
A Grounded Theory Analysis of Introductory Computer Science Pedagogy

Jonathan Wellons, Julie Johnson
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN 37212, USA

Email: {jonathan.wellons, julie.l.johnson}@vanderbilt.edu

Abstract—Planning is a critical, early step on the path to
successful program writing and a skill that is often lacking in
novice programmers. As practitioners we are continually search-
ing for or creating interventions to help our students, particularly
those who struggle in the early stages of their computer science
education. In this paper we report on our ongoing research of
novice programming skills that utilizes the qualitative research
method of grounded theory to develop theories and inform the
construction of these interventions. We describe how grounded
theory, a popular research method in the social sciences since the
1960’s, can lend formality and structure to the common practice of
simply asking students what they did and why they did it. Further,
we aim to inform the reader not only about our emerging theories
on interventions for planning but also how they might collect
and analyze their own data in this and other areas that trouble
novice programmers. In this way those who lecture and design
CS1 interventions can do so from a more informed perspective.

Keywords: Novice Programmers, Planning, Qualitative Re-
search, Grounded Theory

1. INTRODUCTION

There is much research in the area of self-regulated learning
and its effects on student performance. Students who report
exercising such skills as goal setting, planning, self-monitoring
and self-evaluation experience higher levels of success and
satisfaction then students who do not [1]. For programmers,
planning is one of the first critical self-regulatory skillsthey
will need. Early programming experiences are defined by a
novice’s ability to engage the complex cognitive process of
problem solving while employing the metacognitive processes
of self-regulation. While advice in teaching problem solving
abounds, only recently have we seen developments in soft-
ware tools and learning modules that address the process
of planning. The overall goal of our research is to design
activities and scaffolds to teach and support the metacognitive
skills that novice programmers need to achieve early success
in programming. The focus of this qualitative study was to
use a systematic approach to observe and explain the process
of planning among novice programmers at an undergraduate
university. We began by analyzing interview data with the
aim of developing emergent theories. Such theories and the
subsequent results of testing (not a part of this study) willlead
to the development of tools to help students improve and refine
this critical self-regulatory skill. More specifically we asked,
”What is the theory that explains the process of planning
among novice programmers with no formal instruction in
making such plans?” and ”How could such a theory inform
the construction of scaffolds and learning tools for novice
programmers?”.

In order to address these questions we employ a grounded
theory study. This methodology is common in the social
sciences and is appropriate when attempting to develop the
groundwork for theories while avoiding pre-existing biases.
Our objective is to produce data which can be qualitatively

examined for connections between novice programming plan-
ning, causes or effects of their planning skills and other habits
or tendencies on the part of the students.

2. THE ROLE OF PLANNING IN THE PROGRAMMING

PROCESS

Developers use plans in large-scale projects to model a pro-
gram at a manageable level of abstraction [2]. It is universally
accepted that programming successfully requires planningand
many different strategies are currently in use. The general
model first put into wide use is the waterfall, consisting
of distinct stages of requirements, design, implementation,
testing and maintenance [3]. More flexible models gradually
came to be applied to software beginning with the idea
of iterative and incremental development, a cyclic process
that applies elements of the waterfall model multiple times
allowing for adaptation [4]. In the past few decades many
of the same principles reappeared in slightly different forms,
such as the spiral model [5] and more recently extreme pro-
gramming, agile programming and test-driven development.
Extreme programming is characterized by frequent release
cycles, pair programming, extensive unit testing and flexible
schedules [6], [7]. Agile programming emphasizes open and
frequent communication, adaptability, customer stakeholders
and cross-functional teams [8], [9]. The principle of test-
driven development is to first institute a unit test before coding
each feature or bug fix [10]. Numerous other ideas have been
practiced such as cleanroom software engineering which was
developed to provide reliable and verifiable software [11] and
lean software development which aims to eliminate waste
in all forms (excess bureaucracy, requirements, code, delay,
etc.). It is clear that in order to participate in the design,
management, development and testing of large-scale projects,
students must develop the requisite planning skills exhibited
by productive computer scientists and engineers.

3. RESEARCH ONPLANNING

In his 1986 article Soloway called for a redesign of
Computer Science curriculum to include the explicit teaching
of problem solving skills which included planning and goal
setting. He noted that expert programmers drew from a library
of canned solutions to form a template or starting point for
their solutions. Soloway proposed using goal/plan language
for teaching introductory programming thus making the role
of plans and goals more explicit to the novice from the outset
[12]. In [13] it was demonstrated that teaching programming
strategies and planning was possible, did not increase time
needed for instruction and could be measured through written
assessment.

In response to these reports, several tools have been de-
signed and tested in an effort to support planning and strategy

9SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 6 - YEAR 2011ISSN: 1690-4524



selection using the expert programmer’s approach as a model.
In [14] 25 undergraduate students in two randomly assigned
groups received training in planning by one of two meth-
ods. The treatment group used an intelligent tutoring system
(ProPL) to implicitly scaffold planning through the use of
prompts while the other group received ”click-through” text
describing planning and strategies for programming. Their
results demonstrated the value of a scaffolded approach to
teaching planning skills as the ProPL group fared better in the
assigned programming tasks than did the other group. In [15],
[16] the authors describe two object oriented programming
languages (Visual Plan Construct Language and Web Plan
Object Language) designed to teach programming to novices
through plan management and integration. These languages
facilitate the Plan-Object Paradigm, an approach that gives
context to programming objects by allowing students to create
a plan first and then use that plan to create working programs.

In a more broad approach, [17] explored scaffolds for sci-
entific inquiry and the needs of learners engaging in new and
complex work processes, an appropriate description for novice
programming. The authors evaluated Symphony, a software
tool meant to scaffold the learner’s planning activities. They
used the artifacts created by the tool to analyze the complex
process of scientific inquiry, identifying the needs of learners
that could be further scaffolded. In this way, the tool itself
became a means by which further research could be pursued.

Despite these advances in supporting the novice program-
mer, seventeen years after Soloway’s article, [18] reported
that strategies and plans, though crucial to learning outcomes
in introductory programming courses still receive much less
attention than language related knowledge. They also noted
that the questions of why and how different strategies emerge
and how they are related to underlying knowledge was still
an open question.

Introductory programming classes differ in their emphasis
on planning. Those that encourage it often do so in different
forms. One class may teach the writing of program comments
in advance of any code and a different class might teach
top-down modularization. Students exposed to a limited style
of planning or not exposed to planning at all may experi-
ence deceptive initial success with small projects but have
difficulties later. Basic programming tasks are notoriously
difficult for students to master and many potential majors leave
computer science or fail to gain essential skills (examples
from Australia, the US and the UK in [19], [20]). Given
that programming is an essential skill in many engineering
disciplines (many with a shortage of employees) as well
as advanced coursework and that an enormous diversity of
educational approaches are employed, it is natural to ask if
there is a better way to teach planning.

Kuhl and Goschke [21] proposed a model for self-regulated
learning which includes the steps of goal setting and planning.
Their model was recursive; learners would return to the
tasks again and again as they experienced internal feedback
from the products they generated. This recursion is made
more overt in the programming experience as learners receive
explicit feedback from the compiler or debugger used while
building a program. Error messages and programs that fail
to terminate are external signs to the learner that a change
is required. With few experiences to draw from, reflection is
often limited to the code itself and incremental changes are
made in an effort to improve the outcome. Changes often lead
to incremental success which in turn contributes to progress.

When progress leads to program completion this abbreviated
reflective cycle, fully contained within the coding exercise,
becomes a template for future programming assignments. As
programming problems become more complex progress may
be significantly slowed or halted signaling the learner that
reflection on the larger plan may be in order. Whether this
indication is taken up or ignored, in the presence or absence
of an initial plan constructed by the novice, may yield some
insight into the initial planning process.

4. THE USE OFGROUNDED THEORY AS A METHOD OF

ANALYSIS

Grounded theory is a form of qualitative research based on
the formation of theory from data. Open-ended interview ques-
tions are posed and data is collected in an effort to generate
theories about the domain in question. This methodology can
be described in five steps: 1) gathering of data, 2) open coding
whereby researchers assign discrete codes to the qualitative
data, 3) grouping of codes into concepts and identifying oneor
more important concepts that merit reexamination of existing
data and possibly further data collection to facilitate the
building of a model, 4) axial coding, meaning the construction
of categories that highlight the relationship between concepts
and 5) the suggestion of one or more theories which describe
the relationships. Grounded theory researchers cast a wide
net to capture a diverse and multi-dimensional data set which
may be fertile ground for theories [22]. Making every attempt
to avoid the influence of prior theories or other constructs,
researchers allow the data to form the theory rather than using
existing theories to code and categorize the data.

As practitioners in the university system, we routinely
gather data from our students in an effort to gauge both the ef-
fectiveness of our teaching and the impression it leaves on the
students themselves. Performance data coupled with course
evaluations serve as a reliable record of the course outcomes.
Open-ended questions are often posed to students in an effort
to collect qualitative data to inform future modifications to
the course (”What if anything would you change about this
course?”) or to elicit reaction to recent modifications (”How
did you use the online planning modules when completing
programming assignments?”). When we use this data to make
course refinements we are using some of the techniques
formalized in grounded theory.

We synthesize this data with performance data, anecdotal
evidence and past experience to guide our subsequent steps.
This type of approach is the basis for such research methods
as design based research or action research. By contrast,
grounded theory formalizes the process of data analysis and
produces a theory or set of theories that can then be used to
develop course modifications, controlled experiments or future
research in a broader context.

Qualitative research has been used to investigate novice
programming, although grounded theory has not been applied
to planning specifically. Interviews and coding are used in
[23] to investigate how non-major programmers conceptualize
Java concepts. To investigate if some elementary programming
tasks are more difficult than others, [24] searched for novice
programmer bottlenecks in object oriented programming. Stu-
dents were observed during labs and their affective states
and behaviors were coded. Compiler error logs coupled with
interviews were used in [25] to track the most common errors
made by novice programmers.

10 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 6 - YEAR 2011 ISSN: 1690-4524



Like those involved in the BRACElet Project and the
others, we believe that challenges to CS curriculum should
be approached as research problems requiring established
research methods [26]. We chose to use the grounded theory
approach for several reasons. First, we wanted to use a method
of data collection that was already familiar to us and to many
practitioners in the field of computer science education and
would not require additional equipment or instrumentation.
Second, the systematic approach to data analysis appealed to
us as computer science educators, acting as a segue to other
more unfamiliar qualitative research methods. And finally,we
wanted to demonstrate how student interviews could be used
for more than just the course on which they were commenting,
but could yield insights into more general aspects of the
programming experience.

5. METHOD

Our sample consisted of volunteers from three sections of
an Introduction to Engineering class offered at a research
university in the United States. The course, required for all
freshmen engineering majors, was presented in one four-week
module consisting of approximately 14 one-hour lectures.
This course introduces the fundamentals of programming
(using MATLAB) within the context of cryptography. The
general idea behind the course is to familiarize students with
problem solving techniques and tools (such as MATLAB
and Excel) while giving them a snapshot of the field of
Computer Science and some of its practical applications. The
volunteers came from varying backgrounds and were not all
necessarily declared Computer Science majors. They were
compensated for their time and reflected approximately the
same gender breakdown as the class. None who volunteered
were denied inclusion in the study. Because the goal of initial
data collection is to gather as many different stories and
experiences as possible, thus saturating each category with
explanations and examples, random sampling is not as critical
in grounded theory. In fact, in our discussion section we
describe future data collection that will involve theoretical
sampling–the selection of data based on the potential to
represent the core theoretical constructs being studied.

In order to gather accurate data, volunteers’ names were
removed from their interviews. We asked open-ended ques-
tions and students were encouraged to discuss any aspects of
their programming experience that they deemed meaningful.
The interviewer gathering the data, held office hours and
guest lectured in two or three class sessions of each of
the three sections to develop a rapport with students and
introduce the study. All interviews were voice recorded for
later analysis. Volunteers were encouraged to describe their
experiences during several assignments, what type of plan they
created, how detailed it was, and how it was adapted. Subjects
were questioned about their background in programming, their
hobbies and other details that could lead to a planning theory.
Several hundred codes were derived from the data, which were
in turn placed into 14 concepts. Finally, we organized the
concepts into five categories which naturally suggested the
three theories that comprise our results, as detailed in Sec. 6.

6. RESULTS

Concepts are derived organically, based only on the codes
that are present. The interviews explicitly asked for the content
and complexity of the student’s plan. Examples include “I

made a list of tasks,” “I just started writing” and “I wrote
the comments then filled in the code.” These are clustered
in the Initial Plan concept. In addition, we asked how the
plan performed when the student attempted to implement it
and whether the plan evolved. One subject reported “it all
fell in pretty nicely.” Another said “I realized I didn’t need
some things. I had difficulty making the alphabet [substitution
cipher] work.” These are coded in thePlan Adequacy concept.

We invited students to describe their programming process.
One subject reported “I had a hard time keeping track of
variables for rows, columns, indices and so on.” Another
subject “... relied on old programs and examples.” Other stu-
dents reported difficult language features and the mechanical
details of their run-debug cycle. These codes are grouped
into the Coding Process concept. Subjects were asked about
sources of help during the programming assignments. Many
reported seeking aid from classmates and friends who were
advanced engineering majors or had previous programming
experience. Many students used Google, the MATLAB online
or built-in help, the professor or the textbook. These codes
are clustered into theHelp Sources concept. All subjects are
asked about their debugging process. One student said that
after working on a frustrating bug “I took a day off to clear
my mind, then returned to see if it was right.” Some students
reran their program after every newly added line to check for
errors. Others ran it only when they believe the programming
was finished. A handful of students used debugging output
statements. Considerable diversity was present in the types of
test cases used. Some students used only the cases given in
the assignment, others gave random test cases. These codes
are in theTesting concept.

Subjects were asked about the type of goals they set for the
assignment. Some students focused on grades, one reported “a
B or an A.” Another said simply “to finish.” Other goals were
“to finish before the weekend” and “initially I just wanted itto
work, but later I wanted to satisfy my intellectual curiosity.”
Several students reported they enjoyed the assignment and no
external motivation was necessary, but only one reported that
learning MATLAB was his goal. These codes were placed
in the Goals concept. Student were asked how much time
they took to complete the assignment. Most responses were
between 1.5 and 3 hours. Subjects typically found it took
longer than they had expected, although there were exceptions.
All codes related to how long the assignment took and how
this compared to the student’s prior expectation were com-
bined in theTime Needed concept. Students were prompted
for information describing their educational experience in
the course which we classified under theClass Experience
concept. One reported, “the scavenger hunt [assignment] was
fun because cleverness was required.” Another response: “Oh
the hash code, that was frustrating!” Other students reported
that the class moved too fast or that the examples were not
related. A subject said that he was lost on the first day, began
to understand on the second day and “it clicked” on the third
day. We developed another concept measuring ambition from
the reactions to a cryptography assignment which required
students to choose between four algorithms with differing
degrees of difficulty. Each choice was accompanied by a
maximum possible number of points, ranging from 110 for the
most complex algorithm to 87 for the most straightforward.
Several intermediate choices were also given (such as input
restrictions or user interface affordances) that could increase
the point value of the attempt. A student’s choices could be

11SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 6 - YEAR 2011ISSN: 1690-4524



TABLE I
EXAMPLE CODES AND THE CORRESPONDINGCONCEPT

Sample Code Assigned Concept
Initial plan was a short, vague list of tasks Initial Plan
Plan failed because MATLAB doesn’t handle long strings Plan Adequacy
Program was constructed of fragments adapted from in-classexamples Coding Process
Searched for help on Google, e.g., “how to write a for loop” Help Sources
Wrote program in 3-4 parts which were tested separately and combined at the end Testing
“My goal was to receive a B or an A” Goals
It took 2 to 2.5 hours to finish. Student had thought it would take 1 hour Time Needed
“First day was too much, second day I started to understand, it clicked on the third day” Class Experience
Programming background consists of using the Starcraft mapeditor Programming Background
Had some advanced Math, “not good at it” but “loves it” Quantitative Background
Calls self a “number cruncher” in everyday life Hobbies
“Why go for the extra credit when I don’t understand the basics” Ambition
Rather than write a time-consuming brute-force program, he
solved the permutation puzzle visually out of 362,880 possibilities Lateral Thinking
Influenced lab partners to use pseudocode in the future Personality

perceived as a measure of their self-confidence. Many students
aimed low. One reported, “why go for the extra credit when I
don’t understand the basics.” Others chose combinations over
100, but not the maximum possible. These codes are placed
under theAmbition concept.

The interviews included questions about each subject’s
background in programming to discover a relationship be-
tween a student’s previous experience and planning or assign-
ment success. Many students in the sample had little or no
background in programming. The most extensive backgrounds
came from AP classes in Java and toy problems on a educa-
tional website. Another subject had learned MATLAB and
C++ over the summer. A subject had used a script-based map
editor for the game Starcraft. These codes were grouped in
the concept ofProgramming Background. Subjects also dis-
cussed their background in quantitative studies. Many students
reported enjoying and excelling at Math. One said “Math
is my best subject.” A handful of students were ambivalent
about Math, “I went up to AB Calculus because BC was
like boot-camp.” These codes were clustered inQuantitative
Background.

Students were asked to describe their hobbies. Many stu-
dents were interested in strategy, board, card and video games.
Only one reported sports. One reported, “Piano, writing
poetry and Chess.” Guitar playing was mentioned. These
codes were grouped in theHobbies concept. In the course
of describing their problem solving plans, students often
revealed insightful solutions. One problem required decrypting
a scrambled message with nine factorial (362, 880) possible
keys. Rather than write the brute-force program suggested in
class, several students were able to crack it with pencil and
paper, or use creative shortcuts that reduced the complexity
of the program to write. One student solved this puzzle in
Excel using built-in functions. We label these codes with
the conceptLateral Thinking. Students’ descriptions of their
problem-solving techniques and group work reveal aspects of
their personalities. One strong proponent of using pseudocode
reported that she had influenced her teammates to use it on
the following individual assignments. When codes of this
type became apparent, they were classified in thePersonality
concept.

At this phase of the project, 14 concepts emerged as

natural partitions to the codes as shown in Table I. We then
transition to the axial coding step and aggregate concepts
into categories based on similarity. Five categories emerged as
ideal clusterings as shown in Table II. The data organization
is bottom-up and is reflected by placing the child data on the
left and the parent data on the right.

7. EMERGING THEORIES

Our goal in grounded theory is to examine the apparent
connections between categories to suggest theories which
can explain the data before us. The process of selective
coding requires the selection of a core category. Connections
are then studied in an attempt to define the relationships
between all other categories and the chosen core category.
From this rich set of codes and concepts, many relationships
are possible. For example, connecting thePlanning and Pro-
gramming Methodology categories we found that plans that
included testing related to shorter total time spent on the
program. Relationships betweenPlanning and Goal Setting
and Achievement included a connection between those who
planned and the extent of their ambitions in the program.
Other connections that arose include the relationship between
students who use lateral thinking and a lower frustration level
during their programming experience. To expand any one
of these relationships into a working theory would require
theoretical sampling followed by further coding in an effort to
saturate the data concerning the categories being related.This
exercise would allow us to strengthen the proposed theory.

Ideal theories will not only be supported by the data, but
potentially lead to research to enhance pedagogy for novice
programmers. In keeping with the conventions of grounded
theory, we want to avoid the problem of existing theories or
claims influencing our analysis of the data. We do however
turn to existing literature to identify gaps that might be
informed by our work.

Expert planners have amassed a library of templates that
they can draw from and flexibly apply to the problem at
hand [12]. Among novice programmers, for whom such a
mental library most likely does not exist, we do not know
what form the planning process takes. Investigating the data
suggests that novice programmers borrow ideas from their

12 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 6 - YEAR 2011 ISSN: 1690-4524



TABLE II
CONCEPTS ASSIGNED TO EACHCATEGORY

Concepts Assigned Category
Initial Planning, Plan Adequacy Planning
Coding Process, Help Sources, Testing Programming Methodology
Goals, Time Needed, Class Experience, Ambition Goal Setting and Achievement
Programming Background, Quantitative Background Background
Hobbies, Lateral Thinking, Personality Personal

areas of relative expertise. Students expressly referred to
their math knowledge or experiences writing papers when
describing the origin of their plans. This leads us to our first
candidate theory:

Theory I: Novice programmers attempt to adapt problem-
solving strategies from other domains, such as mathematics
or essay composition.

To guide us to the next theory, we investigate how to
build a scaffold that can serve in the place of this expert
library of templates until it can be established. Based on the
data, students who wrote pseudocode were more likely to
perceive success on the assignment, have higher ambition and
have an adequate plan. This is true regardless of whether the
student had a programming background, leading us to consider
that the traditional skill of pseudocode may be the only
scaffold needed for first-time programmers, at least until they
have successfully completed a few assignments. Furthermore,
effectively using pseudocode is teachable which leads to the
following theory.

Theory II: Planning by means of pseudocode is achievable
for novice programmers.

Equally important to CS1 lecturers is how to develop the
feeling of perceived success in novice programmers. Based
on various comments about the quality of a student’s learning
experience which show a relationship between planning and
perceived success in the class as a whole, we formulate the
final theory:

Theory III: Students who planned their programs are more
likely to report a positive experience in the class.

8. LIMITATIONS AND FUTURE WORK

Within the scope of grounded theory which is the pro-
duction rather than the testing of theories, this work has
several areas for further development. The students were from
a single class intended for students seeking an engineering
major. Thus the results do not immediately apply to either
majors or non-majors in computer science because it is not
known if both of these sets are well represented in the data.
Furthermore, the sample of students is somewhat small and
self-selected. The next step is theoretical sampling, which
deliberately chooses samples in order to diversify the data
set. The authors are likely to theoretically sample different
backgrounds and expected majors, as well as a class with a
different style of teaching and programming language. During
theoretical sampling, the original data will be added to rather
than replaced.

Practitioners divide research on teaching into two kinds:
“What is” and “What works”. “What is” research focuses
on observations about current conditions and processes in
the learning environment. “What works” research tests and
measures alternative teaching practices. This is a “What is”

project attempting to suggest relationships between novice
program planning and other concepts for further study.

Outside of using grounded theory to qualitatively produce
theories, future work consists of two kinds: refinement of
these candidate theories and the development of “What works”
projects to realize the benefits of proving or disproving these
theories. Having established three candidate theories, the next
phase of our research is to collect more qualitative data to
strengthen or deny each of them. The strengthening of Theo-
ries I and II could lead to guidelines for developing learning
modules and subsequent scaffolding designed specifically for
the novice programmer while further exploration of Theory III
would naturally lead us to a quantitative study to verify the
proposed relationship. Each candidate theory has the potential
to affect how we teach the metacognitive skill of planning and
the emphasis that we place on that exercise.

9. CONCLUSION AND SUMMARY

In this paper, we have applied grounded theory to interviews
with novice programmers about their first programs. Through
the principles of grounded theory we have coded, conceptu-
alized and categorized the interview data. We have elucidated
the connections between categories to generate several plausi-
ble theories that explain the data. Three candidate theories are
proposed in this project, based on the observed relationship
between planning strategies and self-reports of programming
experience. The theories are, 1) Novice programmers attempt
to employ problem-solving strategies from other domains
which are more familiar to them, 2) Pseudocode-based plan-
ning tends to be a relatively successful strategy for novices
and 3) Program planning leads to a positive reported class
experience.

10. ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Center for
Integration of Research, Teaching and Learning project (NSF
Grant No. DUE-0717768) and the Qualitative Research Meth-
ods Workshop (NSF Grant No. DUE CCLI 0923592). Without
the support of these two projects, this research would not have
been possible.

REFERENCES

[1] B.J. Zimmerman and M. Martinez-Pons, “Development of a
Structured Interview for Assessing Student use of Self-Regulated
Learning Strategies,”American Educational Research Journal,
vol. 23, pp. 614–628, 1986.

[2] C. C. Yu and S. P. Robertson, “Plan-based Representations of
Pascal and Fortran code,”Proceedings of the SIGCHI, May
1988.

[3] Winston W. Royce, “Managing the Development of Large
Software Systems,”Proceedings of IEEE WESCON, pp. 1–9,
1970.

13SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 6 - YEAR 2011ISSN: 1690-4524



[4] Larman C. and V.R. Basili, “Iterative and Incremental Develop-
ments. a Brief History,”Computer, vol. 36, no. 6, pp. 47 – 56,
June 2003.

[5] B. Boehm, “A Spiral Model of Software Development and
Enhancement,”SIGSOFT Softw. Eng. Notes, vol. 11, no. 4, pp.
14–24, 1986.

[6] Mark C. Paulk, “Extreme Programming from a CMM Perspec-
tive,” IEEE Software, vol. 18, pp. 19–26, 2001.

[7] Kent Beck,Extreme Programming Explained: Embrace Change,
Addison-Wesley, 2000.

[8] Agile Alliance, “Manifesto for Agile Software Development,”
http://agilemanifesto.org, 2001.

[9] Orit Hazzan and Yael Dubinsky, “Why Software Engineering
Programs should teach Agile Software Development,”SIGSOFT
Softw. Eng. Notes, vol. 32, no. 2, pp. 1–3, 2007.

[10] Kent Beck, Test-Driven Development by Example, Addison-
Wesley, 2003.

[11] H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software
Engineering,” Software, IEEE, vol. 4, no. 5, pp. 19–25, 1987.

[12] E. Soloway, “Learning to Program = Learning to Construct
Mechanisms and Explanations,”Communications of the ACM,
vol. 29, no. 9, pp. 850–858, 1986.

[13] Michael de Raadt, Richard Watson, and Mark Toleman, “Teach-
ing and Assessing Programming Strategies Explicitly,”Eleventh
Australasian Computing Education Conference (ACE2009), vol.
20–23, Jan 2009.

[14] Kurt Vanlehn and H. Chad Lane, “Teaching the Tacit Knowledge
of Programming to Novices with Natural Language Tutoring,”
Computer Science Education, vol. 15, pp. 183–201, 2005.

[15] A. Ebrahimi and C. Schweikert, “Empirical Study of Novice
Programming with Plans and Objects,”SIGCSE Bull., vol. 38,
no. 4, pp. 52–54, 2006.

[16] Alireza Ebrahimi, “Novice Programmer Errors: Language Con-
structs and Plan Composition,”Int. J. Hum.-Comput. Stud., vol.
41, no. 4, pp. 457–480, 1994.

[17] Chris Quintana, Jim Eng, Andrew Carra, Hsin-Kai Wu, and
Elliot Soloway, “Symphony: a Case Study in Extending Learner-
Centered Design through Process Space Analysis,” inCHI ’99:

Proceedings of the SIGCHI conference on Human factors in
computing systems, New York, NY, USA, 1999, pp. 473–480,
ACM.

[18] Anthony Robins, Janet Rountree, and Nathan Rountree, “Learn-
ing and Teaching Programming: A Review and Discussion,”
Computer Science Education, vol. 13, pp. 137–172, 2003.

[19] Nghi Truong, Peter Bancroft, and Paul Roe, “A Web Based
Environment for Learning to Program,” inACSC ’03: Pro-
ceedings of the 26th Australasian computer science conference,
Darlinghurst, Australia, Australia, 2003, pp. 255–264, Australian
Computer Society, Inc.

[20] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guz-
dial, Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer,
Lynda Thomas, Ian Utting, and Tadeusz Wilusz, “A Multi-
National, Multi-Institutional Study of Assessment of Program-
ming Skills of First-Year CS Students,” inITiCSE-WGR ’01:
Working group reports from ITiCSE on Innovation and technol-
ogy in computer science education, New York, NY, USA, 2001,
pp. 125–180, ACM.

[21] J. Kuhl and T. Goschke,Volition and personality, Hogrefe and
Huber, 1994.

[22] Patricia Yancey Martin and Barry A. Turner, “Grounded Theory
and Organizational Research,”The Journal of Applied Behav-
ioral Science, vol. 22, no. 2, pp. 141, 1986.

[23] Anna Eckerdal, Anna Eckerdal, and Anna Eckerdal, “Novice
students learning of object-oriented programming,” 2006.

[24] J. O. Sugay M. M. T. Rodrigo, R. S. J. Baker and E. Tabanao,
“Monitoring novice programmer affect and behaviors to identify
learning bottlenecks,”Philippine Computing Society Congress,
March 2009.

[25] Suzanne Marie Thompson, “Exploratory study of novice pro-
gramming experiences and errors,” March 2006.

[26] Tony Clear, Jenny Edwards, Raymond Lister, Beth Simon,Errol
Thompson, and Jacqueline Whalley, “The Teaching of Novice
Computer Programmers: Bringing the Scholarly-Research Ap-
proach to Australia,” inACE ’08: Proceedings of the tenth
conference on Australasian computing education, Darlinghurst,
Australia, 2008, pp. 63–68, Australian Computer Society, Inc.

14 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 6 - YEAR 2011 ISSN: 1690-4524


	RO041FO

