
Applying Service-Orientation Through a Reference Architecture

Helge Hofmeister
Distributed and Mobile Systems Group, Otto-Friedrich Universität

Bamberg, Germany
Email: hofmeisterh@gmail.com

and

Guido Wirtz
Distributed and Mobile Systems Group, Otto-Friedrich Universität

Bamberg, Germany
Email: guido.wirtz@uni-bamberg.de

ABSTRACT

This article investigates the application of the service-oriented
architectural style in the context of large organizations. It
introduces an architectural reference framework that allows for
a business process-centered development of composite appli-
cations. The framework groups artifacts of similar abstraction
levels as well as concerns at five distinguished layers. This way,
the service-oriented principles of abstraction and autonomy
can be respected when designing applications. The layers also
correspond to phases of a design methodology and cover the
aspects of composite applications from process-centered orches-
tration, over transactional coordination to data transformation
and connectivity. Based on the framework this article shows
as well how an integration design methodology can be used
to leverage the application systems in the context of a given
business process.

Keywords: Service-Oriented Architectures, Enterprise Applica-
tion Integration, Reference Architecture, Design Methodology

1. Introduction
Service-oriented architecture (SOA) or service orientation (SO)
is an architectural style that allows the construction of applica-
tions that reuse distributed functionality of heterogeneous appli-
cation landscapes. Applications that reuse functionality and ex-
pose their functionality as web-based applications are so-called
composite applications (e.g. [1]). Together, SO and composite
applications promise to protect investments in legacy landscapes
by reusing the existent functionality while allowing for the incor-
poration of recent business changes.
Garlan identified uncertainty about the control model as a major
issue when building systems that reuse existing parts (cf. [2]).
This issue persists when building service-oriented composite ap-
plications.
One way to address this issue is the concept of Business Pro-
cess Integration Oriented Application Integration (BPIOAI) in-
troduced by Linthicum (cf. [3]). This concept centralizes the con-
trol model outside the participating application systems and uses
business processes as the central control instance over distributed
functionality. This functionality can be exposed by the means of
services that have a formally described interface (cf. [3]).

Papazouglou stated that an SOA allows business process-
centered control over distributed services by introducing process-
centered service aggregation, or so-called service orchestration.
The latter is introduced as a part of a service-oriented architec-
ture. It serves as a mechanism for aggregating basic services to

more specialized services (cf. [4]).
From the proposed aggregation of services, another possible

benefit for the industry can be identified: required changes for
functional enhancement can be realized as additional services
that are aggregated together with services that expose standard
functionality of “Commercial off-the-shelf software” (COTS).
Such aggregators could thus provide the required functionality
which is typically offered by separate systems. This way SO
could also contribute to keeping COTS unmodified – which is a
major aspect of today’s IT governance (cf. [5, pp. 69f.]).

Schelp and Winter state that there are only few approaches to
structure composite applications such that service-oriented prin-
ciples are incorporated while actual requirements are realized in
a heterogeneous application landscape (cf [6, p. 68]).

This article aims at closing this gap. It introduces an architec-
tural framework that provides a meta-structure for composite ap-
plications. As such, it allows organizations to develop composite
applications in a standardized way while using actual business
processes as the input for the design of a application. Special
attention is paid to include mechanisms for integrating existing
applications of an organization’s system landscape.

After presenting related work in section 2, we introduce our
architectural framework in section 3. The introduction is fol-
lowed by the discussion of a methodology that can be used to
apply the reference architecture to an actual problem (section 4).
We close with a summary and an outlook to future work in sec-
tion 5.

2. Related Work
The Business Process Integration Oriented Application Integra-
tion (BPIOAI) approach introduced by Linthicum in [3] is one
key concept for the findings of this thesis.
Without explicitly referencing the work of Linthicum, Hentrich
and Zdun use BPIOAI to put a service composition layer on top
of a service oriented architecture (cf. [7] and [8]). This service-
oriented reference architecture emphasizes the distributed nature
of SOA by incorporating service invocation, adaptation, request
handling and communication into the framework. The service
coordination is classified as a macro workflow for business pro-
cesses and a micro workflow for so-called “more technical” as-
pects. This way, a business process-centric development of com-
posite application can be achieved.
Erl has established in [9] a reference architecture that distin-
guishes a service interface layer, an orchestration layer, a busi-
ness service layer and an application service layer. The service
interface layer is put as a mediator in between the business pro-
cess layer and the application layer.
The outline that is given by [10] also layers business processes,
orchestrated services and enterprise components on top of an ap-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 180 ISSN: 1690-4524

plication landscape. While stating that user interfaces are out of
scope for the discussions around a SOA, the reference architec-
ture of [10] anticipates that a dedicated user interface layer might
be needed in the future. It is stated that, however, such a layer
will be placed on-top of a business process layer and access ser-
vices offered by this layer or by the basic service layer.

The ASG project [11] aims to increase an organization’s
flexibility by defining a platform for automated service compo-
sition and enactment. This objective is addressed by introducing
semantic annotations in addition to the syntactic definition of
services. Such approaches are considered the next step after
initially introducing SO in large organizations.

3. Architectural Framework for Composite
Applications

According to Linthicum, Business Process Integration Oriented
Application Integration (BPIOAI) provides another layer on-top
of existent system integration such as Information Oriented Ap-
plication Integration (IOAI) or Service-Oriented Application In-
tegration (SOAI) (cf. [3]). This means, that system integration-
focused technologies such as eg. JMS messaging (for IOAI) or
HTTP-based web services (for SOAI) are controlled by a top-
level orchestration layer that implements the business logic. Of-
ten, to this business-process implementation, it is referred to as
composite application. While the composite application imple-
ments the business logic, the used integration technologies solely
provide the abilities of calling application systems that in turn
provide the logic that is orchestrated by the composite applica-
tion. To this part, not implementing any business logic, it is re-
ferred to as integration sub-system.
This section presents five layers that together form the complete
composite application including the integration sub-system.

Reference architectures for service-oriented applications usu-
ally incorporate abstraction by the notion of several layers. The
reference architecture introduced here also incorporates this prin-
ciple. It uses a central service orchestration layer that aggregates
services exposed by less abstract layers. The reference archi-
tecture allows for a business process-based definition of this or-
chestration. For this sake it abstracts from “technical” details.
It includes a data repository for context handling that also par-
ticipates in the management of distributed transactions. This, of
course, increases the extent of coupling between the central ele-
ments of the composite application (cf. [5, pp. 185ff]). This is
necessary to create efficient composites that can be deployed on
arbitrary platforms (cf. [5, pp. 191ff]).
The notion of an eventing system is used for consistency man-
agement within the context and for de-coupling the different pro-
cesses and tasks that are possibly supported by one composite
application.
By connecting these components, the reference architecture de-
fines a second layer of service aggregation — the service coor-
dination layer. On this layer, if required, orchestrated entities
from the top layer can be described as aggregations of function-
ality that is exposed by systems of the application landscape. It
provides a mechanism for the mediation of the services. This
coordination includes the “details” of transactional management
and connects application systems either directly to the composite
using the common service protocol or by using the data exchange
and data transformation layer.
This layer ensures, together with the layer of connectivity, vari-
ous ways of interactions with back-end systems while abstracting
from communication semantics.

This reference architecture allows for defining service
boundaries in a business-driven way. Together with the design
methodology that is outlined in section 4, a business process and
its functions can be used to define the services for the single
layers. The boundaries of these services are determined by the

business descriptions. This way, the principles of autonomy and
intersection points (cf. [6]) are incorporated.
The use of aggregators promotes loose coupling. This is because
the interaction necessary for the provisioning of a service is
encapsulated by them. By including the layer of service coordi-
nation, this idea is incorporated into the reference architecture.
It encapsulates application system-specific coordination from
the process orchestration and includes loose coupling this way.
The dedicated eventing system used to manage processes also
decouples the components of a composite that is aligned with
the reference architecture. By the means of the data exchange
and data transformation layer, loose coupling is promoted by
the means of validating the actual content of service interactions
(cf. [5, p. 192]).
Finally, the data exchange and data transformation layer allows
for another principle of service orientation: reusing the function-
ality of back-end systems.

3.1 Layers of the Reference Architecture

The introduced architectural framework provides several layers
of abstraction. These abstraction levels loosely correspond to
phases of a development methodology. The methodology that is
described in section 4 is aligned with the presented framework.
According to the necessary steps for building composite applica-
tions, we identified five layers that composite applications should
be build of. These layers are hierarchical in the way that lower
layers provide functionality to the upper layers. An image show-
ing all layers can be found in figure 1.

3.1.1 Layer Zero - Legacy Application Systems
The providers of functionality for composite applications are the
various application systems that exist within the landscape of an
organization. These application systems could just be a set of
services that run on application servers. In such a scenario an
organization is free to develop services as they are needed. How-
ever, this is rare in reality.
More likely application systems are COTS. Over time, organiza-
tions usually have bought and consolidated application systems
for various purposes. Most likely these application systems are
also integrated using Information-Oriented Application Integra-
tion. Of course, these landscapes support the processes of an
organization well. They are not flexible, though. A BPIOAI ap-
proach would be preferable. However, it is simply because of
budget that flexibility issues can not be addressed by reorganiz-
ing application systems into service providers.
This is why the application systems need to be capable of being
integrated by exposing their functionality as services — services
referred to in this thesis as “application services”. Some propos-
als exist that aim to support the definition of application services
in a way that required functionality and possibilities of applica-
tion systems are considered as a trade-off (cf. [12], [9]). Despite
the argument of budget, the idea of deploying COTS in an en-
vironment is to use standard software that is supported by the
respective vendor. This is why it is usually not an option to de-
ploy services on application systems at will (eg. by the means of
wrappers as proposed by [12]).
If service orientation could be applied to a heterogeneous
landscape, this is only possible if application systems remain
unchanged (this means not reprogrammed but possibly re-
configured). The heterogeneity needs to be addressed elsewhere.
This is why there are no constraints that can be put onto appli-
cation systems. Furthermore, a flexible and independent mecha-
nism is required that enables heterogeneous application systems
to participate in a composite application. This mechanism is pro-
vided by the presented reference architecture.
Application systems are also considered as point of human-
interactions with composite applications. This is because it is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 1 81ISSN: 1690-4524

Figure 1. Reference Architecture

not feasible to remove all user interactions from application sys-
tems in order to establish a composite application.
This is a specific approach of this reference architecture. It has
two additional advantages: first, it completely de-couples the
control logic from user interactions or “wizards” that guide a user
through a graphical user interface. Second, it allows for the trans-
parent replacement of user interactions. This way the degree of
automation can be increased without changing the overall pro-
cess. Also outsourcing of certain tasks becomes easier.

3.1.2 Layer One - Connectivity
As a prerequisite, composite applications rely on a common pro-
tocol that is shared by service consumers and providers (cf. [3, p.
218]). The connectivity layer addresses the integration of ap-
plication systems that do not provide functionality by using the
common protocol of a specific composite application. It con-
nects application systems and the composite application by ho-
mogenizing the protocol that is used to access functionality. The
connectivity is realized by adapters. In general, an adapter “con-
vert[s] the interface of a class into another interface [...]. An
adapter lets classes work together that couldn’t otherwise be-
cause of incompatible interfaces” [13, p. 139]. This description
signifies that an adapter basically handles differences between
two components by creating an intermediary abstraction between
them. In the context of composite applications the definition of
an adapter must be narrowed. Linthicum defines adapters from
an application integration point of view as constructs that “[...]
remove us from the need to deal with the interface details that
communicate with a variety of different source and target sys-
tems. What’s more, adapters provide more consistency from in-
terface to interface because they are, by design, reusable from
problem domain to problem domain. [...] They merely deal with

the connectivity to the source or target systems” [3, pp. 23f.].
Hence, adapters are domain-independent intermediary compo-
nents that connect in a system-specific way to application sys-
tems and to make the application systems accessible by com-
posite applications. Adapters represent “[...] layers between the
[composite application] and the source or target application” [3,
p. 218].
Adapters address heterogeneous protocols and provide a trans-
lation that is specific for a certain (class) of application system.
In addition to heterogeneous protocols, data formats are likely to
differ in application systems. According to [14], data represen-
tation, data structures and data types can differ. Heterogeneous
data is addressed by the data exchange and data transformation
(DET) layer. In some scenarios, though, the platform of the DET
might rely on a common data representation. In order to realize
such scenarios, the adapters for the single application systems
need to address differences in the data representation and trans-
form the data prior to forwarding them to the DET. Even if it is
conceptually possible, it is unlikely to deploy adapters and not a
DET to connect to application systems. This is because applica-
tion systems that do not natively support a service interoperabil-
ity protocol usually do not store data using the data structures
and data types used by a composite application.

3.1.3 Layer Two - Data Exchange and Data Transformation
One objective of this reference architecture is to standardize the
way composite applications are built such that both the imple-
mentation of composite applications is eased and the conven-
tional application integration is facilitated. This is achieved by
the concept of integration flows. These integration flows describe
a behavioral element on top of data-centric integration concepts
and facilitate the realization of composite applications in the con-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 182 ISSN: 1690-4524

text of heterogeneous application landscapes.
This second layer of the reference architecture is an optional

layer that must be used whenever application systems do not stick
to a globally defined data model, the appropriate data seman-
tics or the required communication semantics. It unifies the data
format of the connected application systems to a canonical data
format (cf. [14, pp. 355-360] or [15]). It provides additional
functionality for validity checking of data in terms of syntax and
semantics as well as error handling procedures that need to be in-
voked whenever errors occur on this layer.1 This way, integration
aspects and business logic can be separated.

The data exchange and data transformation layer (DET) pro-
vides the functionality of an enterprise service (ESB) bus to a
composite application. It mediates the business logic and the
back-end application systems that are used to realize the busi-
ness logic (cf. [16, p. 68]).
In [14], several so-called integration patterns are described and
set into a relation. This relation is a basic pipe-and-filter archi-
tecture that describes a sequence of single patterns.
According to [8], basic services can be orchestrated by so-
called micro-workflows in order to be orchestrated themselves
by macro-workflows. This idea is combined with the integration
patterns for the definition of the DET. In order to facilitate cross-
system process orchestration, the DET describes a sub-set of the
integration patterns that are orchestrated to so-called integration
services. These services are, in turn, orchestrated by so-called
integration flows.

In order to standardize and simplify the DET, all its function-
ality is encapsulated in so-called integration services (IS). These
services are orchestrated by two different integration processes.
One provides data to the upper layers of a composite — the in-
tegration in-flow (IIF). The other one publishes data from upper
layers to the connected legacy systems. This process is called in-
tegration out-flow (IOF). Both the IIF and the IOF act as service
providers: they expose the functionality of application systems
to upper layers of the composite application as services.
As mentioned are the integration flows a replacement of the pipe-
and-filter architecture that is used by [14] to categorize integra-
tion patterns for message based application integration. Addi-
tionally, they limit the applicable set of patterns to an extent that
is required to realize composite applications in a heterogeneous
application landscape. This way, business processes can be used
to centralize the control the integration of application systems
into composite application and prohibit the use of business logic
inside the integration layer. The integration flows only handle the
details of distributed and heterogeneous interactions.

3.1.3.1 Data Repository
In order to realize composite applications that utilize heteroge-
neous application systems, several aspects must be incorporated.
This reference architecture introduces several layers that address
these aspects. Consequently, if these layers span multiple plat-
forms, a process executed by a composite application is dis-
tributed over all these platforms.
As the design methodology that is proposed in section 4 should
be applicable to any actual target platform, this reference archi-
tecture, needs to be realizable with any arbitrary environment that
follows the IT-strategy of the respective organization.
Multiple platforms are potentially required for realizing compos-
ite applications. Such platforms include application servers, inte-
gration servers and service orchestration tools. In order to apply
the reference architecture to arbitrary combinations of such plat-
forms, it needs to be ensured that all required platforms are able
to collaboratively support business processes. As most of the

1The error handling at this layer basically covers support pro-
cedures that need to be initiated whenever errors occur (human
errors are mostly the cause of these errors).

architecture’s elements operate on the processes’ data, it is nec-
essary that all elements have access to that data while ensuring
acceptable performance and data consistency (cf. [5, pp. 185f.]).
In order to allow this, the reference architecture introduces a
global process context that is called the data repository. The data
repository is the non-persistent2 memory of composite applica-
tions. It keeps data referenced by events and makes it accessible
to arbitrary components of a composite. This follows the idea of
Kossmann that proposes to establish “a globally interconnected
set of objects known as the ObjectUniverse, positioned in a huge
address space referred to as the ObjectCosmos” [17, p. 1] in or-
der to allow inter-operability in a distributed system. In the con-
text of the different workflows used to realize a composite appli-
cation, the data repository can be seen as a blackboard (cf. [18])
that is used in a workflow system (cf. [19]). It partially replaces
the messaging paradigm with a spaces approach (cf. [20]).

The structure of the data stored in the data repository of a
composite application is called canonical data model (CDM)
(cf. [14, pp. 355-360]). A CDM provides an additional level of
indirection between the single heterogeneous applications’ indi-
vidual data formats. If a new application is connected to a com-
posite application, only transformations between CDM and the
application’s data format have to be realized, regardless of the
number of applications that already participate (cf. [14, p. 356]).
The CDM is a composite’s own data format. If required, the
transformation between the application’s data formats and the
CDM is realized by the data exchange and data transformation
layer.
It is reasonable to use an already modeled and established data
schema as the CDM. A good candidate for a CDM is the data
model that used in the organisation’s main Enterprise Resource
Planning (ERP) system. Alternatively, global standards like
UN/CFACT (cf. [21]) could be applied. A CDM is the data
model for one composite application that usually supports one
business process. Hence, if required, realizing multiple CDMs is
possible. The usage of a CDM in a composite application does
not introduce a company-wide data model.

The data repository acts similar to a tuple space (cf. [22]).
Elements of the composite application get/read and store data
to and from the data repository. These operations need to po-
tentially be protected with transactions. Additionally, the data
repository uses events to allow for smooth long-running transac-
tions by already blocking requests that could interfere with al-
ready running processes.
Events determine both the appropriate processes to trigger and
the set of data that is possibly affected by a certain event.
Based on this idea relations between event types were introduced.
These relations are used to describe consistency models for the
data repository.

3.1.4 Layer Three - Service Coordination
From a top-down perspective the integration flows provide, in
addition to the connectivity layer, a standardized mechanism for
interacting with application systems. This is irrespective of com-
munication or computational semantics and provides homoge-
neous data access as well.
As technical heterogeneity is addressed by the presented mecha-
nisms, the services that are exposed by the integration flows can
easily be orchestrated by using an orchestration engine. With-
out further concepts, however, the functionality that is provided
by these services would be determined by the functionality of-
fered by the application systems. Such services are aligned with
neither the business requirements and nor the business tasks of
a company. Hence, the business processes of an organization
could either not be used to generate service orchestrations or the

2In order to address failure tolerance, the memory is persis-
tent. However, the data store that is used is different from the
owning application system that is used for storing the data

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 1 83ISSN: 1690-4524

business processes would be restricted by the actual application
systems. In order to apply the paradigm of service orientation
and compose new business-centric functionality out of existent
application functionality or to enrich functions within a specific
context, it might be appropriate to combine the application spe-
cific functionality with new functionality. Expressed differently,
application services might be needed to be aggregated to more
problem-oriented services (enterprise services). The service co-
ordination layer addresses this issue also referred to as service
mediation (cf. [23]). It can be used in order to invoke two to
n basic services using the integration flows in order to form the
enterprise services that are then orchestrated. This is similar to
the description of business-driven service pattern in [7] where
services are orchestrated in a so-called micro-flows in order to
correspond with the services that are orchestrated by a macro-
flow. This composition of low-level services to business-driven
services is considered rather static (cf. [7, pp. 44f.]).
[24] describes patterns that demonstrate how the gap between
application services and a business process-centric orchestration
can be dealt with using a so-called process support layer as a me-
diator. In particular, granularity problems and interdependency
problems that prohibit the direct use of application systems from
orchestrations are addressed. The Composition, Decomposition
and Bulk Service patterns describe how differing granularity can
be dealt with. The patterns Sequentializing and Reordering de-
scribe how interdependency problems can be addressed. Realiz-
ing such patterns is the purpose of the coordination layer.

In contrast to the business-driven service pattern of [7] and
the process support layer of [24], the coordination layer is re-
cursive. This means that an aggregated service that is composed
at this layer might be aggregated again with services from this
or lower layers to expose other high-level services. The benefit
of this approach is that the aggregations themselves can remain
flexible and their re-usability is increased.
A service coordination layer might aggregate both company in-
ternal and external services to services that are in turn usable
both company internally and externally. This also introduces the
need to support business protocols. These business protocols are
sets of actions that have to be performed by multiple parties in
order to allow successful execution of certain business function-
ality (cf. eg. [25]). They can be realized at the layer of service
coordination.

An aggregation of services at the service coordination layer
might also be required due to technical reasons. The service
coordination layer exposes services to the service orchestration
layer of a composite application. Such orchestrations are de-
signed in alignment with business processes and not with “tech-
nical” constraints in mind. Whenever a multi-resource inter-
action is required that ensures consistent state transitions, this
might be an indicator for the need of a technically motivated
service aggregation. Consistent state transitions can be ensured
by two means of transaction handling. Rather short-term trans-
actions fulfilling the ACID properties by locking and rollback
mechanisms or more long-term transactions without locking and
with compensation actions. Of course, the orchestrated function-
ality is offered by the application systems and the consistent state
transition is also assured by these systems.
Orchestrating the services of these systems does, however, raise
the need for a cross-service transactional coordination. Even if
the application systems have to support the transactional coor-
dination by appropriate compensation operations and/or by sup-
porting transactional protocols, the coordination itself has to be
controlled at this layer of the composite application. The service
coordination layer controls distributed transactions by initiating
them and passing the transactional context to application systems
(possibly via the DET) as well as to the data repository.
According to [26], transactional coordination can consist of two
layers. One layer for so-called local transactions with ACID

properties and one for global transactions with relaxed trans-
actional properties. The latter one uses ACID transactions as
black-boxed functionality to form long-term global transactions.
By distinguishing these two layers of transaction handling, the
idea of separating concerns of different transactional properties
is incorporated.
Composite applications that are implemented using the presented
reference architecture realize local transactions at the service co-
ordination layer as it acts as the controlling instance for ACID
transactions .
Meeting the long-term characteristics of global transaction, the
isolation and atomicity properties can be relaxed and so-called
safepoints can be used (cf. [26]). Relaxing the isolation property
is realized by publishing intermediated results to the global con-
text (for the presented architecture this is the data repository).
Atomicity is relaxed by introducing compensating transactions
that “undo” other transactions. Both context publication and
compensation transactions are local transactions.

Safepoints are local transactions that are marked by this spe-
cial property of being a safepoint. Thus, the fundamental support
for global transactions is formed by local transactions. This point
of view is in line with the concept of a recursive service coordi-
nation layer.
[26] also proposes a way to specify transactional properties (such
as the safe point properties for local transactions) and an execu-
tion model that supports global transactions based on these spec-
ifications. This execution model dynamically calculates work-
flow paths for partial or complete compensation of global trans-
actions, if required. At the given point this is, however, not seen
as a mandatory feature for a composite application. This is why
only the notion of short-term and long-term transactions and the
notion of compensating transactions are considered a necessity
for composite applications.
Another necessity for deploying a service coordination layer is to
realize complex interaction patterns. A DET offers means sup-
porting most of the known service interaction patterns. However,
the contingent request can not be implemented by solely using
the DET. The service coordination layer is required here as well.
3.1.5 Layer Four - Business Processes
The BPIOAI approach of [3] describes that the control flow that
executes distributed functionality should be designed with ref-
erence to a business process. Since one major benefit of the
service-oriented architectural style is the centralization of the
control over distributed functionality, the aim of this reference
architecture is to allow for a control flow that is described by
the means of business processes. This way control is not only
centralized but also aligned with business requirements. Only
small technical constraints should prohibit the direct deployment
of business process descriptions. The place within the reference
architecture to deploy these processes is the Business Process
Orchestration Layer.
Business processes can be described by workflows in an impera-
tive way using a workflow description language. Workflows have
several aspects or perspectives that together form the description
of a workflow. These perspectives are the control flow, data, re-
source and operational perspective (cf. [27]). The control flow
“describes activities and their execution ordering through differ-
ent constructors, which permit flow of execution control, e.g. se-
quence, choice, parallelism and join synchronization” [27, p. 2].
The data perspective describes business and processing data of
the workflow as well as pre- and post-conditions for the tasks
of the workflow. The resources and the operational perspective
describe how workflows are executed in terms of their organiza-
tional support and of supporting application systems.
The Business Process Orchestration Layer of a composite ap-
plication should consist of two elements. First, a workflow en-
gine that executes the control flow by orchestrating application
services and service coordinations is required. There a business

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 184 ISSN: 1690-4524

process is deployed as the central control flow in a composite ap-
plication.
Second, decisions within the control flow should be controlled
by a dedicated Decision Service that operates on the data of
such a workflow. It is necessary to define a dedicated service
as the process context is kept outside the actual workflow en-
gine. These two elements of the process orchestration layer are
described in the following.

3.1.5.1 Workflow System for Service Orchestration
The workflow system for service orchestration is the part of the
Business Process Orchestration Layer that provides a runtime-
environment to execute workflows that coordinate services fol-
lowing the control flow of an actual business process. The or-
chestration needs to be described in a workflow description lan-
guage that is deployed to the workflow system. However, the
actual design and validity of such processes must be checked dur-
ing design-time.
The services being executed are provided by application systems
that are possibly mediated by integration flows of the DET and
the service coordination layer. The (data) context of the pro-
cess is kept in the data repository (cf. section 3.1.3.1). This is
because of architectural considerations that involve consistency
and simplification but also the simple necessity to expand a pro-
cess’ context throughout a composite application. The workflow
system that is used for service orchestration does therefore solely
invoke external service providers. In order to realize conditional
expressions, the workflow engine utilizes Decision Services
that are connected with the data repository. Such services are
used to decide on conditional expressions in a given context.
Business processes do not only involve application systems,
though. Human interaction is often also part of such processes.
From a software architecture point of view, human interactions
are realized as the interaction with back-end systems. Hence,
humans are considered service providers that use a user-interface
to receive input and provide output of a certain functionality. As
a consequence, there are no constraints imposed to the layer of
process orchestration.

3.1.5.2 Decision Service
The layer of process orchestration forms the central component
that controls the overall execution of a composite application.
The actual decisions within the control flow (exclusive choice,
multi-choice) and structural workflow patterns that require such
decisions (e.g. exit conditions in loops) are often based on the
context of a certain process instance.
Workflow descriptions that are used in such service orchestra-
tions are monolithic blocks that usually involve several business
rules. A business rule “is a statement that defines or constrains
some aspect of the business. It is intended to assert business
structure or to control the behavior of the business” [28, p. 30].
Managing or changing the single rules that are embedded in such
blocks is both difficult and time-consuming (cf. [29]). In or-
der to increase the maintainability of composite applications that
apply the presented architecture beyond the possibilities of the
service-oriented architectural style, business rules are managed
by Decision Services. They are used to determine the ac-
tual control flow of a service orchestration. According to the
classification of [29], a Decision Service decides on reaction
rules for a business process. It uses the data repository to check
whether certain conditions apply. Based on the output of the
Decision Service, the service orchestration may invoke dif-
ferent services.
By using a Decision Service, the business logic that under-
lies such decisions can be described independently from the used
business process description language in a separate service. This
way, the decision logic becomes reusable.
In order to reduce complexity, handle transactions and allow for a
multi-layered architecture, a generic data description kept inside

the process environments by the means of the Data Repository
is part of this reference architecture. Since the constructs pro-
posed are quite complex and independent from a certain process
orchestration language, it could occur that an actual language
is not capable of using the generic business data. A Decision
Service also provides an interface from the service orchestra-
tion layer to the Data Repository to increase the possible plat-
forms with which the reference architecture could be realized.

According to [30], a business rules engine consists of a rule
base, a working memory, a pattern matcher and an inference en-
gine. “The working memory holds the data on which the rule
engine operates” [30, p. 36]. In the reference architecture, this
data is kept in the data repository. The rule base, the pattern
matcher and the inference engine internal components and their
specification is out of the scope of the reference architecture for
composite applications.
From an architecture point of view, a Decision Service needs
to be able to decide reaction rules. The actual reaction to such a
rule is, however, performed by the workflow engine as the central
control instance of a composite application.3

The patterns we assign for this layer are the Enterprise
Integration Patterns by Hohpe and Woolf [14]. In order to
structure these patterns we introduced integration flows that
form a taxonomy for the integration patterns [31]. This tax-
onomy describes standard services that are required to read
or write data to application services, respectively. In addition
to the functionality provided by the integration patterns, the
integration flows additionally deal with data heterogeneity and
communication semantics. This why optional constructs are
incorporated into the generic integration flows. Such constructs
are for instance optional acknowledgments that are triggered
in certain states of the integration flow in order to support
certain communication semantics. This optional functionality is
considered as design pattern as well. All relevant patterns and
the categorizing taxonomy are described in [31].

4. Composite Application Design – A Step-by-Step
Process

The section outlines an integration methodology that lever-
ages the described reference architecture to build composite ap-
plications based on a business process. The approach consists of
16 steps that outlined in figure 2. If performed correctly, these
steps describe how the system design for an actual use case can
be derived.
The methodology combines a top-down approach with a bottom-
up approach. The top-down approach takes the requirement de-
scriptions as its input. Emphasis is placed on deriving services.
After refining the derived service candidates, the link between
the design and the actual constraints of an application landscape
is performed. From this point forward, a bottom-up approach in-
corporates the identified constraints into the design of the single
components of the reference architecture for composite applica-
tions. By doing so, the initial description of the business process
is changed in a way that it can be used as the central service or-
chestration.
The single steps are described as a sequence. However, itera-
tions of certain steps or the reworking of complete branches is
possible.

Step 1: List all Business Process Activities

The input of the methodology is a complete description of the
business process that needs to be realized using a composite ap-
plication. Based on the described process, the single services that
are required by the reference architecture can be derived. This
procedure of deriving the services is based on the understanding

3If the rules engine is integrated with the workflow engine as
it is described by [29], this distinction is blurred.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 1 85ISSN: 1690-4524

Figure 2. Steps of the Design Methodology

of a business process as a possible service orchestration and the
business tasks as orchestrated enterprise services.
Thanks to the reference architecture, the enterprise services can
be considered providers of the functionality required by business
tasks. The single business tasks are described in the business
process description. In contrast to Erl’s methodology that begins
by refining the actual business process (cf. [9, pp. 397-430]), this
approach takes the activities of a business process as an input for
later phases. Each function of a business process’ control flow is
considered to be supported by an enterprise service. This is why
it is necessary to extract the description of the respective process’
functions to identify these enterprise services.

The output of this step of the methodology is a list of busi-
ness functions that includes the name of the function, the input
and output data of the function and a rough, informal description
of the task. If applicable, the back-end application system that is
currently used for such tasks (eg. order processing) can also be
indicated.

Deliverables: Process functions; data flow for each function; in-
formal description of each identified function.

Step 2: Create Enterprise Service Candidates

In this second step, the list of business functions is used to de-
scribe enterprise service candidates. If a process was not de-
signed using existent enterprise services and if no services that
fit a process description can be found within the actual service

registry (i.e., no “perfect matches”), they need to be created.
Usually new enterprise services are built out of existing func-
tionality as well as out of new service methods that are designed
using the following steps (especially step three). The composi-
tion that realizes an enterprise service by using new and existent
(coordination) services is called service coordination. The coor-
dination services it consists of can only be composed in a way
that supports the enterprise services while not being enterprise
services themselves. The actual design of the enterprise services
is therefore a prerequisite for the design of coordination service
methods and the respective service coordination.
A business process can be seen as an event-driven computation
of data (cf. [32]). The events do not only determine the task that
should follow an event, but also the data that is transmitted during
this event. This data is both context data of the process as well as
output from preceding enterprise services. Both the events and
the data are described in the model of the business process. The
data is described in greater detail in the according data perspec-
tive of a business process.
As the reference architecture and this methodology were created
to directly allow the use of business processes as service orches-
tration, the single tasks of the business process are considered to
be enterprise services. Deriving these enterprise services is sim-
ple. Each business function identified in step 1 is considered an
enterprise service. The input for this method is the data that is
consumed by the business task. The result of a business task is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 186 ISSN: 1690-4524

the output of the enterprise service method.4

Deliverables: List of coordination service candidate methods;
list of coordination service methods that need to be composed;
functional requirements for all service candidates.

Step 3: Match Suitable Service Methods and Derive Missing
Service Method Candidates

The service design methodology of [9] asserts that services
which are used in a process orchestration should fit into the or-
chestration. In the given context, “fitting” refers to the fact that
the service computes a set of input parameters and then provides
the described functionality and the required output parameters
(cf. [9, pp. 205ff.]). Services that fit into an orchestration can
be identified by using the deliverables of step 1 and 2 (process
functions; data flow for each function; informal description of
each identified function). If, however, no matching services can
be identified, it is an informal task to derive the missing services
for the identified process functions (cf. [9]). However, this is a
complex task and it’s description has to be omitted here.

Deliverables: List of coordination service candidate methods;
list of coordination service methods that need to be composed;
functional requirements for all service candidates.

Step 4: Describe Service Orchestration

As service orientation is a paradigm for control centralization
over distributed functionality, the control flow logic needs to be
described. According to [9], potential types of logic that need to
be considered are:

• “business rules

• conditional logic

• exception logic

• sequence logic” [9, p. 403]

Part of this service orchestration logic is typically included in
the initial business process model. This is especially true for the
sequence and conditional logic. These parts describe how the
preconditions of service invocations can be met, how data is ex-
changed between services and how post-conditions of services
should be computed.
“Business rules are statements about how business is conducted,
i.e. the guidelines and restrictions with respect to business pro-
cesses in an enterprise” [33, p. 9]. Exception logic finally de-
scribes how a process should react on exceptional states. Excep-
tion logic is normally both part of a business process and part
of a more general exception handling procedure. A process de-
scription will usually contain a procedure that will be used to
react to business exceptions that are closely related to the pro-
cess. However, the general part of exception rules describes how
exceptions, that are not handled directly by the process, should
be treated. Reasons for not including such rules into processes
are that they were not foreseen in the description (e.g. technical
routing errors while calling a service).

Deliverables: Sound description of the process orchestration;
conditional, exception logic and sequence logic; business rules

Step 5: Create Service Coordination Description

From the initial requirements, a service orchestration (with asso-
ciated rules) as well as method candidates that act as the single
service providers for the process orchestration were derived in
the previous step. In order to further drill-down the abstraction

4As methods are considered to be ordered sets, a method can
have multiple return parameters. How this is actually realized is
not the concern at this point.

level and realize the business process implementation, every sin-
gle enterprise service needs to be described in detail.
This description includes the already known interface of the ac-
tual enterprise service as well as the coordination service method
candidates that were identified in step 3. In this step of the
methodology, the identified candidate methods are composed in
a way that the composition provides the realization of the re-
spective enterprise service. Usually, the coordination should be
a sequence of all coordination service methods in a way that re-
quired data is produced before it is consumed. However, either
due to the modeling of the initial business process or due to spe-
cial requirements, the description of a service coordination might
include conditions or parallel tasks, too. This is why the cre-
ation of the coordination description is considered to be a manual
(yet simple) step. In conjunction with business process modeling
rules, this step could be automated. This might be realized by a
simple, data dependency-based approach (that simply links ser-
vices in a sequential way). An alternative would be to apply more
sophisticated automated service composition approaches. [33] is
an example for such an automated composition process. More
general information about the requirements for automated ser-
vice composition is given by Meyer et al. in [34].

Deliverables: Specification of the service coordination for every
enterprise service using the candidate methods that were identi-
fied in step 3.

Step 6: Refine Candidate Methods

Depending on the outcome of the previous steps, the requirement
to refine the candidate methods of step 3 might arise. Basically,
this is a step the designer of a composite can perform in order to
manually adjust the shape of the service method candidates.
One possible scenario for the need to adjust the candidate meth-
ods is that the assumed interface does not fit well together with
the required service coordination. In particular, entity-specific
creation methods might not be required for creating new entities.
Furthermore, these methods could include manual lookups with
human interaction. Whenever a human agent provides a required
functionality of a method, context information is needed. Hence,
an example for an adjustment in this step is adding context infor-
mation to entity-specific candidate methods.
Another possible requirement for the redesign of candidate meth-
ods is an inefficient design of a service coordination. Such de-
sign efficiency can be measured by the design metrics described
in [35].

Deliverables: A list of stateless, named and probably revised
coordination service method candidates.

Step 7: Analyze QoS Requirements of Service Coordinations

The previous steps of this methodology produced a service or-
chestration that orchestrates enterprise service (candidates). Ad-
ditionally, so-called service coordinations, that describe how co-
ordination services can be used to realize the single enterprise
services, were initially defined. In this step of the methodology
the quality-of-service (QoS) requirements of the single service
coordinations are analyzed.
An element that must be considered is the manner in which each
service coordination for the single enterprise services deals with
the unavailability of the composed services. Basically, this in-
volves the notion of distributed ACID transactions as well as the
definition of transactions with relaxed ACID properties.
ACID transactions are defined as a set of service methods of a
service coordination that need to be executed together or not at
all.
Transactions can also be relaxed in terms of their atomicity and
isolation properties. In order to utilize relaxed, global transac-
tions, (sets of) method calls can be marked as being safepoints.
The return values of such method calls must be persisted in the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 1 87ISSN: 1690-4524

data repository before subsequent services are called. In case of
exceptions during subsequent steps, these steps need to be com-
pensated. Processing is then restarted after the most recent safe-
point with the data that was previously committed by that safe-
point method to the data repository.
If safepoints are identified, compensating actions for a set of
methods also need to be defined. In order to define such actions, a
group of services and different exceptions, that trigger them, are
defined. Possible types of exceptions include work item failures,
deadline expirations and resource unavailabilities (cf. [36]). In
order to realize a compensating activity, a corresponding service
method has to be identified for each defined exception. Com-
pensating operations that work on the data repository should be
realized as services at the service coordination layer. Additional
functionality that might be required needs to be realized as ordi-
nary application services that are part of such an aggregation.
Service coordinations as a whole are always considered safe-
points. Hence, they also have to commit their result to the global
data repository. The compensating activities for the enterprise
services should be defined as part of the business process model.

Deliverables: Sets of coordination service methods for dis-
tributed transactions; sets of methods that are marked as safe-
points; sets of methods that are to be compensated; method de-
scriptions for realizing compensations; required maximal failure
rates for the coordination services for all enterprise services.

Step 8: Design of Application Services

The functionality of the coordination services often already ex-
ists within an application system(s). If so, four options for utiliz-
ing them in a composite application exist. Those are the direct
(re-)use of application systems’ functionality, mediated reuse of
such functionality, direct use of wrappers that are implemented
within the application systems and mediated access. The latter is
necessary whenever the implementation of wrappers is prohib-
ited.
If only part of the required functionality can be identified in ap-
plication systems, additional services will be required. These
additional services are added to the list of required coordination
services together with coordination services for the functionality
that was identified.
According to the identified functionality, previously designed
coordination services might be changed or adjusted, too. The
quality-of-service requirements should also be identified for the
revised service methods.

Deliverables: For direct reuse, the respective service methods
need to be determined. For the direct use of services, the not yet
created application services must be described.
For mediated reuse, suitable functional modules need to be iden-
tified. Their use must also be described. Further, suitable con-
nectivity options are required and potential new services must be
described as services for direct use.
If direct use of wrappers is applicable, the wrappers need to be
specified.
If application systems can only be used via mediated access, the
data scheme that should be accessed needs to be described. Ad-
ditionally, the available connectivity options need to be deter-
mined.

Step 9: Exchange and Transformation Design

Integration flows are required for any method of an application
system that needs to be mediated. As the realization of the ac-
tual application services and their combination with the DET are
usually heavily constrained by technical circumstances, steps 9
and onward need to be performed while taking the actual target
platform and application systems into consideration. This is how
the platform-independent design that is created in the first steps
is aligned to an actual platform.

In order to design the necessary integration flows, the required
interactions with the service providers first need to be identified.
This is achieved by specifying the appropriate service interac-
tion pattern (cf. [37]) and its respective design decisions. Based
on the identified pattern, the required integration flows, as well as
some integration services, can be identified. The identified map-
ping indicates the required integration services, as well as several
design decisions for each integration service.
Based on the identified integration services, the design needs to
be completed for each service. These service form a pattern tax-
onomy that is described in-depth in [31].

Deliverables: Complete specification of the integration flows for
every mediated service interaction. The description needs to in-
clude the specifications for the necessary integration services.

Step 10: Revise Service Coordination Description

The design of the actual application systems as well as the design
of the mediating integration flows reveals the applicability of the
top-down design for the coordination services. Based on the de-
liverable of the two previous steps, the coordination descriptions
might be changed. If changes occur, the quality-of-service re-
quirements need to also be analyzed for the new coordination.

Deliverables: Final description of the single coordination ser-
vices as well as the service coordination that aggregates the co-
ordination services to enterprise services.

Step 11: Revise Enterprise Service Candidates

During the step of redesigning service coordinations, technical
or organizational constraints that prohibit the realization of en-
terprise services that are aligned with the actual business process
might be identified. If this is the case, two possibilities for pro-
ceeding exist.
First, the whole process can be started from the beginning. This
is a preferable option if the modeled business process does not fit
into the landscape of an organization. The identified constraints
should then be used in order to define a business scenario that is
in alignment with these constraints.
The second option is to revise the actual design of enterprise ser-
vices in a way that the defined service coordinations can be re-
alized. This will usually involve defining additional input and/or
output parameters for the single enterprise services.
If the enterprise services are changed this is likely to also impact
the process orchestration. If the enterprise services are changed,
the service orchestration will need to be adjusted in a later step
(step 14). It must be noted that changing a process orchestration
is a violation of the objective of aligning application develop-
ment with business needs.

Deliverables: Decision about whether to continue the design or
to start over. If the design is continued, the revised enterprise
services must be defined. If the decision is to start again, the
constraints that led to this decision are required deliverables.

Step 12: Define Events

At this phase of the design, the enterprise services are defined.
In addition, how these services can be realized and what transac-
tional requirements exist is described.

Deliverables: Event types and their respective boundaries; rela-
tions between event types; and optionally, the definition of coor-
dination services that pass data between different scopes.

Step 13: Data Repository Design

Based on the Event Types that were identified in the previous
step, the preconditions for every event type can be defined. Such
preconditions might exist in terms of data existence. They de-
scribe that an event of a certain type can only be computed if
certain data is stored in the data repository of a process. Such

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 188 ISSN: 1690-4524

preconditions need to be identified in order to appropriately con-
figure a data repository.
On top of data prerequisites, data types from the data perspec-
tive need to be incorporated into the design of the data reposi-
tory (that addresses the principle of “interface reference” of [6]).
This is achieved by defining the smart proxy for the given pro-
cess as well as the transfer objects that are used to access the
smart proxy. This information can be found by analyzing the
data model of the business process. The business rules that are
identified in step 4 should also be analyzed as the data by which
they are defined is required to be kept in a data repository. An-
other input to the definition of smart proxies and transfer objects
are the interfaces of the coordination services. The data that is re-
quired by those services also needs to be integrated into the data
repository and made accessible by the smart proxies.
Based on the identified data and the respective transfer objects,
the data objects can then be grouped by the event types that con-
cern them. Together with the event type relations from the previ-
ous step, the data repository configuration can thus be completed.

Deliverables: Design of smart proxies and data transfer objects;
configuration instructions for the data repository.

Step 14: Finalize Service Orchestration

The deliverables of the previous steps describe all the facets of
a composite application. This description is aligned with the de-
scription of the business process. However, several constraints
could require changing the service orchestration.
If a service coordination cannot be realized as required, this also
impacts the service orchestration. Such changes need to be per-
formed during this step. As such requirements for changing the
orchestration are usually imposed by application system-specific
constraints, the adjustment of the orchestration is not structured
further.

A mandatory activity of this step is the design of the neces-
sary Decision Services. Based on the business rules that were
identified in step 4 and the available data that is represented by
the design of the data repository, the rules need to be described
and stored into a Decision Service.

Deliverables: Business rules that are formulated such that they
can be interpreted by the actual Decision Service(s); deci-
sion regarding the method of integrating Decision Service(s)
in a platform-specific way; revised service orchestration that
incorporates communication with the Decision Service(s),
Event Service and service coordinations for data passing; all
necessary changes to the orchestration that are necessary due to
informal constraints also need to be reflected.

Step 15: Finalize Exchange and Transformation Design

This step of the procedure is required in order to describe the
Trigger Services that are needed to mediate service interac-
tions. Trigger Services are used to extrinsically invoke com-
posite applications.
Based on the event types and the data repository design, the data
that is required as a prerequisite for a process is known. By an-
alyzing the actual interaction, the source of this data can also be
identified. If the source of such data is an agnostic application
system, a Trigger Service needs to be integrated. By adapt-
ing to the interface of the service consumer (the application sys-
tem) the interface of the respective Trigger Service is deter-
mined. Based on the identified event type, the Heterogeneity
Service of the respective Trigger Service can also be de-
signed. Additionally, filter logic needs to be described. This
logic is determined by the scenario as well as by technical con-
straints of the service consumer invoking a Trigger Service.
Finally, based on the data repository design, the write activity of
a Trigger Service that stores the data into the data repository
can be defined.

Deliverables: Finalized description of the integration flows in-
cluding the design of all necessary Trigger Services.

Step 16: Pass over to Implementation

After step 15, the design of the composite applications and the
services they consist of is finished. The design is described in a
platform independent manner. Additionally, some constraints of
the target platform are also incorporated.
Based on this design, a composite application can subsequently
be implemented. It is not recommended to add additional
design artifacts for this phase. In contrast to the idea of a
Model Driven Architecture (cf. [38]), this methodology does not
aim to transform platform independent design into executable,
platform-specific applications.

5. Summary and Outlook
The presented reference architecture is aligned around the no-
tion of abstraction. It puts a business process at the center and
uses loosely coupled and autonomous services to establish a link
between the actual business process and the heterogeneous ap-
plication landscape. The link to heterogeneous application sys-
tems is facilitated by the means of a flexible integration layer. By
emphasizing the reuse of application functionality, service orien-
tation is introduced as a beneficiary style for application integra-
tion that allows for realizing adaptive applications in established
and stable system landscapes. This way, the reference architec-
ture becomes more applicable for organizations that aim at using
standard software.

In order to make the reference architecture applicable in
actual projects, a design methodology for composite applications
was presented. This methodology combines a top-down and
bottom-up approach so as to translate an actual business process
into the design of a composite application that is based on the
described reference architecture.
Together, these concepts facilitate the application of SO for
large organizations. As such, these concepts can be seen as an
enabler for advanced service-oriented principles in this context.
Especially semantic service provisioning (cf. [11]) is a concept
that can be seen as a next step after the application of basic
service-oriented principles.

6. References
[1] Anil Nori and Rajiv Jain. Composite applications: Process

based application development. In Alejandro P. Buchmann,
Fabio Casati, Ludger Fiege, Meichun Hsu, and Ming-Chien
Shan, editors, TES, volume 2444 of Lecture Notes in Com-
puter Science, pages 48–53. Springer, 2002.

[2] David Garlan, Robert Allen, and John Ockerbloom. Archi-
tectural mismatch or why it’s hard to build systems out of
existing parts. In ICSE, pages 179–185, 1995.

[3] David S. Linthicum. Next Generation Application Integra-
tion. Addison-Wesley, Boston, MA USA, 2004.

[4] Mike P. Papazoglou. Service-oriented computing: Con-
cepts, characteristics and directions. In WISE, pages 3–12.
IEEE Computer Society, 2003.

[5] Gregor Engels, Andreas Hess, Bernhard Humm, Oliver
Juwig, Marc Lohmann, Jan-Peter Richter, Markus Vo, and
Johannes Willkomm. Quasar Enterprise - Anwendungs-
landschaften serviceorientiert gestalten, volume 1. dpunkt
Verlag, 2008.

[6] Joachim Schelp and Robert Winter. Towards a methodol-
ogy for service construction. In HICSS, pages 64–70. IEEE
Computer Society, 2007.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 1 89ISSN: 1690-4524

[7] Carsten Hentrich and Uwe Zdun. Patterns for process-
oriented integration in service-oriented architectures. In
Proceedings of 11th European Conference on Pattern Lan-
guages of Programs (EuroPLoP 2006), 2006.

[8] Uwe Zdun, Carsten Hentrich, and Schahram Dustdar. Mod-
eling process-driven and service-oriented architectures us-
ing patterns and pattern primitives. ACM Trans. Web,
1(3):14, 2007.

[9] Thomas Erl. Servcie-Oriented Architecture, volume Fourth
Printing of The Prentice Hall service-oriented computing
series. Prentice Hall, Inc., Upper Saddle River, NJ USA,
February 2006.

[10] Ali Arsanjani and Abdul Allam. Service-oriented modeling
and architecture for realization of an SOA. In IEEE SCC,
page 521. IEEE Computer Society, 2006.

[11] Domini Kuropka, Peter Trger, Steffen Staab, and Mathias
Weske, editors. Semantic Service Provisioning. Springer,
Berlin, Germany, 2008.

[12] Willem-Jan van den Heuvel, Jos van Hillegersberg, and
Mike P. Papazoglou. A methodology to support web-
services development using legacy systems. In Proceedings
of the IFIP TC8 / WG8.1 Working Conference on Engineer-
ing Information Systems in the Internet Context, pages 81–
103, Deventer, The Netherlands, The Netherlands, 2002.
Kluwer, B.V.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison Wesley, 1996.

[14] Gregor Hohpe and Bobby Woolf. Enterprise Integration
Patterns. The Addison Wesley Signature Series. Pearson
Education Inc., 2004.

[15] G. Kaufman. Pragmatic ecad data integration. Technical
Report 1, New York, NY, USA, 1990.

[16] Colombe Herault, Gael Thomas, and Philippe Lalanda.
Mediation and enterprise service bus: A position paper. In
Proceedings of the First International Workshop on Medi-
ation in Semantic Web Service (MEDIATE) 2005, 2005.

[17] Rainer Kossmann. An architectural framework for se-
mantic inter-operability in distributed object systems. In
J. Sutherland, D. Patel, C. Casanave, G. Hollowll, and
J. Miller, editors, Business Object Design and Implemen-
tation. Springer- Verlag London, 1995.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-oriented software architecture: A system
of patterns. John Wiley & Sons, Inc. New York, NY, USA,
1996.

[19] Stefan Kleine Stegemann, Burkhardt Funk, and Thomas
Slotos. A blackboard architecture for workflows. In Johann
Eder, Stein L. Tomassen, Andreas L. Opdahl, and Guttorm
Sindre, editors, CAiSE Forum, volume 247 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2007.

[20] Daniel Martin, Daniel Wutke, Thorsten Scheibler, and
Frank Leymann. An EAI pattern-based comparison of
spaces and messaging. In EDOC. IEEE Computer Society,
2007.

[21] Birgit Hofreiter, Christian Huemer, and Klaus-Dieter Nau-
jok. UN/CEFACT’s business collaboration framework -
motivation and basic concepts, 2004.

[22] Nicholas Carriero and David Gelernter. Linda in context.
Commun. ACM, 32(4):444–458, 1989.

[23] Liangzhao Zeng, Boualem Benatallah, Guo Tong Xie, and
Hui Lei. Semantic service mediation. In Asit Dan and

Winfried Lamersdorf, editors, ICSOC, volume 4294 of Lec-
ture Notes in Computer Science, pages 490–495. Springer,
2006.

[24] Gero Decker. Bridging the gap between business processes
and existing it functionality. In Proceedings of the First
International Workshop on Design of Service-Oriented Ap-
plications (WDSOA’05), 2005.

[25] RosettaNet Partner Interface Processes.

[26] Paul Grefen, Jochem Vonk, and Peter Apers. Global trans-
action support for workflow management systems: from
formal specification to practical implementation. The
VLDB Journal, 10(4):316–333, 2001.

[27] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek
Kiepuszewski, and Alistair P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

[28] Anis Charfi and Mira Mezini. Hybrid web service compo-
sition: business processes meet business rules. In Marco
Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Pa-
pazoglou, editors, ICSOC, pages 30–38. ACM, 2004.

[29] Florian Rosenberg and Schahram Dustdar. Business rules
integration in BPEL - a service-oriented approach. In CEC,
pages 476–479. IEEE Computer Society, 2005.

[30] Christoph Nagl, Florian Rosenberg, and Schahram Dustdar.
VIDRE - a distributed service-oriented business rule engine
based on RuleML. In EDOC, pages 35–44. IEEE Computer
Society, 2006.

[31] Helge Hofmeister and Guido Wirtz. A Pattern Taxon-
omy for Business Process Integration Oriented Applica-
tion Integration. In Kang Zhang, George Spanoudakis, and
Giuseppe Visaggio, editors, SEKE, pages 114–119, July 5-
7 2006.

[32] Sonia Lippe, Ulrike Greiner, and Alistair Barros. A sur-
vey on state of the art to facilitate modelling of cross-
organisational business processes. In M. Nüttgens and
J. Mendling, editors, Proceedings of the 2nd GI Workshop
XML4BPM, pages 7–22, March 2005.

[33] Liangzhao Zeng, Boualem Benatallah, Hui Lei, Anne H. H.
Ngu, David Flaxer, and Henry Chang. Flexible composi-
tion of enterprise web services. Electronic Markets, 13(2),
2003.

[34] Harald Meyer and Dominik Kuropka. Requirements for
automated service composition. In Johann Eder and
Schahram Dustdar, editors, Business Process Management
Workshops, volume 4103 of Lecture Notes in Computer
Science, pages 447–458. Springer, 2006.

[35] Helge Hofmeister and Guido Wirtz. Supporting service-
oriented design with metrics. In Proceedings of the 12th
IEEE International EDOC Conference (EDOC 2008), Oc-
tober 2008.

[36] Nick Russell, Wil M. P. van der Aalst, and Arthur H. M. ter
Hofstede. Workflow exception patterns. In Eric Dubois and
Klaus Pohl, editors, CAiSE, volume 4001 of Lecture Notes
in Computer Science, pages 288–302. Springer, 2006.

[37] Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter
Hofstede. Service interaction patterns. In Wil M. P. van der
Aalst, Boualem Benatallah, Fabio Casati, and Francisco
Curbera, editors, Business Process Management, volume
3649, pages 302–318, 2005.

[38] Richar Soley. Model Driven Architecture. Whitepaper,
November 2005. Last access: 20th December 2007.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 190 ISSN: 1690-4524

	S658CFB

