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With the emergence of IoT, new computing paradigms 
have also emerged. Initial IoT systems had all the 
computing happening on the cloud. With the emergence 
of Industry 4.0 and IoT being the major building block, 
clouds are not the only solution for data storage and 
analytics. Cloudlet, Fog Computing, Edge Computing, 
and Dew Computing models are now available, 
providing similar capabilities as the cloud. The term 
cloudlet was introduced first in 2011, but research in this 
area has picked up only over the past five years. Unlike 
clouds, which are built with powerful server-class 
machines and GPUs, cloudlets are usually made using 
simpler devices such as SoCs. In this paper, we propose a 
complete novel distributed architecture for cloudlets, and 
we are also proposing algorithms for data storage and 
task allocation across various nodes in the cloudlet. This 
cloudlet system was built using Qualcomm Snapdragon 
410c. We have analyzed the architecture and the 
algorithm for varying workloads, bandwidth and data 
storage. The primary aim of the algorithm and the 
architecture is to ensure uniform processing and data 
loads across the nodes of the system.  

Keywords: IoT, system-on-chip, cloudlets, task 
allocation, scheduling 

 
1.  INTRODUCTION 

 
There Internet of Things (IoT) has evolved rapidly over 
the last decade. There are billions of edge devices that are 
a part of multiple application domains such as smart 
homes, self-driven cars, wearables, smart-grid, smart 
cities, supply chain management and Industrial IoT, etc. 
[1], [2]. Billions of devices would naturally generate a 
large amount of data at high speeds and varying sampling 
rates. Multiple applications, specifically in the industrial 
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domain, come with hard real-time constraints and, 
therefore, require predictable network latencies. Current 
IoT architectures connect the end devices directly or via 
coordinators to the cloud [3]. Since multiple applications 
would share the same cloud infrastructure, this leads to 
significant and unpredictable jitters in network latencies 
[4]. This is alleviated to a certain extent by using private 
clouds and Edge computing. While large industrial 
complexes may opt for a private cloud, medium or small-
scale industries may prefer to avoid using a private cloud 
option. The use of edge computing necessitates the 
presence of powerful co-ordinators. Only some industrial 
applications may go in for coordinating nodes [5].  
Industrial networks are inherently hierarchical and, hence, 
are apt for cloudlet-based solutions. The cloudlet layer is 
an additional layer introduced between the edge of the 
IoT system and the cloud. The cloudlet layer could handle 
processing tasks and data associated with short-term 
monitoring and control. Unlike clouds, which are built 
with powerful server-class machines and GPU, cloudlets 
are usually built using simpler devices such as SoCs [6], 
[7]. Our work focuses on building a cloudlet system that 
uses the Qualcomm Snapdragon 410c SoC platform. The 
research proposes a distributed cloudlet architecture along 
with an algorithm that can be used for uniformly storing 
data on the cloudlet nodes. We also offer a Task 
Scheduling algorithm across different cloudlet nodes so 
that the infrastructure is uniformly loaded. We also 
present an analysis of this architecture and the data 
storage and task scheduling algorithms. The algorithms 
are analysed for varying data storage and CPU utilization 
percentages under restricted network bandwidth.  

The rest of this paper is organised as follows: Section 2 
presents cloudlet computing, and Section 3 discusses the 
proposed cloudlet architecture. Section 4 details the 
proposed algorithm for task and load balancing in 
cloudlet systems. We have discussed the results and 
analysis in Section 5, Section 6 presents an application of 
digital twining done on cloudlets, and finally, section 7 
presents our conclusion and future work. 
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2.  CLOUDLETS 
 

As the amount of data produced by industrial end devices 
is increasing daily, the requirement for the cloud device 
becomes higher. The resource requirement in terms of 
processing and storage on the cloud increases. This 
causes further delays, and cloud services sometimes 
appear inefficient for real-time industrial applications [8].  
A cloudlet is defined as “A small-scale data center or a 
cluster of computing devices that are designed to provide 
cloud services to primarily mobile devices, such as 
smartphones, tablets and wearable devices that are in 
close proximity to it” [9], [10]. 
The Industrial Internet of Things system is made up of a 
large number of heterogeneous nodes that are connected 
using different wired and wireless networks [11]; 
generally, in an industrial system (even in the case of 
small-scale industry), there will be at least two levels of 
the network hierarchy, level one is filed level network 
made up of sensors and actuators, level two will be a plant 
level hierarchy made up of PLCs, and CNC systems. 
Industry IoT systems generally prefer a localised cloudlet 
architecture since this would guarantee data privacy, 
security and predictable jitters[12]. The cloudlet is a low-
cost solution that small-scale or medium-scale industries 
can use to store their data and execute the more complex 
control algorithms. This solution eliminates the need to 
pay for high-cost cloud services that may only be 
available at some points in time, based on the 
geographical location of the industry[13]. This also solves 
the problem of large and unpredictable jitters by allowing 
tasks with short-term, hard real-time deadlines to be 
executed on the cloudlets. In contrast, the cloudlet can 
transfer long-running tasks with softer real-time deadlines 
to the cloud. 

 
 

Figure-1 Cloudlet Architecture 

Generally, Industrial networks have a minimum of 3 

levels of hierarchy: the Device level, which is a network 
of various sensors and actuators. The primary function at 
the device level is acquiring data and controlling the 
devices, which can be termed different Industrial Internet 
of Things devices. The second layer is the Field level, 
which is made up of controllers and PLCs; this level 
controls manufacturing processes or industrial 
equipment, where it would be interesting to store 
information every few milliseconds or seconds; this level 
does not generally have large storage capacities as well 
as higher processing capabilities. The third and topmost 
level comprises one or two complex computing devices, 
usually forming the Edge in an IoT system. The entire 
level 3 can be replaced by a cloudlet system comprising 
distributed SoCs connected in an ad hoc network, as 
shown in Figure 1. The architecture should meet some of 
the requirements to achieve the needs of Industrial IoT 
use cases. It includes responsiveness, scalability, 
usability, and flexibility, Security. 
The Cloudlet system in the Industrial IoT networks will 
sit above the plant-level hierarchy where we have a large 
number of distributed heterogeneous devices forming a 
network, where we collect industrial data in real time and 
have to transmit it to the cloud server for computing and 
control. If control is real-time, then predictable network 
latencies with zero jitter become a primary requirement 
since a cloud-based system caters to a large number and 
variety of end users; it may not be possible to guarantee 
latency with zero jitters. While edge computing has been 
offered as the solution in the case of some Industrial IoT 
systems, an alternative to this is cloudlet-based systems 
that have started emerging in the last five years. 
Cloudlets comprise low-power computing systems with 
limited processing capability and memory, connected 
together in heterogeneous networks [14]. 
The main advantage of using Cloudlet computing in 
Industrial IoT is as follows [15] 

a. Improving system performance 
b. Protect data security and privacy 
c. Reduce operational cost 
d. Reduce communication latency 

 

3. PROPOSED ARCHITECTURE 

The proposed system is entirely distributed; as shown in 
Figure 2, the cloudlet architecture is completely 
distributed. The architecture comprises multiple SoCs (In 
our case, Qualcomm Snapdragon 410c) connected to a 
wireless network using 802.11.  End devices connect to 
various node SoCs, and the node SoC, in turn, connects to 
each other to form a cloudlet. Each node is aware of the 
state of all the nodes in the cloudlet; the SoCs proactively 
send their load status, storage availability and network 
bandwidth at regular intervals of time “τ”. To further 
reduce the control overhead due to the status update, we 
suggest using a soft threshold (δ) and a hard threshold (γ1, 
γ2 ), where γ1  is the high threshold, and γ2  is the low 
threshold. 
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Figure -2 Proposed Cloudlet Architecture 

 
If the current CPU load on a node is ≥ (previous load + 
δ), then the system status is transmitted to all the nodes. 
At any point in time, if the CPU load goes beyond γ1, 
information is immediately sent to all the nodes. If the 
CPU load on a node is ≤  (previous load - δ),  then the 
system status is transmitted to all the nodes. If the CPU 
load drops below γ2, then this is broadcast to all the 
nodes. The same procedure is followed for storage and 
network bandwidth usage. The next section gives the 
complete details of the algorithm for task scheduling on 
the cloudlet for this architecture. 
 

Figure 1. Actual cloudlet implementation using seven 410c 
 
Figure 3 shows the actual cloudlet implementation using 
seven 410c’s. The Dragonboard 410c development board 
is based on a Qualcomm APQ8016e processor. It comes 
with advanced processing power, Wi-Fi, Bluetooth 
connectivity, and GPS with supporting various OS. It 
also supports internal and external memory storage 
support, graphics and video support, and many other 
features, making this development board suitable for 

rapid software developments and a good candidate for 
cloudlet implementation. 
 

 
Information is stored at each node in a cloudlet. Each 
node in the cloudlet will have an information manager 
with the following statistics: -  

a. Percentage of CPU utilization 
b. Current application software in use 
c. Available application software for user 
d. Available data space 
e. Network bandwidth available for setting up a 

connection 
 

A. Algorithm explanation 
The algorithm for task allocation in the cloudlet is 
distributed as we follow the architecture described in the 
previous section.  Any node can exist in three states: 
heavy, medium, and light.  
These states are defined concerning the following:   

a) CPU load  
b) Data storage availability  
c) Network bandwidth 

 
a) CPU Load 
Heavy state: A node in the cloudlet enters a heavy state 
when it is running application software or multiple 
instances of application software. If the CPU utilization 
percentage is greater than or equal to CPUH, the node 
stops accepting requests for running the application. 
Tasks are migrated to other SoCs.  
Medium state: If the CPU utilization percentage is 
greater than that of equal to CPUM but lesser than CPUH, 
the SoC is in the medium load stage. It can accept 
application tasks until its load is less than CPUH. 
Light state: If the CPU utilization percentage is less than 
CPUM, it is in a light state. In such a state, the SoC can 
easily accept tasks from a heavily loaded SoC to this 
SoC, provided the lightly loaded SoC has an affinity 
towards the task if there is sufficient storage and the 
network bandwidth and is in the medium state or lesser. 
 
b) Data Storage Availability 
Intermediate data storage is done on the cloudlets before 
a complete backup needs to be done. The amount of 
storage space can fall into any of the three states: heavy, 
medium, and light.  
Heavy: If the amount of data storage available on the 
node is lesser than DATAH MB, then it indicates high 
storage utilization; hence, any data arriving that is not 
related to the application currently under execution will 
be migrated to the other SoCs in the Cloudlet. 
Acceptance of new tasks also depends upon storage 
availability. So, while the SoC is in a data storage heavy 
state, even if the CPU load is medium, it will not accept 
new application tasks, a condition where the storage 

4. PROPOSED ALGORITHM 
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utilization is high but CPU utilization is light, which will 
rarely occur. 
Medium: If the amount of data storage space available is 
greater than or equal to DATAM MB but lesser than 
DATAH MB, then it is available for data storage. It can 
also accept new application tasks if the data space 
required will not cause the device to go into a heavy 
state.  
Light: If the Data storage utilization is less than DATAM 
MB, it is in a light state. It can accept new applications as 
well as data. It can accept tasks migrated to it by the 
SoC, provided sufficient network bandwidth exists. 
 
c) Network bandwidth 
The knowledge of network bandwidth is necessary; for 
example, if a connection cannot be established due to 
heavy usage of network bandwidth, the task or data 
cannot be migrated to a Light state SoC. Network 
Bandwidth: network utilisation might be high, medium, 
or low based on the number of active connections and 
available network bandwidth. 

B. Communication between the SoCs 
The SoCs initiate a communication under the following 
conditions: 

a. During initial setup – when each SoC starts. 
b. When an SoC is lightly loaded regarding CPU, 

data, and network bandwidth. Under these 
conditions, it is actively soliciting for tasks or 
data. 

c. When an SoC is heavily loaded regarding CPU, 
data and network bandwidth. Under these 
conditions, it seeks to migrate tasks to another 
SoC on the cloudlet. 

C. Algorithm 
1. The information manager on each SoC has the 

information of the node states (CPU, DATA and 
network). 

2. When any new application instance arrives at a 
node 

a. It checks its state and data storage  
b. If the state and the CPU Utilization and 

data storage are at medium or light  
i. If the application instance can be 

run, it then accepts the task and the 
related data. 

ii. Else, a task migration request is 
broadcast. 

iii. Each SoC checks if it is in a medium 
or light state. Each node calculates 
its capacity to accept a task using 
several factors:  
Number of Tasks completed in the 
past window (TP).  

The number of tasks in the current 
execution window is (TC), and  
The number of tasks (TF) in a 
chosen queue length is ready for 
execution. 

   
Eq. (1) 
Where  

N is the affinity factor. 
NP is the Time window of 

the past tasks,  
NC is the Time window of 

the current tasks, 
NF is the Time window for 

future tasks and  
w1, w2, and w3 are the 

weights assigned. 
iv. If N < Th (Threshold set by system), 

then a task migration acceptance is 
sent after a delay determined by N. If 
N is high, the delay is more. 

v. If no node with the value N < Th is 
available, no node responds; hence, 
the task is sent to the cloud. 

3. When any new data arrives at a node 
a. It checks its data storage availability  
b. If the data storage is at medium or light  

i. It then accepts the data. 
ii. Else, the data migration request is 

broadcasted. The data migration 
request has the quantity of data and 
its characteristics. 

iii. Each SoC looks at the storage 
utilization rate marked as light and 
medium. If the rate of utilization is < 
RTH and if the number of tasks in the 
NF window of the queue is < NTH, 
then the node sends data to accept 
after a delay δ. This δ depends upon 
the CPU load and available data 
space. As in the case of tasks, if the 
node is lightly loaded and has good 
storage space available δ will be 
smaller. 

iv. Data is sent to the cloud if no such 
node is available, 

5. RESULTS AND DISCUSSION 

A. Data Storage 
In the previous section, we have described the algorithm 
for distributed uniform data storage on the cloudlets. We 
varied the lower and upper thresholds to analyze the 
algorithm’s performance for differing data loads from the 
end devices. We tried to obtain the ratio of the data that 
would remain on the cloudlet that gets migrated to 
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another cloudlet and transferred to the cloud. Figures 4 to 
9 show the effect of data storage on the cloud.  
We initially froze our lower threshold at 0.3 and varied 
the upper threshold from 0.5 (figure 4) to 0.8 (figure 7). 
 

 
Figure 4. Data migration with LT at 0.3 and UT at 0.5 

 
A threshold of 0.3 indicates that 30% of the storage space 
on the cloudlet node is already full. The upper threshold 
is then used to decide when the data should be moved 
from the cloudlet. The upper threshold of 0.5 means that 
when 50% of data space is full, the data is migrated 
either to another cloudlet or the cloud. For each 
threshold, we also vary the number of lightly loaded 
nodes, moderately loaded and heavily loaded. Figure 4 
shows that as the number of lightly loaded nodes is 
reduced, the amount of data that gets moved between the 
cloudlets decreases and the amount of data transferred to 
the cloud increases. This is because we have kept a very 
low upper threshold of 50%. So when each node reaches 
50% of its data size, it will offload data to another node 
in the cloudlet, which is more feasible if there are more 
lightly loaded nodes. But if the number of lightly loaded 
nodes is significantly less, the data will be automatically 
transferred to the cloud. 
  

 
Figure 5. Data migration with LT at 0.3 and UT at 0.6 

 
When we increase the upper threshold to 60% in Figure 
5, comparatively more amount of data is transferred 

within the cloudlets. And the amount of data which is 
transferred to the cloud decreases. When there are no 
lightly loaded nodes, and the number of moderate nodes 
is also less except for the data that is consumed by the 
cloudlet node itself, the data gets migrated to the cloud 
rather than to another cloudlet node.  
 

 
Figure 6. Data migration with LT at 0.3 and UT at 0.7 

 
With the increase in the upper threshold, more data is 
stored on the individual cloudlet node, and less amount 
of data gets migrated. When we kept the low threshold 
constant and varied the upper threshold, an interesting 
observation that can be noted is that the data that is 
migrated between the cloudlets remains constant. The 
variation is only in the amount of data that is migrated to 
the cloud. This is because the algorithm is built so that it 
will try to store the data on individual cloudlet nodes 
connected to the end devices and only migrate the data 
when certain thresholds are reached. By this time, it’s 
quite possible that other nodes have reached the upper 
threshold. Hence, the data has to be migrated onto the 
cloud. And this can be observed in Figures 4-7. 
 

 
Figure 7. Data migration with LT at 0.3 and UT at 0.8 

 
We then kept the upper threshold constant at 0.7 and 
varied the lower threshold from 0.2-0.4, meaning that the 
initial load on each node in the cloudlet was varied 
between 20%-40%.  
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Figure 8. Data migration with LT at 0.2 and UT at 0.7 

 
When the upper threshold is maintained constant and the 
lower threshold is increased from 0.2 to 0.4, more 
amount of data is migrated to the nodes within the 
cloudlets that are lightly loaded. This can be seen in 
Figure 6, Figure 8, and Figure 9. 
 

 
Figure 9. Data migration with LT at 0.4 and UT at 0.7 

 
It’s only when zero nodes are lightly loaded that the data 
gets migrated to the cloud.  
In this case, there is an increase in the data migrated 
within the cloudlet as the lower threshold increases while 
the data that is migrated to the cloud remains constant. 
 

B. Task Scheduling 
In an IoT system, not only is the data stored in the cloud, 
but the tasks are also executed in the cloud. In our 
cloudlet system, similarly, it can act as a data storage 
platform as well as execute tasks. Regarding task 
scheduling, we kept our task thresholds constant at 0.3 
and 0.7. The lower threshold of 0.3 indicates that 30% of 
Cloudlet’s processing power is already in use, and the 0.7 
upper threshold means that the CPU utilization can reach 
70%. To analyze the effectiveness of task scheduling 
algorithms, we varied the weights of past, current and 
future windows (as described in section IV). When we 
assigned equal weightage to the past, current and future 
windows (33.33%), as seen in Figure 10. 

 
Figure 10. Task scheduling keeping past current and future 

windows weight 0.33:0.33:0.33 
 
We found that when the number of nodes that were 
lightly loaded and medium loaded was more, a very less 
number of tasks were migrated onto the cloud.  Only 
when there were no lightly loaded nodes, as per our 
algorithm, were the tasks migrated to the cloud.  
 

 
Figure 11. Task scheduling keeping past current and future 

windows weight 0.3:0.4:0.3 
 
When we varied the weights by assigning the weight of 
0.3 to past, 0.4 to current and 0.3 to future windows, we 
found that slightly more tasks were migrated to the 
cloud, as seen in Figure 11. The tasks consumed by the 
cloudlets remain relatively constant. 
  

 
Figure 12. Task scheduling keeping past current and future 

windows weight 0.25:0.5:0.25 
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When the weightage of the past and the future windows 
was kept at 0.25, giving more weightage of 0.5 to the 
current window, more tasks were moved within the 
cloudlets, and the number of tasks migrated to the cloud 
remained relatively constant, as seen in Figure 12. This 
shows that at this weight value, the load is better 
balanced between node and cloudlets, and the CPU 
utilization remains fairly uniform. 
 

 
Figure 13. Task scheduling keeping past current and future 

windows weight 0.2:0.6:0.2 
 
When we further increased the weightage of the current 
window to 0.6, 0.7 and 0.8, as shown in Figure 13, 
Figure 14 and Figure 15, respectively, the number of 
tasks that were transferred within the cloudlet increased 
up to 0.7 and when more weightage was assigned to the 
present window ignoring the past history and the future 
load the number of tasks that were migrated between the 
cloudlets decreased. Each cloudlet node tries to schedule 
the task by itself. The number of tasks migrated to the 
cloud was also much less unless there was no lightly or 
moderately loaded node. 
 

 
Figure 14. Task scheduling keeping past current and future 

windows weight 0.15:0.7:0.15 
 

 
Figure 15. Task scheduling keeping past current and future 

windows weight 0.1:0.8:0.1 
 
We can conclude from this that while we may assign a 
weightage between 0.5 to 0.6 to the current window, we 
should also be aware of the past scheduling history and 
be able to anticipate the future load on the cloudlet.  
 

 
The term digital twin was coined in 2002. It is used to 
monitor and maintain remote equipment deployed in 
inaccessible terrains. Initially, Digital Twining was done 
to design, model and analysis; creating a 3-D digital 
virtual twin was used to figure out design glitches and 
simulate the complete system before manufacturing it. 
Current digital twins are designed to build a virtual 3D 
model using large amounts of raw data from the actual 
system. Digital twins accurately simulate, analyze and 
even predict real-time events using real-time data from 
the physical world. To summarize, digital twins are 
virtual representations of the physical product. There can 
be a real-time connection between the physical world and 
the virtual model if data is relayed to it in real time, and 
the behavior of the digital twin varies with the data 
received from its digital counterparts.  
 
[16] gives an overview of digital twin applications. 
Digital twins are used in different sectors. The sectors 
where digital twins are used are (a) manufacturing, (b) 
aerospace, (c) marine, (d) agriculture, (e) healthcare (f) 
mining. Digital Twins can be used for the following 
purposes: (a) simulation, (b) monitoring, and (c) control. 
Simulations are used to model the behavior of the system 
in virtual space. This allows optimization of the product 
or the production process. The monitoring includes 
current data so that the current state of the product or 
system can be interpreted. When used in control, Digital 
Twins can be used for predicting events and, based on 
the predictions, can control the behavior of the product or 
system. 
 
Another way to classify the digital twin is based on the 
physical device that it is modelling. There are four 

6. AN IMPLEMENTATION USING CLOUDLETS 
- DIGITAL TWINNING OF ROBOTIC ARM: 
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categories of physical objects: (a) Manufacturing asset, 
(b) product, (c) infrastructure, and (d) Human. 
Manufacturing asset refers to an object from a tool like a 
CNC machine. Product – indicates a completed product. 
Infrastructure refers to bridges, cities, etc.; in the case of 
humans, it could refer to an employee in the industry 
who is being trained by a digital twin expert or an expert 
who is training the employees on hazardous systems. 
 
The completeness of the digital twin has the number of 
features that are represented; for example, a digital twin 
of a room has parameters such as temperature, humidity, 
lighting, O2 Levels, Occupancy, Power consumption and 
these parameters have to be continuously updated, so 
data is sent regularly, and the digital twin is updated real-
time. 
A digital twin can be created before or after the physical 
object is created. If created before to analyze behavior 
and then build the physical object, it is termed a 
prototype. If the twin is bound to the device later, it is 
called a Digital Twin instance. A digital twin instance of 
any machinery in the industry can be used for predicting 
events, even failures, as the real-time data is drawn from 
the machine into the digital twin. 
 
The digital twin is one of the key technologies for 
Industry 4.0, together with AR/MR (Machine Reality) 
and IIoT, since they provide valuable tools for 
manufacturing, training, healthcare, and smart city 
environments. At the point of writing this paper, we have 
been unable to find any detailed developments that study 
and integrate these three technologies have been found in 
the literature.  
Many of the use cases of Industry 4.0 combine AR/MR 
and IIoT. The following table summarizes the current 
work related to digital twinning. 
 
Table 1: Summary of current research in Digital Twining 
 
Ref No Application Description 
[17] Smart Shelf 

with QR codes 
When scanned, the 
display is done on F4 
smart glasses – of the 
strain on the shelf using a 
series of strain gauges. 
This is just a Proof of 
concept 

[18] Infrastructure AR framework to 
visualize and detect any 
device using localization 
techniques 

[19] Microsoft 
HoloLens 
glasses 

One M2M is tightly 
coupled with the Virtual 
Twin 

[20] Disaster 
Management 

Visualize sensor data of 
the area affected using 
the HoloLens tool kit. 

[21] Training Training and assistance 

of supervisors on various 
manufacturing processes 

[22], [23] Training Real-time used to instruct 
shop floor operators. 

[24],[25],
[26] 

Robot 
Navigation 

It is used to give the 
robot better navigation 
information to assist it. 

[27] Documentation Creating Manuals and 3D 
models of various 
documents 

[28] Real-Time 
Data Retrieval 

It helps in decision-
making for real-time use 
cases. 

[29] Maintenance  To detect the 
maintenance difficulties 
in the manufacturing 
industry 

[30] Simulation Developing simulation 
base support applications 
by integrating contextual 
awareness using sensors  

[31] Device 
integration 

Microsoft HoloLens 
glasses simplify AR and 
IoT device integration 

[32] Characterizatio
n of digital 
twin 

Modelling logical items 
within a virtualized realm 
and mapping them to 
physical realities for the 
characterization of digital 
twin 

[33] 3D manual 
creation 

3D manual creation for 
training operators in 
manufacturing industries. 

[34] Rapid analysis 
and real-time 
decision 

Digital twin used for 
rapid analysis and real-
time decisions in the 
aerospace industry 

[35] Risk 
management 
for operators 

Developed theoretical 
reference model using 
data collected from 
sensors, experts and 
historical data for risk 
management in various 
work environments to 
improve operator safety. 

[36] Industrial ice-
cream machine 

Uses real-time data 
collected from the 
sensors inside the 
machine for fault 
monitoring and 
performance assessment. 

[37] Robotic arm Taking visualization 
inputs from AR devices 
and developing digital 
twins of robotic arms. 

 
To create and maintain a digital twin in real time requires 
a large amount of memory and processing power. 
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Usually, cloud computing systems exist – but there are 
several issues that exist, such as: 
(a) connectivity issues; data cannot be updated on the 
cloud in real-time because of latencies involved in 
geographically distributed clouds; hence, real-time 
events cannot be predicted and corrected  
(b) Privacy, as most industrial data is proprietary; hence, 
security is a major issue. So, this is where cloudlets can 
offer a solution. Integrating cloudlets with digital twining 
in IIoT is a novel concept into which research is still to 
be done.  
Real-Time Digital Twining will require Real-Time 
allocation of tasks and storage on the cloudlets in a 
distributed manner. Hence, our first step was to develop 
an algorithm for load balancing and task allotment. 
Robotic arms are commonly used in manufacturing, from 
picking up parts and placing them on the conveyor belt to 
moving objects around.   
So, we did a digital twin of the position of the robotic 
arm using a set of inertial measurement unit (IMU) 
sensors, a 3-axis accelerometer, a 3-axis gyroscope and a 
3-axis magnetometer. We have only done one-half of the 
robotic arm to understand the processing capability of the 
cloudlet. The hand was put through various moments, 
and we look for its replication. The moment of the entire 
robotic hand manipulator will include a shoulder 
manipulator, elbow moment manipulator and wrist 
manipulator. Right now, we are only twining the 
manipulator of the elbow. The block diagram of the 
system twined using sensors connected to an end device 
is shown in Figure 16 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure – 16 Interface of the End-Device to the cloudlet system 

composed of multiple Qualcomm Snapdragon 410c. 
 

We have used MPU6500 [38], Which has a three-axis 
accelerometer and a three-axis gyroscope, and GY271 
[39], which is a magnetometer. Using these three sensors, 
it is possible to track the position of the arm. We were 

able to produce an exact 3D replica of the rotational 
position while, at the same time, displaying the values of 
the sensors. 

 
Figure 17 – Interfacing the End – device interfaced with the 

sensors and CC 2500. 

 
Figure - 18 code and the data relayed to the SoC via CC2500. 

The sensors were interfaced with the STM-32F407-based 
microcontroller development board [40], which was part 
of the end device. The actual end device is shown in 
Figure 17. The data was sent to the 410c SoC, to which 
the end device was interfaced via a CC 2500 module 
[41]. The data was sampled at a rate of 20 Hz and was 
continuously sent to the 410c SoC with which it was 
interfaced on the cloudlet. Our distributed data storage 
algorithm ensured that the data was uniformly distributed 
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among the various SoCs interfaced on the cloudlet. Once 
the data was received on the cloudlet, the tasks that were 
required to model the device and produce a 3D virtual 
image were invoked with every set of data. 
Some of the sample figures of the arm position, along 
with the IMU Sensor data, are shown in figures 19a. to 
19f. 
 

 
Figure 19a – Arm rotated in an upward position 

 

 
Figure 19b – Arm in a straight position 

 

 Figure 19c – Arm rotated in reverse upward position 

 
Figure 19d – Arm rotated in a forward position 

 

 
Figure 19e – Arm rotated in a downward position 

 

 
Figure 19f – Arm rotated in a backward position 

7. CONCLUSION 

This paper presents a novel cloudlet architecture and 
algorithms used for data and task management on 
cloudlets. Our cloudlet system was built using 
Qualcomm Snapdragon 410c. In the future, we plan to 
make this a hybrid approach involving the 820c and the 
833 versions of Snapdragon. This would allow different 
types of tasks to be scheduled with varying architectures. 
This algorithm would form the basis for data storage and 
task scheduling. One of the anticipated applications of 
cloudlets in an industrial network is in the case of digital 
twinning. The tasks in digital twinning may vary from 
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simple sensing to complex graphics processing. We have 
done digital twining of a part of the robotic arm in 
various positions using just four Qualcomm Snapdragon 
410c in a distributed cloudlet architecture. A hybrid 
architecture would allow different types of tasks to be 
scheduled on different architectures. The scheduling 
algorithm can be very easily extended to include task 
affinity. The migration rules will not only be threshold-
based but also depend on the nature of the task. Our task 
scheduling algorithm is generic enough to accommodate 
different varieties of tasks.  
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