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ABSTRACT 

 
The impact of reliable estimation of stream flows at highly 

urbanized areas and the associated receiving waters is very 

important for water resources analysis and design. We used the 

least squares support vector machine (LS-SVM) based algorithm 

to forecast the future streamflow discharge. A Gaussian Radial 

Basis Function (RBF) kernel framework was built on the data 

set to optimize the tuning parameters and to obtain the 

moderated output. The training process of LS-SVM was 

designed to select both kernel parameters and regularization 

constants. The USGS real-time water data were used as time 

series input. 50% of the data were used for training, and 50% 

were used for testing. The experimental results showed that the 

LS-SVM algorithm is a reliable and efficient method for 

streamflow prediction, which has an important impact to the 

water resource management field. 

 

Keywords: Water Quantity Prediction, Least Squares Support 

vector Machine. 

1. INTRODUCTION 

 

The Potomac River plays an important role in watershed and 

river system health, and the physical, chemical, and biological 

viability of the river system [1]. Development, when not done in 

a sustainable fashion, causes many of the diseases that face the 

Potomac watershed. Stormwater picks up nutrients, sediment 

and chemical contaminants as it flows across roads, yards, 

farms, golf courses, parking lots and construction sites. This 

polluted runoff travels into storm drains and local waterways 

that eventually drain into the Chesapeake Bay. Development 

activities like clearing vegetation, mass grading, removing and 

compacting soil, and adding impervious surfaces have increased 

stormwater runoff in the Chesapeake Bay watershed.  

 

It has been recognized that urban stormwater pollution can be a 

large contributor to the water quality problems of many 

receiving waters. Depending upon the type of sewer system the 

stormwater runoff transports a wide spectrum of pollutants to 

local receiving waters through combined sewer overflows 

(CSOs) and/or stormwater discharges. Stormwater pollution is 

one of most important issues the District of Columbia faces. The 

downtown core of the District is serviced by combined sewer 

system. The development of the District over the years has 

increased its impervious area significantly which combines with 

inadequate drainage capacity of the sewer system results in 

CSOs and stormwater discharges to the Anacostia River, 

Potomac River and Rock Creek. 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

The study area will focus on the Four Mile Run at 

Alexandria, VA. The Four Mile Run is 9.2 miles long, and 

is a direct tributary of the Potomac River, which 

ultimately carries the water flowing from Four Mile Run 

to the Chesapeake Bay, as shown in Fig. 2. The stream 

passes from the Piedmont through the fall line to the 

Atlantic Coastal Plain, and eventually empties out into the 

Potomac River. Potomac River was determined to be one 

of the most polluted water bodies in the nation mainly due 

to the CSOs and stormwater discharges and wastewater 

treatment plant discharges. In addition, because of the 

highly urbanized nature of the Four Mile Run watershed, 

the neighborhoods and businesses adjacent to this portion 

of the run were subjected to repeated flooding, beginning 

in the 1940s. Therefore, the flood-control solutions are the 

major concern. Runoff prediction would provide a 

promising solution for flood-control. 

Fig. 1. Satellite landsat photo of Potomac River 

watershed. The Potomac river is a key entry point to the 

Chesapeake Bay for millions living in or visiting 

metropolitan Washington. 

Potomac River Chesapeake Bay 

Atlantic Ocean 
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Given the existing flow conditions of Potomac River, there is 

need to analyze the flow conditions at specific locations for 

future flow, specifically streamflow rate, and a reliable estimate 

under changing climactic conditions.   

 

To resolve the above problems, it is extremely important to 

investigate state-of-the-art computational intelligence with the 

potential for higher rates for urban runoff forecast. Based on the 

fact that support vector machine has very successfully 

applications on the time series prediction problems [17], and 

because time series prediction is a generalized form of runoff 

quantity prediction, we expect this method will also work the 

best for the runoff prediction problem. 

 

This paper is organized as follows. In Section II, the principle 

scheme and the method of Least Squares Support Vector 

Machines (LS-SVM) are illustrated. In Section III, the initial test 

on the function estimation is implemented. The USGS time 

series data are briefly introduced. The water data are briefly 

introduced. The experimental results of LS-SVM predictions on 

the water data are demonstrated. In Section IV, the conclusions 

are given.  

 

2. METHOD 

 
Support Vector Machines (SVMs) are a powerful kernel based 

statistical learning methodology for the solving problems of 

nonlinear classification, pattern recognition and function 

estimation [3]. Least Squares Support Vector Machines (LS-

SVM) are an advanced version of the standard SVMs which 

incorporates unsupervised learning and recurrent networks. 

Recent developments of LS-SVM are especially relevant to the 

fields of time series prediction, kernel spectral clustering, and 

data visualization [4]-[13]. The preliminary results show that the 

LS-SVM modeling method is promising for time series 

prediction, thus we want to study the present a current LS-SVM 

toolbox run through Matlab to implement a number of LS-SVM 

algorithms. 

 

Support Vector Machines are a new and potential data 

classification and regression instrument. The basic idea of SVM 

is based on Mercer core expansion theorem which maps sample 

space to a high dimension or even unlimited dimension feature 

space (Hilbert space) via nonlinear mapping φ. And it will boil 

algorithm which searches for optimal linear regression hyper 

plane down to a convex programming problem of solution of a 

convex restriction condition. And it will also obtain overall 

situation optimum solution so as to use the method of linear 

learning machine in feature space to solve the problem of high-

degree nonlinear regression in sample space [14].  

 

The principles of SVM can be summarized by Fig. 3 as follows: 

 
         Fig 3. Principle scheme of Support Vector Machine. 

 

In Fig. 3, n input support vectors are in the first layer and the 

second layer is nonlinear operation of N support vectors, that is, 

the core operation. For nonlinear problems, assume sample to be 

n-dimension vector, then in one certain domain, N samples and 

their values can be expressed as: 
(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁) ∈ 𝑅𝑛 × 𝑅          (1) 

Firstly, a nonlinear mapping ψ(⋅) is used to map 

samples from former space Rn to feature space: 

𝜓(𝑥) = (∅(𝑥1), ∅(𝑥2), … ∅(𝑥𝑁)                  (2) 

Then, in this high-dimension feature space, optimal 

decision function: 

𝑦(𝑥) =  𝑤∅(𝑥) + 𝑏        (3) 
is established. In this function, w is a weighed value vector and b 

is a threshold value. In this way, nonlinear prediction function is 

transformed to linear prediction function in high-dimension 

feature space. As development and improvement of classical 

SVM, Least Squares Support Vector Machine (LSSVM) defines 

a cost function which is different from classical SVM and 

changes its inequation restriction to equation restriction. As a 

result, the solution process becomes a solution of a group of 

equations which greatly accelerates the solution speed [15]. In 

Least Squares Support Vector Machines, the problem of 

optimization is described as follows: 

min𝑤,𝑏,𝜀 𝐿 (𝑤, 𝑏, 𝜀) =
1

2
‖𝑤‖2 +

𝑐

2
∑ 𝜀𝑖

2𝑙
𝑖=1   (4) 

       (4) 

Such that: 𝑦𝑖 = 𝑤𝑡∅(𝑥𝑖) + 𝑏 + 𝜀𝑖(i=1,2,…,l) 

 

The extreme point of Q is a saddle point, and differentiating Q 

can provide the formulas as follows, using Lagrangian multiplier 

method to solve the formulas: 
𝜕𝑄

𝜕𝑤
= 𝑤 − ∑ ∝𝑖 ∅(𝑥𝑖) = 0𝑙

𝑖=1          (5) 

𝜕𝑄

𝜕𝑏
= − ∑ ∝𝑖= 0

𝑙

𝑖=1

 

𝜕𝑄

𝜕 ∝
= 𝑤𝑇 − ∅(xi) + b + 𝜀𝑖 − 𝑦𝑖 = 0 

Chesapeake Bay 
Potomac 

River 

Atlantic 

Ocean 

Fig. 2. Four Mile Run at Alexandria, VA is a nine-mile 

long stream located in a highly urbanized area in Northern 

Virginia. It is a direct tributary of the Potomac River, 

which ultimately carries the water flowing from Four Mile 

Run to the Chesapeake Bay.  
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𝜕𝑄

𝜕𝜀𝑖
= 𝐶𝜀𝑖 −∝𝑖= 0 

 

From formulas above: 

 
1

2
∑ ∝𝑖 ∅(𝑥𝑖)𝑙

𝑖=1 ∑ ∝𝑗 ∅(𝑥𝑗) +
1

2𝐶
∑ ∝𝑖

2+ 𝑏 ∑ ∝𝑖
𝑙
𝑖=1 =𝑙

𝑖=1
𝑙
𝑗=1

∑ ∝𝑖 𝑦𝑖
𝑙
𝑖=1             (6) 

 

The formula above can be expressed in matrix form: 

 

[0 𝑒𝑇

𝑒 Ω + 𝐶−1𝐼
] (l + 1)(l + 1) [

b
∝

] = [
0
Y

]       (7) 

 

In this equation, 

𝑒 = [1, … ,1]𝑥
𝑇 

 Ω𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)𝑇∅(𝑥𝑗)      (8) 

 

Formula (7) is a linear equation set corresponding to the 

optimization problem and can provide us with α and b. Thus, the 

prediction output decision function is: 

�̅�(𝑥) = ∑ ∝𝑖 𝐾(𝑥𝑖𝑥) + 𝑏𝑙
𝑖=1         (9) 

 

where K ( x i , x )  is the core function. 

 

We are ultimately using the LS-SVM method to calculate and 

predict the USGS water data, specifically using time-series data 

prediction.  After loading the data into Matlab, we first build the 

training and testing sets from the data.  Next we cross-validate 

based upon a feed-forward simulation on the validation set using 

a feed-forwardly trained model. This will supply us with the 

tuning parameters: γ (gamma) which is the regularization 

parameter and σ2 (sigma squared) or the squared bandwidth. 

The tuning parameters were found by using a combination of 

coupled simulated annealing (CSA) and a standard simplex 

method. The CSA finds good starting values and these values 

were passed to the simplex method in order to fine tune the 

result. One of the parameters, γ is the regularization parameter, 

determining the trade-off between the training error 

minimization and smoothness. The other parameter, σ represents 

the squared bandwidth. Once the parameters are calculated, we 

are able to plot the function estimation or use the predict 

function to predict future values of the data.  By using only a 

subset of the total data available, we can compare the 

predictions against real values to see how accurate the prediction 

is. 

 

3. EXPERIMENTAL RESULTS 

 

Initial Test on the Function Estimation 

Because LS-SVM time series prediction uses function 

estimation in the parameter tuning, training procedures and 

prediction, it is important to test the function estimation ability. 

For this purpose, we set up a simple nonlinear system model to 

estimate the target function, Y, which can be implemented with 

only a few lines of code [16]. 

 

X = linspace(-1,1,50)'; 

Y = (15*(X.^2-1).^2 .*X.^4).*exp(-X)+ 

normrnd(0,0.1,length(X),1); 

type = 'function estimation'; 

[gam,sig2] = tunelssvm({X,Y,type,[],[],'RBF_kernel'}, 

'simplex','leaveoneoutlssvm',{'mse'}); 

[alpha,b] = trainlssvm({X,Y,type,gam,sig2,'RBF_kernel'}); 

plotlssvm({X,Y,type,gam,sig2,'RBF_kernel'},{alpha,b}); 

 

In this case, we generate sample data sets X and Y, with X being 

a linearly spaced set of fifty values from -1 to 1, and Y being a 

quasi-random exponential function.  After setting LS-SVM 

processing type to 'function estimation,' we then tune the 

coefficients using the tunelssvm command, passing it the values 

for X, Y, type, and other settings for the computation. The 

tunelssvm function outputs the two tuning hyper-parameters, 

gamma and sig2. After the algorithm is done tuning, the program 

generates the following output and specifically values for the 

hyper-parameters, as shown in Fig. 4.  

 

 
 

Fig. 4 Output generated from tunelssvm function. 

 

After the tuning shown above, the trainlssvm command is called 

to generate alpha and b, which are then both input into the 

plotlssvm function to generate the following plot representing 

the LS-SVM estimation of the data set. The estimated function, 

Y in terms of the inputs is shown in Fig. 5. 

 
Fig. 5 Plot of Y vs. X, where blue dots represent actual data points and 

the red line is the prediction. 

 

As shown in Fig. 5, the LS-SVM model is performing very well 
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on estimating a function to a random set of data. This proves 

that the function estimation works effectively. 

 

Next we used the LS-SVM command to calculate error bars 

based on a sample training data set. After loading a randomized 

sinc function into Y, and a linearly spaced vector into X, we 

implement the following code to both calculate the LS-SVM 

regression and error bars, a representation in the error of each 

predicted value. The command 'bay_error' bar is sent the 

variables involved after LS-SVM processing and returns a figure 

that graphically depicts the accuracy of the prediction:  

[Yp,alpha,b,gam,sig2] = lssvm(X,Y,type); 

sig2e = bay_errorbar({X,Y,type, gam, sig2},'figure'); 

 

After executing the above code, two plots are generated. The 

first is the plot of the actual data points (blue dots) compared to 

the function estimated to predict those points (red line), as 

shown in Fig. 6. 

 

 
Fig. 6 LS-SVM function estimation for the randomized sinc function. 

 

The second shows the error bars, or the algorithm's confidence 

in its own predictions in Fig. 7. The black line covered by black 

'+' signs is the predicted function and data, while the red dotted 

lines represent the 95% error bar; basically the area in which 

95% of the data resides. 

 

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

Fig. 7 Data points and prediction (black) with 95% error bars (red). 

 

Time Series Prediction 

We used a sample set of about 35,000 data points, all taken at a 

regular time intervals.  We examined both gage height and 

discharge. The discharge is the volume of water flowing past a 

certain point in a water-flow.  For example, the amount of cubic 

feet passing through a drain per second is a measure of 

discharge.  Gage height is simply the height of water at a certain 

point, like the level of the Potomac River measured at Key 

Bridge.  Initially we are only looking to input one of these 

variables into the LS-SVM algorithm, but in the future it would 

probably prove to increase prediction accuracy to include the 

use of both variables at once, the more data input into the system 

often translates into better results. Fig. 8 is a plot of the 

discharge vs. time. 

 
Fig. 8 Plot of entire discharge data set vs. time. 

 

These discharge values vary significantly over time- the baseline 

is at around 4 on the Y-axis, with peaks reaching 8, with very 

little repetition to the pattern, making it more difficult to predict 

future values.   

 
Fig. 9 Plot of entire gage height data set vs. time. 

 

The gage height plot contains peaks in similar timeframes as the 

discharge plot, likely due to large rainfall events or local 

flooding, as shown in Fig. 9. 

 
Fig. 10 USGS gage height vs. discharge (scaled) for side-by-side 

comparison. 
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When looking at both gage height and discharge on the same 

plot as shown in Fig. 10 (with discharge multiplied by 100 so it 

is visible on the same scale), you can see that they closely 

correlate with each other. Again this is likely due to the patterns 

in local weather, specifically precipitation.  Sending only one of 

these variables to the LS-SVM function will produce good 

predictions, but if we can go further and implement a two input 

algorithm, that will analyze both discharge and gage height at 

the same time, this will definitely increase the accuracy of 

predictions. 

 

To test LS-SVM predictions on the water data we selected a 

random portion of the discharge data, 500 data points from the 

original sample of about 35,000.  The LS-SVM algorithm is 

known to be very resource efficient, meaning it can process 

large amounts of data without using too much processor or 

memory power.  By even this algorithm would take a very long 

time to process more than a few thousand data points.   

 

The following plot was processed in a similar way to the 

examples above, but instead of using a random function for Y, 

we utilize a random selection of points from the discharge 

dataset. In this case X is just the time axis, as in all time-series 

datasets, this data was taken at regular intervals so the values 

used for X increment one by one.   

 

After loading the data, we tune the hyper-parameters gamma and 

sigma squared with the tunelssvm command, which generates 

the following values after 10 iterations, as shown in Fig. 11. 

 
 

Fig. 11 Output generated from tunelssvm command operating on 

USGS water data. 

 

Once the hyper-parameters are tuned, we just assigned alpha and 

b with the trainlssvm command and finally use the predict 

function to make a prediction for the next set of values.  The 

final plot generated is shown in Fig. 12, with real USGS 

discharge datapoints shown in blue while the LS-SVM 

prediction is the red line. 

 

 
Fig. 12 USGS discharge data set (blue dots) and LSSVM 

prediction (red). 

 

4. CONCLUSIONS 

 
In this paper, the least squares support vector machine (LS-

SVM) based algorithm to forecast the future streamflow 

discharge. A Gaussian Radial Basis Function (RBF) kernel 

framework was built on the data set to optimize the tuning 

parameters and to obtain the moderated output. The training 

process of LS-SVM was designed to select both kernel 

parameters and regularization constants. The USGS real-time 

water data were used as time series input. 50% of the data were 

used for training, and 50% were used for testing. 

 

The experimental results demonstrated that the proposed LS-

SVM based predictive model and the training algorithm ensure 

an accurate prediction of LS-SVM, and by association any 

natural measurable system. In addition, this provides an 

excellent prediction method for the time series data, and if 

correctly implemented can be an invaluable tool in predicting 

natural weather events. Even outside of storm-water, this 

algorithm could be very useful to engineers who wish to develop 

a resource efficient prediction model for any quantifiable data 

set, i.e. solar radiation, global warming, glacier melting, and 

more.   
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