

 Multitask Scheduling on Distributed Cloudlet System Built Using SoCs

Manoj Subhash KAKADE
Department of Electrical & Electronics Engineering, BITS, Pilani, Pune Center, India

Department of Electrical & Electronics Engineering, BITS, Pilani, KK Birla Goa Campus, Goa, India

With the emergence of IoT, new computing paradigms
have also emerged. Initial IoT systems had all the
computing happening on the cloud. With the emergence
of Industry 4.0 and IoT being the major building block,
clouds are not the only solution for data storage and
analytics. Cloudlet, Fog Computing, Edge Computing,
and Dew Computing models are now available,
providing similar capabilities as the cloud. The term
cloudlet was introduced first in 2011, but research in this
area has picked up only over the past five years. Unlike
clouds, which are built with powerful server-class
machines and GPUs, cloudlets are usually made using
simpler devices such as SoCs. In this paper, we propose a
complete novel distributed architecture for cloudlets, and
we are also proposing algorithms for data storage and
task allocation across various nodes in the cloudlet. This
cloudlet system was built using Qualcomm Snapdragon
410c. We have analyzed the architecture and the
algorithm for varying workloads, bandwidth and data
storage. The primary aim of the algorithm and the
architecture is to ensure uniform processing and data
loads across the nodes of the system.

Keywords: IoT, system-on-chip, cloudlets, task
allocation, scheduling

1. INTRODUCTION

There Internet of Things (IoT) has evolved rapidly over
the last decade. There are billions of edge devices that are
a part of multiple application domains such as smart
homes, self-driven cars, wearables, smart-grid, smart
cities, supply chain management and Industrial IoT, etc.
[1], [2]. Billions of devices would naturally generate a
large amount of data at high speeds and varying sampling
rates. Multiple applications, specifically in the industrial

We would like to express our deeply felt gratefulness to
Professor Joseph Rodrigues for his comprehensive and detailed
peer-editing of this document, as well as for his constructive
and insightful comments for writing this document.

domain, come with hard real-time constraints and,
therefore, require predictable network latencies. Current
IoT architectures connect the end devices directly or via
coordinators to the cloud [3]. Since multiple applications
would share the same cloud infrastructure, this leads to
significant and unpredictable jitters in network latencies
[4]. This is alleviated to a certain extent by using private
clouds and Edge computing. While large industrial
complexes may opt for a private cloud, medium or small-
scale industries may prefer to avoid using a private cloud
option. The use of edge computing necessitates the
presence of powerful co-ordinators. Only some industrial
applications may go in for coordinating nodes [5].
Industrial networks are inherently hierarchical and, hence,
are apt for cloudlet-based solutions. The cloudlet layer is
an additional layer introduced between the edge of the
IoT system and the cloud. The cloudlet layer could handle
processing tasks and data associated with short-term
monitoring and control. Unlike clouds, which are built
with powerful server-class machines and GPU, cloudlets
are usually built using simpler devices such as SoCs [6],
[7]. Our work focuses on building a cloudlet system that
uses the Qualcomm Snapdragon 410c SoC platform. The
research proposes a distributed cloudlet architecture along
with an algorithm that can be used for uniformly storing
data on the cloudlet nodes. We also offer a Task
Scheduling algorithm across different cloudlet nodes so
that the infrastructure is uniformly loaded. We also
present an analysis of this architecture and the data
storage and task scheduling algorithms. The algorithms
are analysed for varying data storage and CPU utilization
percentages under restricted network bandwidth.

The rest of this paper is organised as follows: Section 2
presents cloudlet computing, and Section 3 discusses the
proposed cloudlet architecture. Section 4 details the
proposed algorithm for task and load balancing in
cloudlet systems. We have discussed the results and
analysis in Section 5, Section 6 presents an application of
digital twining done on cloudlets, and finally, section 7
presents our conclusion and future work.

Anupama KARUPPIAH , Mayank MATHUR, Manasi BIBEKAR, Gaurav BASU , Aaditya RAGHAVAN,
Ananth RAGHAV, Pranav LEKSHMINARAYANAN, Swarnab GARANG

ABSTRACT 1

manoj.kakade@pilani.bits-pilani.ac.in

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 61

https://doi.org/10.54808/JSCI.21.01.61
Journal of Systemics, Cybernetics and Informatics (2023) 21(1), 61-72

mailto:manoj.kakade@pilani.bits-pilani.ac.in

2. CLOUDLETS

As the amount of data produced by industrial end devices
is increasing daily, the requirement for the cloud device
becomes higher. The resource requirement in terms of
processing and storage on the cloud increases. This
causes further delays, and cloud services sometimes
appear inefficient for real-time industrial applications [8].
A cloudlet is defined as “A small-scale data center or a
cluster of computing devices that are designed to provide
cloud services to primarily mobile devices, such as
smartphones, tablets and wearable devices that are in
close proximity to it” [9], [10].
The Industrial Internet of Things system is made up of a
large number of heterogeneous nodes that are connected
using different wired and wireless networks [11];
generally, in an industrial system (even in the case of
small-scale industry), there will be at least two levels of
the network hierarchy, level one is filed level network
made up of sensors and actuators, level two will be a plant
level hierarchy made up of PLCs, and CNC systems.
Industry IoT systems generally prefer a localised cloudlet
architecture since this would guarantee data privacy,
security and predictable jitters[12]. The cloudlet is a low-
cost solution that small-scale or medium-scale industries
can use to store their data and execute the more complex
control algorithms. This solution eliminates the need to
pay for high-cost cloud services that may only be
available at some points in time, based on the
geographical location of the industry[13]. This also solves
the problem of large and unpredictable jitters by allowing
tasks with short-term, hard real-time deadlines to be
executed on the cloudlets. In contrast, the cloudlet can
transfer long-running tasks with softer real-time deadlines
to the cloud.

Figure-1 Cloudlet Architecture

Generally, Industrial networks have a minimum of 3

levels of hierarchy: the Device level, which is a network
of various sensors and actuators. The primary function at
the device level is acquiring data and controlling the
devices, which can be termed different Industrial Internet
of Things devices. The second layer is the Field level,
which is made up of controllers and PLCs; this level
controls manufacturing processes or industrial
equipment, where it would be interesting to store
information every few milliseconds or seconds; this level
does not generally have large storage capacities as well
as higher processing capabilities. The third and topmost
level comprises one or two complex computing devices,
usually forming the Edge in an IoT system. The entire
level 3 can be replaced by a cloudlet system comprising
distributed SoCs connected in an ad hoc network, as
shown in Figure 1. The architecture should meet some of
the requirements to achieve the needs of Industrial IoT
use cases. It includes responsiveness, scalability,
usability, and flexibility, Security.
The Cloudlet system in the Industrial IoT networks will
sit above the plant-level hierarchy where we have a large
number of distributed heterogeneous devices forming a
network, where we collect industrial data in real time and
have to transmit it to the cloud server for computing and
control. If control is real-time, then predictable network
latencies with zero jitter become a primary requirement
since a cloud-based system caters to a large number and
variety of end users; it may not be possible to guarantee
latency with zero jitters. While edge computing has been
offered as the solution in the case of some Industrial IoT
systems, an alternative to this is cloudlet-based systems
that have started emerging in the last five years.
Cloudlets comprise low-power computing systems with
limited processing capability and memory, connected
together in heterogeneous networks [14].
The main advantage of using Cloudlet computing in
Industrial IoT is as follows [15]

a. Improving system performance
b. Protect data security and privacy
c. Reduce operational cost
d. Reduce communication latency

3. PROPOSED ARCHITECTURE

The proposed system is entirely distributed; as shown in
Figure 2, the cloudlet architecture is completely
distributed. The architecture comprises multiple SoCs (In
our case, Qualcomm Snapdragon 410c) connected to a
wireless network using 802.11. End devices connect to
various node SoCs, and the node SoC, in turn, connects to
each other to form a cloudlet. Each node is aware of the
state of all the nodes in the cloudlet; the SoCs proactively
send their load status, storage availability and network
bandwidth at regular intervals of time “τ”. To further
reduce the control overhead due to the status update, we
suggest using a soft threshold (δ) and a hard threshold (γ1,
γ2), where γ1 is the high threshold, and γ2 is the low
threshold.

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 ISSN: 1690-4524

Figure -2 Proposed Cloudlet Architecture

If the current CPU load on a node is ≥ (previous load +
δ), then the system status is transmitted to all the nodes.
At any point in time, if the CPU load goes beyond γ1,
information is immediately sent to all the nodes. If the
CPU load on a node is ≤ (previous load - δ), then the
system status is transmitted to all the nodes. If the CPU
load drops below γ2, then this is broadcast to all the
nodes. The same procedure is followed for storage and
network bandwidth usage. The next section gives the
complete details of the algorithm for task scheduling on
the cloudlet for this architecture.

Figure 1. Actual cloudlet implementation using seven 410c

Figure 3 shows the actual cloudlet implementation using
seven 410c’s. The Dragonboard 410c development board
is based on a Qualcomm APQ8016e processor. It comes
with advanced processing power, Wi-Fi, Bluetooth
connectivity, and GPS with supporting various OS. It
also supports internal and external memory storage
support, graphics and video support, and many other
features, making this development board suitable for

rapid software developments and a good candidate for
cloudlet implementation.

Information is stored at each node in a cloudlet. Each
node in the cloudlet will have an information manager
with the following statistics: -

a. Percentage of CPU utilization
b. Current application software in use
c. Available application software for user
d. Available data space
e. Network bandwidth available for setting up a

connection

A. Algorithm explanation
The algorithm for task allocation in the cloudlet is
distributed as we follow the architecture described in the
previous section. Any node can exist in three states:
heavy, medium, and light.
These states are defined concerning the following:

a) CPU load
b) Data storage availability
c) Network bandwidth

a) CPU Load
Heavy state: A node in the cloudlet enters a heavy state
when it is running application software or multiple
instances of application software. If the CPU utilization
percentage is greater than or equal to CPUH, the node
stops accepting requests for running the application.
Tasks are migrated to other SoCs.
Medium state: If the CPU utilization percentage is
greater than that of equal to CPUM but lesser than CPUH,
the SoC is in the medium load stage. It can accept
application tasks until its load is less than CPUH.
Light state: If the CPU utilization percentage is less than
CPUM, it is in a light state. In such a state, the SoC can
easily accept tasks from a heavily loaded SoC to this
SoC, provided the lightly loaded SoC has an affinity
towards the task if there is sufficient storage and the
network bandwidth and is in the medium state or lesser.

b) Data Storage Availability
Intermediate data storage is done on the cloudlets before
a complete backup needs to be done. The amount of
storage space can fall into any of the three states: heavy,
medium, and light.
Heavy: If the amount of data storage available on the
node is lesser than DATAH MB, then it indicates high
storage utilization; hence, any data arriving that is not
related to the application currently under execution will
be migrated to the other SoCs in the Cloudlet.
Acceptance of new tasks also depends upon storage
availability. So, while the SoC is in a data storage heavy
state, even if the CPU load is medium, it will not accept
new application tasks, a condition where the storage

4. PROPOSED ALGORITHM

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 63

utilization is high but CPU utilization is light, which will
rarely occur.
Medium: If the amount of data storage space available is
greater than or equal to DATAM MB but lesser than
DATAH MB, then it is available for data storage. It can
also accept new application tasks if the data space
required will not cause the device to go into a heavy
state.
Light: If the Data storage utilization is less than DATAM
MB, it is in a light state. It can accept new applications as
well as data. It can accept tasks migrated to it by the
SoC, provided sufficient network bandwidth exists.

c) Network bandwidth
The knowledge of network bandwidth is necessary; for
example, if a connection cannot be established due to
heavy usage of network bandwidth, the task or data
cannot be migrated to a Light state SoC. Network
Bandwidth: network utilisation might be high, medium,
or low based on the number of active connections and
available network bandwidth.

B. Communication between the SoCs
The SoCs initiate a communication under the following
conditions:

a. During initial setup – when each SoC starts.
b. When an SoC is lightly loaded regarding CPU,

data, and network bandwidth. Under these
conditions, it is actively soliciting for tasks or
data.

c. When an SoC is heavily loaded regarding CPU,
data and network bandwidth. Under these
conditions, it seeks to migrate tasks to another
SoC on the cloudlet.

C. Algorithm
1. The information manager on each SoC has the

information of the node states (CPU, DATA and
network).

2. When any new application instance arrives at a
node

a. It checks its state and data storage
b. If the state and the CPU Utilization and

data storage are at medium or light
i. If the application instance can be

run, it then accepts the task and the
related data.

ii. Else, a task migration request is
broadcast.

iii. Each SoC checks if it is in a medium
or light state. Each node calculates
its capacity to accept a task using
several factors:
Number of Tasks completed in the
past window (TP).

The number of tasks in the current
execution window is (TC), and
The number of tasks (TF) in a
chosen queue length is ready for
execution.

Eq. (1)
Where

N is the affinity factor.
NP is the Time window of

the past tasks,
NC is the Time window of

the current tasks,
NF is the Time window for

future tasks and
w1, w2, and w3 are the

weights assigned.
iv. If N < Th (Threshold set by system),

then a task migration acceptance is
sent after a delay determined by N. If
N is high, the delay is more.

v. If no node with the value N < Th is
available, no node responds; hence,
the task is sent to the cloud.

3. When any new data arrives at a node
a. It checks its data storage availability
b. If the data storage is at medium or light

i. It then accepts the data.
ii. Else, the data migration request is

broadcasted. The data migration
request has the quantity of data and
its characteristics.

iii. Each SoC looks at the storage
utilization rate marked as light and
medium. If the rate of utilization is <
RTH and if the number of tasks in the
NF window of the queue is < NTH,
then the node sends data to accept
after a delay δ. This δ depends upon
the CPU load and available data
space. As in the case of tasks, if the
node is lightly loaded and has good
storage space available δ will be
smaller.

iv. Data is sent to the cloud if no such
node is available,

5. RESULTS AND DISCUSSION

A. Data Storage
In the previous section, we have described the algorithm
for distributed uniform data storage on the cloudlets. We
varied the lower and upper thresholds to analyze the
algorithm’s performance for differing data loads from the
end devices. We tried to obtain the ratio of the data that
would remain on the cloudlet that gets migrated to

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 ISSN: 1690-4524

another cloudlet and transferred to the cloud. Figures 4 to
9 show the effect of data storage on the cloud.
We initially froze our lower threshold at 0.3 and varied
the upper threshold from 0.5 (figure 4) to 0.8 (figure 7).

Figure 4. Data migration with LT at 0.3 and UT at 0.5

A threshold of 0.3 indicates that 30% of the storage space
on the cloudlet node is already full. The upper threshold
is then used to decide when the data should be moved
from the cloudlet. The upper threshold of 0.5 means that
when 50% of data space is full, the data is migrated
either to another cloudlet or the cloud. For each
threshold, we also vary the number of lightly loaded
nodes, moderately loaded and heavily loaded. Figure 4
shows that as the number of lightly loaded nodes is
reduced, the amount of data that gets moved between the
cloudlets decreases and the amount of data transferred to
the cloud increases. This is because we have kept a very
low upper threshold of 50%. So when each node reaches
50% of its data size, it will offload data to another node
in the cloudlet, which is more feasible if there are more
lightly loaded nodes. But if the number of lightly loaded
nodes is significantly less, the data will be automatically
transferred to the cloud.

Figure 5. Data migration with LT at 0.3 and UT at 0.6

When we increase the upper threshold to 60% in Figure
5, comparatively more amount of data is transferred

within the cloudlets. And the amount of data which is
transferred to the cloud decreases. When there are no
lightly loaded nodes, and the number of moderate nodes
is also less except for the data that is consumed by the
cloudlet node itself, the data gets migrated to the cloud
rather than to another cloudlet node.

Figure 6. Data migration with LT at 0.3 and UT at 0.7

With the increase in the upper threshold, more data is
stored on the individual cloudlet node, and less amount
of data gets migrated. When we kept the low threshold
constant and varied the upper threshold, an interesting
observation that can be noted is that the data that is
migrated between the cloudlets remains constant. The
variation is only in the amount of data that is migrated to
the cloud. This is because the algorithm is built so that it
will try to store the data on individual cloudlet nodes
connected to the end devices and only migrate the data
when certain thresholds are reached. By this time, it’s
quite possible that other nodes have reached the upper
threshold. Hence, the data has to be migrated onto the
cloud. And this can be observed in Figures 4-7.

Figure 7. Data migration with LT at 0.3 and UT at 0.8

We then kept the upper threshold constant at 0.7 and
varied the lower threshold from 0.2-0.4, meaning that the
initial load on each node in the cloudlet was varied
between 20%-40%.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 65

Figure 8. Data migration with LT at 0.2 and UT at 0.7

When the upper threshold is maintained constant and the
lower threshold is increased from 0.2 to 0.4, more
amount of data is migrated to the nodes within the
cloudlets that are lightly loaded. This can be seen in
Figure 6, Figure 8, and Figure 9.

Figure 9. Data migration with LT at 0.4 and UT at 0.7

It’s only when zero nodes are lightly loaded that the data
gets migrated to the cloud.
In this case, there is an increase in the data migrated
within the cloudlet as the lower threshold increases while
the data that is migrated to the cloud remains constant.

B. Task Scheduling
In an IoT system, not only is the data stored in the cloud,
but the tasks are also executed in the cloud. In our
cloudlet system, similarly, it can act as a data storage
platform as well as execute tasks. Regarding task
scheduling, we kept our task thresholds constant at 0.3
and 0.7. The lower threshold of 0.3 indicates that 30% of
Cloudlet’s processing power is already in use, and the 0.7
upper threshold means that the CPU utilization can reach
70%. To analyze the effectiveness of task scheduling
algorithms, we varied the weights of past, current and
future windows (as described in section IV). When we
assigned equal weightage to the past, current and future
windows (33.33%), as seen in Figure 10.

Figure 10. Task scheduling keeping past current and future

windows weight 0.33:0.33:0.33

We found that when the number of nodes that were
lightly loaded and medium loaded was more, a very less
number of tasks were migrated onto the cloud. Only
when there were no lightly loaded nodes, as per our
algorithm, were the tasks migrated to the cloud.

Figure 11. Task scheduling keeping past current and future

windows weight 0.3:0.4:0.3

When we varied the weights by assigning the weight of
0.3 to past, 0.4 to current and 0.3 to future windows, we
found that slightly more tasks were migrated to the
cloud, as seen in Figure 11. The tasks consumed by the
cloudlets remain relatively constant.

Figure 12. Task scheduling keeping past current and future

windows weight 0.25:0.5:0.25

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 ISSN: 1690-4524

When the weightage of the past and the future windows
was kept at 0.25, giving more weightage of 0.5 to the
current window, more tasks were moved within the
cloudlets, and the number of tasks migrated to the cloud
remained relatively constant, as seen in Figure 12. This
shows that at this weight value, the load is better
balanced between node and cloudlets, and the CPU
utilization remains fairly uniform.

Figure 13. Task scheduling keeping past current and future

windows weight 0.2:0.6:0.2

When we further increased the weightage of the current
window to 0.6, 0.7 and 0.8, as shown in Figure 13,
Figure 14 and Figure 15, respectively, the number of
tasks that were transferred within the cloudlet increased
up to 0.7 and when more weightage was assigned to the
present window ignoring the past history and the future
load the number of tasks that were migrated between the
cloudlets decreased. Each cloudlet node tries to schedule
the task by itself. The number of tasks migrated to the
cloud was also much less unless there was no lightly or
moderately loaded node.

Figure 14. Task scheduling keeping past current and future

windows weight 0.15:0.7:0.15

Figure 15. Task scheduling keeping past current and future

windows weight 0.1:0.8:0.1

We can conclude from this that while we may assign a
weightage between 0.5 to 0.6 to the current window, we
should also be aware of the past scheduling history and
be able to anticipate the future load on the cloudlet.

The term digital twin was coined in 2002. It is used to
monitor and maintain remote equipment deployed in
inaccessible terrains. Initially, Digital Twining was done
to design, model and analysis; creating a 3-D digital
virtual twin was used to figure out design glitches and
simulate the complete system before manufacturing it.
Current digital twins are designed to build a virtual 3D
model using large amounts of raw data from the actual
system. Digital twins accurately simulate, analyze and
even predict real-time events using real-time data from
the physical world. To summarize, digital twins are
virtual representations of the physical product. There can
be a real-time connection between the physical world and
the virtual model if data is relayed to it in real time, and
the behavior of the digital twin varies with the data
received from its digital counterparts.

[16] gives an overview of digital twin applications.
Digital twins are used in different sectors. The sectors
where digital twins are used are (a) manufacturing, (b)
aerospace, (c) marine, (d) agriculture, (e) healthcare (f)
mining. Digital Twins can be used for the following
purposes: (a) simulation, (b) monitoring, and (c) control.
Simulations are used to model the behavior of the system
in virtual space. This allows optimization of the product
or the production process. The monitoring includes
current data so that the current state of the product or
system can be interpreted. When used in control, Digital
Twins can be used for predicting events and, based on
the predictions, can control the behavior of the product or
system.

Another way to classify the digital twin is based on the
physical device that it is modelling. There are four

6. AN IMPLEMENTATION USING CLOUDLETS
- DIGITAL TWINNING OF ROBOTIC ARM:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 67

categories of physical objects: (a) Manufacturing asset,
(b) product, (c) infrastructure, and (d) Human.
Manufacturing asset refers to an object from a tool like a
CNC machine. Product – indicates a completed product.
Infrastructure refers to bridges, cities, etc.; in the case of
humans, it could refer to an employee in the industry
who is being trained by a digital twin expert or an expert
who is training the employees on hazardous systems.

The completeness of the digital twin has the number of
features that are represented; for example, a digital twin
of a room has parameters such as temperature, humidity,
lighting, O2 Levels, Occupancy, Power consumption and
these parameters have to be continuously updated, so
data is sent regularly, and the digital twin is updated real-
time.
A digital twin can be created before or after the physical
object is created. If created before to analyze behavior
and then build the physical object, it is termed a
prototype. If the twin is bound to the device later, it is
called a Digital Twin instance. A digital twin instance of
any machinery in the industry can be used for predicting
events, even failures, as the real-time data is drawn from
the machine into the digital twin.

The digital twin is one of the key technologies for
Industry 4.0, together with AR/MR (Machine Reality)
and IIoT, since they provide valuable tools for
manufacturing, training, healthcare, and smart city
environments. At the point of writing this paper, we have
been unable to find any detailed developments that study
and integrate these three technologies have been found in
the literature.
Many of the use cases of Industry 4.0 combine AR/MR
and IIoT. The following table summarizes the current
work related to digital twinning.

Table 1: Summary of current research in Digital Twining

Ref No Application Description
[17] Smart Shelf

with QR codes
When scanned, the
display is done on F4
smart glasses – of the
strain on the shelf using a
series of strain gauges.
This is just a Proof of
concept

[18] Infrastructure AR framework to
visualize and detect any
device using localization
techniques

[19] Microsoft
HoloLens
glasses

One M2M is tightly
coupled with the Virtual
Twin

[20] Disaster
Management

Visualize sensor data of
the area affected using
the HoloLens tool kit.

[21] Training Training and assistance

of supervisors on various
manufacturing processes

[22], [23] Training Real-time used to instruct
shop floor operators.

[24],[25],
[26]

Robot
Navigation

It is used to give the
robot better navigation
information to assist it.

[27] Documentation Creating Manuals and 3D
models of various
documents

[28] Real-Time
Data Retrieval

It helps in decision-
making for real-time use
cases.

[29] Maintenance To detect the
maintenance difficulties
in the manufacturing
industry

[30] Simulation Developing simulation
base support applications
by integrating contextual
awareness using sensors

[31] Device
integration

Microsoft HoloLens
glasses simplify AR and
IoT device integration

[32] Characterizatio
n of digital
twin

Modelling logical items
within a virtualized realm
and mapping them to
physical realities for the
characterization of digital
twin

[33] 3D manual
creation

3D manual creation for
training operators in
manufacturing industries.

[34] Rapid analysis
and real-time
decision

Digital twin used for
rapid analysis and real-
time decisions in the
aerospace industry

[35] Risk
management
for operators

Developed theoretical
reference model using
data collected from
sensors, experts and
historical data for risk
management in various
work environments to
improve operator safety.

[36] Industrial ice-
cream machine

Uses real-time data
collected from the
sensors inside the
machine for fault
monitoring and
performance assessment.

[37] Robotic arm Taking visualization
inputs from AR devices
and developing digital
twins of robotic arms.

To create and maintain a digital twin in real time requires
a large amount of memory and processing power.

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 ISSN: 1690-4524

Usually, cloud computing systems exist – but there are
several issues that exist, such as:
(a) connectivity issues; data cannot be updated on the
cloud in real-time because of latencies involved in
geographically distributed clouds; hence, real-time
events cannot be predicted and corrected
(b) Privacy, as most industrial data is proprietary; hence,
security is a major issue. So, this is where cloudlets can
offer a solution. Integrating cloudlets with digital twining
in IIoT is a novel concept into which research is still to
be done.
Real-Time Digital Twining will require Real-Time
allocation of tasks and storage on the cloudlets in a
distributed manner. Hence, our first step was to develop
an algorithm for load balancing and task allotment.
Robotic arms are commonly used in manufacturing, from
picking up parts and placing them on the conveyor belt to
moving objects around.
So, we did a digital twin of the position of the robotic
arm using a set of inertial measurement unit (IMU)
sensors, a 3-axis accelerometer, a 3-axis gyroscope and a
3-axis magnetometer. We have only done one-half of the
robotic arm to understand the processing capability of the
cloudlet. The hand was put through various moments,
and we look for its replication. The moment of the entire
robotic hand manipulator will include a shoulder
manipulator, elbow moment manipulator and wrist
manipulator. Right now, we are only twining the
manipulator of the elbow. The block diagram of the
system twined using sensors connected to an end device
is shown in Figure 16 below:

Figure – 16 Interface of the End-Device to the cloudlet system

composed of multiple Qualcomm Snapdragon 410c.

We have used MPU6500 [38], Which has a three-axis
accelerometer and a three-axis gyroscope, and GY271
[39], which is a magnetometer. Using these three sensors,
it is possible to track the position of the arm. We were

able to produce an exact 3D replica of the rotational
position while, at the same time, displaying the values of
the sensors.

Figure 17 – Interfacing the End – device interfaced with the

sensors and CC 2500.

Figure - 18 code and the data relayed to the SoC via CC2500.

The sensors were interfaced with the STM-32F407-based
microcontroller development board [40], which was part
of the end device. The actual end device is shown in
Figure 17. The data was sent to the 410c SoC, to which
the end device was interfaced via a CC 2500 module
[41]. The data was sampled at a rate of 20 Hz and was
continuously sent to the 410c SoC with which it was
interfaced on the cloudlet. Our distributed data storage
algorithm ensured that the data was uniformly distributed

Figure 1 and 2 need to be changed
Language need to be revised

410c - 1

410c - 3

410c-n

410c-4

410c -2

Cloudlet

STM32F407
Based

Development
board

IMU
Sensor

CC
2500

module

End Device

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 69

among the various SoCs interfaced on the cloudlet. Once
the data was received on the cloudlet, the tasks that were
required to model the device and produce a 3D virtual
image were invoked with every set of data.
Some of the sample figures of the arm position, along
with the IMU Sensor data, are shown in figures 19a. to
19f.

Figure 19a – Arm rotated in an upward position

Figure 19b – Arm in a straight position

 Figure 19c – Arm rotated in reverse upward position

Figure 19d – Arm rotated in a forward position

Figure 19e – Arm rotated in a downward position

Figure 19f – Arm rotated in a backward position

7. CONCLUSION

This paper presents a novel cloudlet architecture and
algorithms used for data and task management on
cloudlets. Our cloudlet system was built using
Qualcomm Snapdragon 410c. In the future, we plan to
make this a hybrid approach involving the 820c and the
833 versions of Snapdragon. This would allow different
types of tasks to be scheduled with varying architectures.
This algorithm would form the basis for data storage and
task scheduling. One of the anticipated applications of
cloudlets in an industrial network is in the case of digital
twinning. The tasks in digital twinning may vary from

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 ISSN: 1690-4524

simple sensing to complex graphics processing. We have
done digital twining of a part of the robotic arm in
various positions using just four Qualcomm Snapdragon
410c in a distributed cloudlet architecture. A hybrid
architecture would allow different types of tasks to be
scheduled on different architectures. The scheduling
algorithm can be very easily extended to include task
affinity. The migration rules will not only be threshold-
based but also depend on the nature of the task. Our task
scheduling algorithm is generic enough to accommodate
different varieties of tasks.

[1] A. Yousefpour et al., “All one needs to know about fog
computing and related edge computing paradigms: A complete
survey,” Journal of Systems Architecture, 2019. [Online].
Available:http://www.sciencedirect.com/science/article/pii/S1383
762118306349

[2] Ericsson. (2016, January). Cellular networks for massive IoT.
[Online].
Available:http://www.ericsson.com/assets/local/publications/whit
e-papers/wp_iot.pdf.

[3] A. Botta, W. De Donato, V. Persico, and A. Pescape, “Integration
of Cloud computing and Internet of Things: A Servey,” Futur.
Gener. Comput. Syst., vol. 56, 2016, pp. 684-700.

[4] P. H. Raj, P. R. Kumar, and P. Jelciana, ``Mobile cloud
computing: A survey on challenges and issues,'' Int. J. Comput.
Sci. Inf. Secur., vol. 14, no. 12, p. 165, 2016.

[5] E.Sisinni, A. Saifullah, S. Hong, M. Gidlund, “Industrial Internet
of Things: Challenges, Opportunities and Directions”, IEEE
Transactions on Industrial Informatics, vol. X, no. X, 2018, pp. 1-
23.

[6] Verma, M.; Bhardwaj, N.; Yadav, A.K. Real time efficient
scheduling algorithm for load balancing in fog computing
environment. Int. J. Inf. Technol. Comput. Sci 2016, 8, 1–10.

[7] Fog Computing and the Internet of Things: Extend the Cloud to
Where the Things Are. White Paper. 2016. Available
online: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/d
ocs/computing-overview.pdf.

[8] Ketel, m. Fog-cloud services for IoT. In Proceedings of the
SouthEast Conference, Kennesaw, Ga, USA, 13-15 April 2017;
pp. 262-264.

[9] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the third
ACM workshop on Mobile cloud computing and services. ACM,
2012, pp. 29–36.

[10] L. Tamilselvan, ‘‘Client aware scalable cloudlet to augment edge
computing with mobile cloud migration service,’’ Int. J. Interact.
Mobile Technol., vol. 14, no. 12, p. 165, Jul. 2020.

[11] Obst, M.; Holm, T.; Urbas, L.; Fay, A.; Kreft, S.; Hempen, U.;
Albers, T. Semantic description of process modules. In
Proceedings of the 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), Luxembourg, 8–11
September 2015; pp. 1–8.

[12] V. Dastjerdi, H. Gupta, R.N. Calheiros, S.K. Ghosh, R. Buyya, F
og Computing: principles, architectures, and applications, in R.
Buyya, A.V. Dastjerdi (Eds.), Internet of Things Principles and
Paradigms, Elsevier, USA, 2016 ISBN: 978-0-12-805395-9,
Chapter 4.

[13] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P.
Pillai, “Cloudlets: at the leading edge of mobile-cloud
convergence,” in Mobile Computing, Applications and Services
(MobiCASE), 2014 6th International Conference on. IEEE, 2014,
pp. 1–9.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ``The
case for VM-based cloudlets in mobile computing,'' IEEE Pervas.
Comput., vol. 8, no. 4, pp. 14_23, Oct. 2009.

[15] Mohammad Babar; Muhammad Sohail Khan; Farman Ali;
Muhammad Imran; Muhammad Shoaib "Cloudlet Computing:
Recent Advances, Taxonomy, and Challenges" IEEE Access
Vol:9 pp: 29609 - 29622 Feb 2021.

[16] Enders, Martin & Hoßbach, Nadja. (2019). Dimensions of Digital
Twin Applications - A Literature Review.

[17] Revetria, R., Tonelli, F., Damiani, L., Demartini, M., Bisio, F.,
Peruzzo, N.: A real-time mechanical structures monitoring system
based on digital twin, Iot and augmented reality. In: Proceedings
of the 2019 Spring Simulation Conference (SpringSim), Tucson,
pp. 1–10 (2019)

[18] Jo, D., Kim, G.J.: AR IoT: scalable augmented reality framework
for interacting with Internet of Things appliances everywhere.
IEEE Trans. Consum. Electron. 62(3), 334–340 (2016)

[19] Lee, S., Lee, G., Choi, G., Roh, B., Kang, J.: Integration of
OneM2M-based IoT service platform and mixed reality device.
In: Proceedings of the 2019 IEEE International Conference on
Consumer Electronics (ICCE), Las Vegas, pp. 1–4 (2019)

[20] Chusetthagarn, D., Visoottiviseth, V., Haga, J.: A prototype of
collaborative augment reality environment for HoloLens. In:
Proceedings of the 2018 22nd International Computer Science and
Engineering Conference (ICSEC), Thailand, pp. 1–5 (2018)

[21] Alesky, M., Vartiainen, E., Domova, V., Naedele, M.: Augmented
reality for improved service delivery. In: Proceedings of the IEEE
28th International Conference on Advanced Information
Networking and Applications, Canada, pp. 382–389. IEEE (2014)

[22] Hoˇrejˇs´ı, P.: Augmented reality system for virtual training of
parts assembly. In: Proceedings of the 25th DAAAM International
Symposium on Intelligent Manufacturing and Automation
(DAAAM), Vienna, pp. 699–706. Procedia Engineering (2015)

[23] Tang, A., Owen, C., Biocca, F., Mou, W.: Comparative
effectiveness of augmented reality in object assembly. In: 2003
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), Florida, pp. 73–80 (2003)

[24] Mosiello, G., Kiselev, A., Loutfi, A.: Using augmented reality to
improve usability of the user interface for driving a telepresence
robot. Paladyn J. Behav. Robot. 4(3), 174–181 (2013)

[25] Herrera, K.A., Rocha, J.A., Silva, F.M., Andaluz, V.H.: Training
systems for control of mobile manipulator robots in augmented
reality. In: Proceedings of the 2020 15th Iberian Conference on
Information Systems and Technologies (CISTI), Sevilla, pp. 1–7.
IEEE (2020)

[26] Lapointe, J.-F., Molyneaux, H., Allili, M.S.: A literature review of
AR-based remote guidance tasks with user studies. In: Chen,
J.Y.C., Fragomeni, G. (eds.) HCII 2020. LNCS, vol. 12191, pp.
111–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-49698-2 8

[27] Zollmann, S., Hoppe, C., Kluckner, S., Poglitsch, C., Bischof, H.,
Reitmayr, G.: Augmented reality for construction site monitoring
and documentation. Proc. IEEE 102(2), 137–154 (2014)

[28] Moloney, J.: Augmented reality visualisation of the built
environment to support design decision making. In: Proceedings
of the 10th International Conference on Information Visualisation,
IV 2006, London, pp. 687–692. IEEE (2006)

[29] Erkoyuncu, J., Khan, S.: Olfactory-based augmented reality
support for industrial maintenance. IEEE Access 8, 30306–30321
(2020)

[30] Lampen, E., Lehwald, J., Pfeiffer, T.: A context-aware assistance
framework for implicit interaction with an augmented human. In:
Chen, J.Y.C., Fragomeni, G. (eds.) HCII 2020. LNCS, vol. 12191,
pp. 91–110. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-49698-2 7

[31] Blanco-Novoa, ´ O., Fraga-Lamas, P., Vilar-Montesinos, M.A.,
Fernandez-Carames, T.M.: Creating the internet of augmented
things: an open-source framework to make IoT devices and
augmented and mixed reality systems talk to each other. Sensors
20(11), 3328 (2020)

[32] Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT
context: a survey on technical features, scenarios, and
architectural models. IEEE 108(10), 1785–1824 (2020)

8. REFERENCES

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 71

http://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
http://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://doi.org/10.1007/978-3-030-49698-2%208
https://doi.org/10.1007/978-3-030-49698-2%208
https://doi.org/10.1007/978-3-030-49698-2%207
https://doi.org/10.1007/978-3-030-49698-2%207

[33] Hoˇrejˇs´ı, P., Novikov, K., ˇSimon, M.: A smart factory in a
Smart City: virtual and augmented reality in a smart assembly
line. IEEE Access 8, 94330–94340 (2020)

[34] Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C.,
LeMoigne, J., et al.: DRAFT modeling, simulation, information
technology & processing roadmap. Technology Area 11, NASA -
National Aeronautics and Space Administration (2010)

[35] Bevilacqua, M., et al.: Digital twin reference model development
to prevent operators’ risk in process plants. Sustainability 12(3),
1088 (2020)

[36] Karadeniz, A.M., Arif, ˙I., Kanak, A., Erg¨un, S.: Digital twin of
eGastronomic things: a case study for ice cream machines. In:
2019 IEEE International Symposium on Circuits and Systems
(ISCAS), Sapporo, Japan, pp. 1–4. IEEE (2019)

[37] Aschenbrenner, D., et al.: Mirrorlabs - creating accessible Digital
Twins of robotic production environment with Mixed Reality. In:
IEEE International Conference on Artificial Intelligence and
Virtual Reality (AIVR), pp. 43–48 (2020)

[38] MPU-6500 Product Specification Revision 1.3 2018, TDK
InvenSense [Accessed 10-Sep-2023]
https://invensense.tdk.com/download-pdf/mpu-6500-datasheet/

[39] GY271 Datasheet, Handson Technology, [Accessed 10-Sep-
2022]https://handsontec.com/dataspecs/sensor/GY271%20HMC5
883L.pdf

[40] STM32F4DISCOVERY Databrief , ST Microelectronics
[Accessed 10-Sep-2023] https:// www.st.com /en /evaluationtools
/stm32f4discovery.html

[41] CC2500 Low-Cost Low-Power2.4GHz RF Transceiver datasheet ,
Texas Instruments [Accessed 10-Sep-2023] https://www.ti.com
/lit/ds/symlink/cc2500.pdf/

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 21 - NUMBER 1 - YEAR 2023 ISSN: 1690-4524

https://invensense.tdk.com/download-pdf/mpu-6500-datasheet/
https://handsontec.com/dataspecs/sensor/GY271%20HMC5883L.pdf
https://handsontec.com/dataspecs/sensor/GY271%20HMC5883L.pdf
http://www.st.com/
https://www.ti.com/

	SA798RV23

