibriumgaantum
games will be explored. For example, when the qmatibn
protocol is a unitary operator, its image is a pales of the
state space of quantum superpositions. This gusganthe
existence of an element in the image of the quatitiz
protocol that is the best approximation, via theeinproduct, of
the basis elements of the state space. A Fouraresion of the
basis elements can now be set up in terms of dogohal
basis of the image of the quantization protocol.at\this basis
might be and what it might imply about the quartaa
protocol and how it might relate to the geometry Ndish
equilibrium are open questions to be studied inriutvork.
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