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ABSTRACT

Information overload of the anesthesiologist thioug
technological advances have threatened the safetyatients
under anesthesia in the operating room (OR). Ticadit
monitoring and alarm systems provide independepgtialy
distributed indices of patient physiological statlis creates the
potential to distract caregivers from direct patieare tasks. To
address this situation, a novel reactive agentsaetisupport
system with graphical human machine interface waseldped.
The system integrates the disparate data sourc@klae in the
operating room, passes the data though a decisiatrixm
comprising a deterministic physiologic rule basdalaisshed
through medical research. Patient care is imprdwedffecting
change to the care environment by displaying rasgtdrs and
alerts as an intuitive color coded animation. Fihstem presents
a unified, contextually appropriate snapshot of flatient state
including current and potential risk factors, arerta of critical
patient events to the operating room team withequiring any
user intervention. To validate the efficacy of thgstem, a
retrospective analysis focusing on the hypotengiadies were
performed. Results show that even with vigilant highly trained
clinicians, deviations from ideal patient care &xad it is here
that the proposed system may allow more standatdemed
improved patient care and potentially outcomes.

Keywords: medical, information system, computation,
visualization, operating room, alarm

1. INTRODUCTION

Information overload of acute care practitioners is

increasing due to the demands of technological rmbsaand may
threaten the safety of patients in the Intensivee@nit (ICU) or
under anesthesia in the operating room (OR). @hewears the
number and complexity of equipment to control andnitor a
patient’s vital functions has increased considgrébé. vital sign
monitors, therapeutic devices supporting/replagngans, fluid,
gas or medication administration devices) [1]. Iéad
anesthesia monitors are able to provide more ti@apeiodic or
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continuous traces regarding the status of the matid].
However, the alarms and visualization systems mespte for the
effective management and utilization of these devibas lagged
behind medical device technology [3]. In criticare settings,
clinicians must continuously synthesize large ant®ofireal-time
data to extract critical information describing threerall state of
the patient and care necessary [6]. The numbercantgplexity
of devices and alarms monitoring patient physiaogarameters
vie for the anesthesiologist’'s attention as theinbrean only
process and act on a certain amount of informattoone time [1,
4, 5]. Additionally, concentration decreases &snation of time
and intensity (amount of incoming information) ahdan be very
difficult to maintain perfect vigilance through engthy case [1].
Cooper et al. [2], studied human errors and equiprfalures in
anesthesia and performed a critical incident armalysTheir
group found that 70% of critical incidents were do&uman error
(monitoring device use, fluid management, airwaynagement,
intravenous equipment use, drug administration, sthesia
machine use), and could have, or did lead to ural@si
outcomes.

A key problem with these devices, that research has

shown, is instead of alarms providing additionahdfé about
90% of all alarms in critical-care monitoring amdsk positives,
leading to potential distraction or desensitizati® 5]. To
prevent this scenario, many physiologic variabdeds and alarms
are commonly turned off to avert information ovedo[4]. In a
study by Chambrin et al. [10], no medical actionswaken for
72% of all the alarms. The positive predictive ealwas only
27%, and the specificity only 58%. The negativedtive value
and the sensitivity were 99% and 97%, respectivEherefore
many false alarms can result and only a few mayigeouseful
information to the anesthesiologist. Some activity related to
the physiologic state of the patient (sensor movenmeccidental
disconnections, etc) can result in a series ofnaafl, 3].
Mcintyre et al. [7] found that 58% of the 789 amhesists
questioned, admitted to muting an alarm for a vardd reasons.
These alarms generally use simple thresholds basea single
physiologic variable [9]. An alternative used tanimize the
number of alarms is setting “safe limits”; howeviris can result
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in unnecessary deterioration of the patient’s cimiin the event
of atrue alarm [1, 3]. In a study by Imhoff et [@l2], 40% of all

alarms resulted from patient manipulation. Mei[lE8] analyzed
731 warnings generated by a statistical disturbaagerithm

during cardiac surgery by linking them to the rexgm of the
anesthetist. Of these alerts 7% were useful, 8% followed

some intervention, and probably could have beedigterd and
eliminated. Kestin et al. [14] evaluated the digance of

auditory alarms during routine anaesthetic managéenoé 50

paediatric patients undergoing elective surgeryive Fnonitors
with auditory alarms were used routinely: ECG, auatic blood

pressure (BP), oxygen analyzer, pulse oximetervendilator low

pressure (disconnect alarm). There was a meaf afatms per
case with an average frequency of one alarm evéryminutes.
The incidence of alarms varied little between tifeeknt phases
of anesthesia and surgery. Of all alarms that dedn75% were
spurious, i.e. caused by patient movement, intemfeg or
mechanical problems. Only 3% of all alarms indidatisk to the
patient. O'Carroll [15] recorded a total of 143&rms during a
three week period. Only 8 indicated a potentialyious threat
to patient safety and consisted of one ventilatscahnect alarm
and seven dysrhythmias. Lawless [11] found thatr#te of true
alarms in the pediatric ICU was about 10%, varipuscedures
induced 27% of the alarms and 68% were truly falsems. In
another study about a third of all alarms origidafeom the

ventilator, another third from the cardiovasculamior, and 15%
from pulse oximetry. Similar studies found pulsdngetry to

cause over 40% of all false alarms. In patientsh viitvasive
blood-pressure monitoring, arterial BP alarms chlo aften be
the leading cause of false alarms [3].

It can clearly be seen that alarms are necessatydi in
large numbers. False alarms coupled with the warimommon
surgical distractions, and patient care tasks thesthesiologist
must perform, can be make it easy to miss physiolegriable
changes or diagnoses relying on historic senser @& potential
hypotension). Major improvements in improved displand
alarm algorithms, incorporating decision supporatdiees, for
operating room anesthesia and critical care patienitoring are
thus urgently needed [3].

There has been significant interest and success thee
last two decades in the development of smart alaand
monitoring systems, rather than just displaying the data for
anesthesiologists to interpret [4]. These newnalarethods need
to fulfill a number of methodological criteria, suas robustness,
real-time and online capabilities, methodologicagor and
applicability to large patient populations.  Witlhet recent
advances in artificial intelligence it is believethat the
implementation of 'intelligent’ monitoring and atasystems can
improve patient care [1]. It is believed that gri@ted intelligent
monitoring systems are able to detect deviatiorts states that
may not be noticed or recognized through periodiaical
observations alone and prevent adverse patientomas [1].
Univariate and multivariate methods have been pmegoand
investigated, mostly from the fields of statistiaad artificial
intelligence. Some have even shown encouragingltsesn
clinical studies [3].
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We have developed an intelligent agent (I1A) ardhitee
capable of integrating the data from various sareaich as
electronics medical records (EMRS), patient mosit@nesthesia
machines, etc. in University of Michigan Hospitapeonating
rooms. The system provides a centralized graphisablization
of the physiologic state of the patient and perfobmasic decision
support, by implementing expert rules captured from
anesthesiologists. Using our custom developed idé¢gration
server we can perform various types of intelligesignal
processing, visualization and alerting to implemand study the
performance of artifact removal, classificationfffiasis, and
decision support and prediction algorithms. Ttismeo need for
the anesthesiologist to scan for information frewesal pieces of
equipment as data from a variety of monitors amalioed using
mathematical modeling and rule-based logic into mivegul
statements about the functioning of specific orggstems. The
system is capable of running on historic data dsagdive patient
information, enabling both retrospective and presipe studies.

This manuscript is divided into two parts: Secti@n
presents the architecture of the system, whilei@ec® and 4
provide a retrospective analysis of the potentygldtension alert..
A discussion is presented in Section 5, followedlmpnclusion.

2. SYSTEM ARCHITECTURE

An intelligent agent system must make rational sleais
and effect changes to their environment to achievepecified
goal. Rationality is especially important in thedical domain.
A rational decision can be defined as a decisian wWould mimic
that of an experienced physician if given the sdaws. The
goal of the agent is to improve a patient's stafehealth
(environment). To enable rational decisions thenagmust
accurately perceive its environment through thegrdtion, sensor
selection and data cleaning from various heterogemedata
sources (i.e. electronic medical record, patientitoo, clinicians,
etc). To achieve its goal the agent must be cepabkffecting
change to its environment (i.e. visual and acowsdéds). Figure 1
illustrates this conceptual architecture of thenaggstem.

(( Domain Action computation M)
knowledge/rules (Inference)

) (

[ Perception

Effectors (Alerts) ]
-/

s ~
Pat\e_mt Clinician
monitor

J
§
[ Environment (Patient) ]

Figure 1. Reflex intelligent agent architecture foranesthesia
supervision.

Knowledge about patient physiology and anestheaia c
are encoded as mathematical equations and producties. The
system is designed in such a way as to providergispey support
to the caregiver and not interfere or replace mgstvorkflow
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policies in the OR. A key aspect of agents
communication ability, allowing them to share infation with

other agents and distributed hospital systems. nEkeugh this
is the first agent we have developed in this emvitent, it can be
seen that many specialized agents can be developkith

function together to improve multiple aspects aatemt care.

2.1. IA Perception

Figure 2 illustrates the practical implementation aetwork
infrastructure of the agent system on the hosmpigivork. The
University of Michigan Hospital OR uses Solar 90@@nitors
(General Electric Healthcare). These monitors ma® to a
common data network (Unity Network, General Electri
Healthcare), similar to other monitor systems. @ftware
package (Monitor Capture Server, General Electr@althcare)
was used to capture the physiologic data broadcast the
network by the monitors. This package then logs data to a
SQL database (SQL Server, Microsoft CorporationdrRend,
WA) in a standard format every 10s. The Universdf
Michigan hospital uses the Centricity EMR (GeneEdéctric
Healthcare) to capture and store patient record&PjiH OR
scheduling, anesthesia records, etc. The anesthesiord
contains key surgical events (anesthesia starisiam; etc.), lab
values, fluids, drugs and physiologic data from thatient
monitor.

is rthei graphical display connects to the data integragienver, it opens a

TCP socket for mutual communication and the optisedlof data
describing the patient state is sent to the client.

Certain surgeries utilize different sets of sensaevih
multiple sensors measuring similar quantities (&se oximeter
heart rate and ECG heart rate). A sensor seleatiairix,
weighted by sensor category, is utilized to autérally select the
best sensor sub-set for the calculation being pedd. The
weighting is determined from physician experieneet@ which
sensor (if redundant sensors are available ornaltermethods
utilizing different data to calculate a similar me} provides less
measurement noise for a given situation. For examp
depending on the surgery that is performed, blaedgure can be
monitored in various ways. Figure 3 shows a 90uteirwindow
comparing the systolic blood pressure, measurechgusa
non-invasive cuff, and the invasive arterial (Aeljnmethod.
Typically, these methods are used independentlyie A-line is
only used, if necessary to ensure patient safétgesthere are
additional risk factors associated with puncturing artery.
However, there are cases where both are used @ryaleong
interval (about 30min) cuff measurement is used@lwith the
A-line. It is clear the A-line method provides aich higher
sample rate, but can also be more susceptible rmirpations.
This situation can be seen by the positive and thegaoing
spikes in the figure, which could lead to falsermig From
Figure 3 the A-line measurement interval appeatsetd minute,

A multi-threaded Java based data integration serverhowever in our system we are able to collect 1®@msgdnterval

retrieves the current patient physiologic data giainSQL query
though the JDBC connector every 2 seconds. A aimjliery is
performed on the EMR to obtain surgical, treatmant lab
information (data not recorded through the patieanitors) using
stored procedures every minute. The patient mpmigia and

data directly from the patient monitor. A thredémdor greater)
median filter can be used to attempt to removeetispikes (which
was unsuccessful for the large positive going 9pikat can also
introduce signal delays, which would not be acdapt# used in
the BP cuff measurement scenario due to larger lsagniptervals

EMR data are integrated and cleaned depending @ th (typically 3-5 minutes). The need for robust sersmection and

characteristics of the source sensor and resutiitg. When the

Lab Tests

conditioning can clearly be seen.

Anesthesiologists
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Figure 2. Data flow diagram and infrastructure of the clinical information system.
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2.2. Action Computation

Production Rules are created for alerts, notifbcet and
reminders. Alerts are based on sensor sub-se¢stasel from
combinations of one or several monitor, EMR, orcuaklted
variables that may potentially detect or predioteade outcome if
not addressed in a timely manner. Notificatioresudlso contain
normal, abnormal and marginal ranges for variatdash as
bispectral index (BIS), minimum alveolar conceritnat(MAC),
systolic blood pressure (SBP), heatrt filling volyread tidal (ET)

2.3. Visualization and Alerts

The patient state visualization system was develasing
Adobe Flash (Adobe, CS 3.0) to draw the graphictdrface and
actionscript to implement the functionality.  Thaterface
integrates and displays the patient state, critiGaiables and
generates alerts and alarms based on professiolesl provided
by experienced anesthesiologists. The systemdtigderts and
alarms fired in a SQL database. Figure 4 (a) &dfovide a
screen shot of the visualization system monitogngatient under

CO, peak airway pressure (PAP), pulse oximeter oOXygeNgeneral anesthesia in the OR. Patient registratiomber and
saturation (Sp§), body temperature, hematocrit (HCT), estimated patient name have been concealed for privacy. 4Ka shows a

HCT, glucose, positive end-expiratory pressure (PERNd
creatine. All the rules and thresholds are basewell defined
and agreed upon anesthesia practice.

g ﬂ —e— Cuff Systolic BP
] | I —— Adline Systolic BP ||
Y N R A-line Median Filter
p1011] EE 1) S S N R S—

BP (mmHg)
7]
o

________________________________________

=N

o

o
T

| | | |
250 260 270 280
time {min)

| |
230 240
Figure 3: Comparison between measurement data obtaed

from invasive (A-line) and non-invasive (cuff) BP
measurement methods.

Equation 1 provides an example of an equation tsqitedict a
patient’s estimated HCT [16]. Whelk}) is the estimated blood
loss, taking into account any transfusiomsis the last hematocrit

measurement anb, corresponds to the estimated hematocrit at activated.

patient under normal conditions while Fig 4 (b)strates a patient
with potential hypotension alert and low heartirfii volume

notification. These figures illustrate how quickilge patients
physiological states can be assessed and causerfoern easily
identified.

The graphical interface can be divided into twoiorg:
on the left with the gray background is the cas®rmation,
including: patient registration number, name, laoat surgical
duration, NPO time, estimated blood loss, body weighird
space loss. Third space loss and NPO time canph# into the
interface for calculation of heart filling volumehieh is displayed
as the area inside the heart that is filled. NP&auwlts to
midnight the night before surgery and surgicaldhépace loss
defaults to moderate. The main display area orrigig can be
divided into brain, lungs, heart and body. The rinalize
volume” button zeros the offset used to calculaarhvolume in
spite of previous heatrt filling history.

All  real-time variables displayed contain the
corresponding measured value and time differentcedemn the
last update and current timet), If dt is too large, then the
values displayed will be replaced with a messagkcating the
variable is no longer available (i.e. “No BP”).

If an alert is fired, a clear message will appeayether
with the alarm tone to draw the attention of thegitian. The
“reset” button acknowledges all alarms that are remity
When an alarm is active, an alert fersmunded once

time intervali. V is the estimated body volume calculated by to attract the physician’s attention. T he physici@n silence the

multiplying the body weight by 70 ml. Equation 2epents an
example of one such rule for the “potential tenggarumothorax”
alert. Reminders alert the physician to providemedreatment,
remind them to perform certain duties, or highlighé current
patient states. The normal range is defined fesg¢hvariables
which are shown green on the graphical display.yoBd the
normal range (high risk) and marginal which arepldiged with
red and yellow respectively. All the alarms amed in Table 1
and the specific threshold value used in the egnstiare
configurable. There are 7 primary alerts in whittysicians are
most interested. Some of these are very uncomman (
malignant hypothermia) and the system helps lesgeréenced
clinicians by suggesting this condition.

h(t) = h, / &V "
P4:(SBP < 60) O(PAWP > 50 O(PEEP > 20 — alarm < (2)
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alarm or resume it, by pressing the “silence” huttolf the cause
of the alarm is not addressed, the alarming tonk nepeat
automatically in a minute

The color at the brain indicates the MAC, which is
calculated by anesthesia agents, ET Sevofluranels&flurane,
ET Desflurane, ET nitrous and propofol rate [17]If the
neurological monitor is being used, the column & B the left
of the brain will change color and a message intigathe brain
states will show up to the right of the brain (B4§S 40-60 is the
normal range for general anesthesia, over 80 ttiepanay be
awake).

The heart contracts with each beat and the lunparek
and retract with each breath. This provides a"lialert that the
physician by quickly observe and detect changeseat rate and
respiration rate. The trachea color indicates RAd>, and the
color of the lung’s border indicated the PEEP. auge inside
the left lung indicated the ET CO2 and the rigimgishows Sp®
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Figure 4. Visualization and user interface illustrding, a) Patient
in stable condition, b) Interface showing adverseagtient event.
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The heart filling volume level (high, low and nornaill
be determined using one of the 1-SPV, 2-CVP, 3-PADPAWP
measurement with priority in the indicated ordepeleding on
what physiologic data is available. Otherwisecadntinuously
calculates the fluid balance using standard rul@&}.[ Outgoing
fluids are insensible loss with 4:2:1 rule accogdito patient
weight, third space loss, and urine output. Inegmfluids
contain blood, colloid, crystalloid by all the inmoong and
outgoing fluids. The color of aorta that is corteecto the right
of the heart indicates the SBP which determineshijpotension
and hypertension states of patients.

On the bottom is the body part, containing the aldgs
and lab values for the whole dp Temperature, hematocrit,
estimated hematocrit and glucose are shown withr@mded bars
indicating whether they are within normal limits.

Creatinine and urine output are displayed below defl
right kidneys respectively. If they are unavaiigbthe kidneys
will turn gray. The three values beside the rigidhey are urine
output, per hour value and per hour per kilografne/a

The system can automatically configure alarms and

display contextually by surgical milestone or tirpeint in the
database. The alerts only fire during the effecturgical time
period: from patient verification to post anesthesare unit bed
requested. After bed requested, the heart andslwvily stop
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moving and all the alerts are disabled. Howevdre t
notifications of variables are still displayed urttie patient is

moved out and transferred to PACU. At this poim system

will automatically return to the login page.

All the alerts, notifications that exceed the ndrhimaits as
well as reminders generated during the surgery,sarg to the
Java server which stores then in a SQL serveutord analysis.

Table 1. Alerts, notifications and reminders.

# ALARMS i ALARMS

1 Ischemia 13 |Peak airway pressure
2 Bronchospasm 14 |SpQ

3 Airway Disconnect 15 |Body temperature

4 Tension Pneumothorax (16 |Hematocrit

5 Cardiac Arrest 17 |Estimated Hematocrit
6 Potential Hypotension (18 |Glucose

7 Malignant Hyperthermia |19 |PEEP

8 BIS 20 |Creatinine (renal failure)
9 MAC 21 |Glucose infusion

10 | Systolic BP 22 | Urine output

11 | Heart filling volume 23 | CQ@rebreathing

12 | ET CO2 24 |No BP cuff measurernt

3. SYSTEM ANALYSIS

Once the system was operational, the next phagaeof
research was to evaluate the performance anddime-¢ach rule.
This data can be used to optimize the alerts afarnration
provided to the clinician to enhance the systemisueacy,
sensitivity, specificity and support of the phyaits. A Java
based rule processing engine using the same tedasigs the
clinical system was used to perform the retrospealata analysis
processing. A large scale retrospective analygis6@ 000
general anesthesia cases was performed to devédapedine for
the analysis of the system’s performance for digisgj patient
conditions and improving care. Cardiac and elesttock therapy
(ECT) cases, cases with ASA 5 or 6, or patientsgeu than 18
years were not included.

This manuscript reports on the preliminary develepm
and analysis of the potential hypotension aleré.rulUsing the
results obtained from this analysis we are ableevaluate the
performance of the potential hypotension alert éexelop further
hypotheses to optimize the alert algorithm. Oum avas to
reduce the frequency and duration of hypotensianwall as
lapses in BP measurement. A prospective trial nallvever still
need to be performed to determine the actual effegiatient care
and outcomes.

The advantage of studying the potential hypotensient
rule first is that it is one of the most commonrtse and the
performance of the alert can be readily determisgdte the
outcome is automatically recorded. This allows #&orquality
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dataset to be obtained from the EMR, without laageounts of
time spent in manual chart reviews and analysisnly @eneral
anesthesia cases with BP cuff measurements wdiredtiand
each of the cases will be evaluated from the tifrfasi BP to the
last BP.

Our initial analysis was to determine the occuresié
delays or gaps in BP recording so that an ided@fimpact of a
BP measurement interval alert could be determindtl. was
hypothesized that gaps in measurement may leagoténsion
due to the lack for information being provided tdet
anesthesiologist. =~ The standard of care is that Ra daiff
measurement should be taken every 5 minutes, amdgdkient
monitor is usually set to automatically take thigasurement.
However, due to patient care related distractianetber factors,
this feature may not be set on the patient mornioelse the
measurement interval may be lengthened. Interbalow 3
minutes tend to be avoided due to the potentialrynto the
patient from the continual palpitation of the meastent site. A
“delayed” measurement is defined as no BP readiom f6-10
min and a “late” measurement is defined as no nepftir greater
than 10-15 min. We also determine the numberadireys taken
after an interval of 15 min.

specificity, positive and negative predictive penfiance metrics

for the alert rule could be determined to charémgethe classifiers
performance. The hypotension threshold is adjusted the

resulting data was analyzed using a receiver adpgrat
characteristic (ROC) curve

110 : T : : T :

100

90

MNIBF (mmHg)

________ B

Prédicted

SBP
§Oroeoeeeeees froveeeeeenes oo oo s oo froeoeenenns 1
10 i i i i i i
0 5 10 15 20 25 30 35
Time {min)

Figure 5: Analysis of potential hypotension alert ule
for cuff blood pressure of a single case.

Our second analysis attempted to gauge the impact a

potential hypotension alert would have on treatmdime.

Increasing anesthetic agent concentration tendsedoice BP,
therefore one of the more common treatments footgysion is
simply to lower the anesthetic concentration. Efae, to

determine time to treat, we measured the duratemvden the
detection of hypotension and the adjustment of @hesthetic
agent indicating treatment had begun. The conatotr of

anesthetic agent delivered to the patient and riedpiis

automatically recorded in the Centricity EMR. Ounbses where
isoflurane, sevoflurane or desflurane are used wesuated as
the inspired anesthetic agent concentration wag teseletermine
time to treat a condition of hypotension. Aftepbtension was
detected, a search was performed for a reductiohi®f% of the
inspired anesthetic agent as a sign that treathenbegun.

Finally, we used the available data to determine th

predictive capability of the potential hypotensiafert using a
simple linear classifier as our benchmark. Fiduikustrates the
operation of the rule and the analysis process usedthe
retrospective dataset. The classifier uses thet mexent two
non-invasive BP (NIBP) cuff measurements (A andaB) based
on the slope, predicts the next SBP (C). If thiedjction is
below a certain BP threshold (D), the potential digpsion alert
will be issued to the anesthesiologist. For eadecthe cuff SBP
was plotted versus time and the next SBP predisséng a linear
function. The predicted value was compared to potgnsion
BP threshold and the determination made whethemair a
potential hypotension warning should be executethereafter,
the measured SBP for the predicted interval wasewetd and
compared to the hypotension threshold. A true tp@sior
negative outcome could then be defined if both kspsion
classifications were below or above the threshefgbectively. A
false positive was defined when a classification potential
hypotension is made and no hypotension resultedvisadversa
for true negative classifications. Using this ddta sensitivity,

ISSN: 1690-4524

4. RESULTS

Table 2 provides the results of the BP measurement

interval analysis. The cuff BP measurement shda@daken at
least every 5 minutes, however, as can be seenTaiie 2, there
are many events where the measurement intervaiveclen 10-15
min, and even some with intervals longer than 18.milt can
easily be seen that since the physician does rmw khe patients
BP for an extended period of time the potentiasexior a serious
situation to occur, such as hypotension. Howegemore in
depth analysis is necessary to determine the raades of these
measurement delays and whether any adverse ewanlts @ccur
as a result. In any event, if this situation wereccur during a
case supervised by the reactive agent developtdsimesearch, it
is hoped the occurrence of this situation will #igantly be
reduced more in line with the requirements of staddractice.
This will be achieved by the user interface widshing thedt for
BP when there is no measurement in more than 5 tesnand
alerting the anesthesiologist that an action isuired. This
reminds the clinician to measure the BP regulargventing the
potential chance of missed hypotension or hypeidans

Table 2. Delayed BP measurement analysis.

BP measurement 6-10 min 10-15 min >15min
interval
Number of events 26,478 157,777 52,340
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Table 3 summarizes the frequency and time to ietgion
under different hypotension alert thresholds. ait be seen that
generally >90% of the hypotension events get tceathin 10
minutes (or one BP cuff measurement) of the evetédion.
The number of cases decreases from 34,857 to 2289%e
threshold varies from SBP<80 to SBP<40. It shdagdpointed
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out that the SBP <80 rule occurs most frequentlyhiem OR as
57% of patients have at least one SBP<80. Hypimerkefined

by a SBP<70 occurs in 30% of all cases. HoweVenet are a
number of cases that exhibit longer intervals opdtgnsion.
Durations larger than 10 minutes occur in abou®3 events.
However, these low ratios may be due to speciakBdns and
further investigation is necessary. Of coursettneat will most

likely not begin until the anesthesiologist recsie hypotensive
BP measurement at which time the patient will alyede

hypotensive and could be deteriorating at a sicguifi rate. Our
hypothesis is that due to other patient care a@sviand the fact
that generally only the last BP measurement islajsd on the
patient monitor, it can be difficult for the anestiplogy to predict
the BP decent or rate thereof ahead of time. @gpetension is
detected through a single measurement, the anadtdgist would

have to specifically request another BP measurerfrem the

patient monitor to determine the rate of descemt eourse of
treatment. This process could take 1-3 minuteggipg on the
situation before treatment commences. Providipgediction of

the onset of hypotension may allow for proactiveatment
preventing the patient becoming “too hypotensive”.

extended periods of hypotension and large interlatsveen BP
measurements.

A preliminary attempt to address this situation was

undertaken, firstly through issuing an alert if tis¢andard
measurement interval is exceeded, and secondlgdictive blood
pressure alert if it is suspected that the nextv&Pfall below a

predetermined hypotension threshold. Even though hasic
linear predictor performs fairly poorly, at the ydeast it provides
an initial benchmark for future development, aslwaslproviding

doctors with a previously unavailable warning of iampending

condition. By undertaking some further developredonhg with

prospective studies, these alerts will hopefullyshewn to reduce
the response time and amount of time a patientyjtensive.
We are confident that the total percentage of caségpotension
and loss of BP measurement will be greatly reduaer the

system is deployed in the OR.

Table 3. Hypotension occurrence and time to interugion for
retrospective analysis.

Time to intervention
Figure 6 provides a ROC curve illustrating the tie&a Hypotensior Overall (events per time interval)
trade-offs of the potential hypotension linear sifisr. The Threshold | ©2%€%| events | o-10 1020 | > 20
sensitivity or true positive rate (TPR) is plotathe vertical axis, min min min
while inverse of the specificity or false positiage (FPR) is plotted 34857 106698 | 7057 | 1643
on the horizontal axis. TPR specifies the perfaroea for SBP <80 (5é%) 115,466 (92'%) (é%) (’1%)
classifying potential hypotension out of all thetuat potential
hypotension events. FPR specifies how many incopetential SBP <70 %2&/2)5 40,916 ?59363;2;3 %33;2)1 (<117;0)
hypotension classifications occur out of all themal BP. A FPR
of 0 with a TPR of 1 would represent a prefect sifasation SBP <60 8,281 16,589 15,926 579 82
performance. The diagonal line C represents tme lof (14%) (96%) (4%) (1%)
no-discrimination, where a perfectly random guessuld fall. sep <50 | #3%% | g576 8,081 441 54
Each circle in Figure 6 shows the TPR versus FRReézh BP (7%) ' (94%) (5%) | (1%)
threshold ranging from 52 mmHg (A) to 82 mmHg (B2 mmHg SBP <40 2,693 4.920 4,488 384 49
steps. From this graph it can be seen that itthssifier runs for (5%) ' (91%) (8%) (1%)
each measurement interval there are <5% false sléintorrectly
predicted hypotension) generated, however thegb@it a 30%
chance of correctly predicting the onset of hypsi@m in the next 0.35 : : :
measurement interval (3-5min later). : ; ;
5. DISCUSSION 0 oo ‘\ """""""" |
_ _ & E B (82mmHg)
The proposed system was required to have threermaj ., ; ; ;
capabilities derived from our original hypothesd3: complete 5 25O o v o i
data capture and recording from all OR devices,a2¥ingle ;
integrated graphical display to show critical patielata and 3) ch) 02 feeeness A (SmeHg) ..................................... y
ability to generated alarms based on patient visaficcording to : c - -~
production rules. Based on the infrastructurehef information ; ; b
system in UM hospital, the system is able to reériall monitor 015 """""" // """"""" |
records from the patient monitors, as well as EMRhe system P -
is flexible and extensible in that new variables czasily be 0.1 I L I
integrated and displayed. By encoding the knowdedsf 0 0.05 0-1_ ] 015 02
experienced anesthesiologists a more improved tamntlardized . 1- Specificity ) )
level of care can be delivered to patients undegsurgery. Figure 6: ROC curve of potential hypotension alert
rule performance analysis showing true and false fgitive
It is clear that if a BP measurement is misse(d:,ai’l be rates for various blood pressure thresholds.
difficult to quickly and accurately diagnose a eesd event, such
as hypotension. Even though a very high level afecis
provided in the OR, it can be seen that the pakstill exists for
36 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 6 - YEAR 2011 ISSN: 1690-4524



6. CONCLUSION

We have developed a graphical display, integratiod
monitoring reactive agent system operating on tofhe medical
information system at the University of Michigan dpital with
the goal to assist anesthesiologists improve pattme and
outcomes in the OR. This system successfully rateg patient
monitor data, lab results and additional case mé&iion of the
patient from distributed sources on the hospitdbrimation
network and incorporates expert rules to determpatient
physiological states, generate alerts and providgestions and
reminders to clinicians. We begin the analysishef system by
reporting on preliminary results of the analysis af BP
measurement gap alert and potential hypotensiont aide.
Results reveal that extended intervals between BRf c
measurements are fairly common, during which chsug@atient
state are undeterminable. Also, the retrospecsively shows
that at times various degrees of hypotension exi§t reduce the
potential for these events to impact patient oug®me have
developed a simple rule to alert physicians if BBasurements
are delayed as well as a simple linear predictaal¢st as to the
potential onset of hypotension. The future workoines the
improvement of the prediction and classificatiogogithm as well
as the deployment of our system to the OR as parpoospective
study to evaluate the effect on patient care piowis
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