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ABSTRACT

Today, most covert communications systems use a spread-
spectrum approach to ensure that transmissions remain
clandestine. This paper expands beyond traditional spread-
spectrum schemes and into chaos theory in communica-
tions by presenting a novel design for a covert noncoher-
ent binary communication system that uses chaotic sig-
nals. Three techniques are developed, with varying per-
formance. Each system uses two chaotic signals with an-
tipodal attractors as the information carriers.

Although the two chaotic signals used are continuously
generated from random starting values without contain-
ing repetitious patterns, the receiver requires neither those
initial values nor does it require synchronization with the
transmitter. The chaotic signals used are both spread-
spectrum in the frequency domain and undetectable us-
ing matched-filter receivers, thereby achieving a level of
covertness. The signal-to-noise ratio performance is pre-
sented through simulated receiver operating characteristic
(ROC) curves for a comparison to binary phase shift key-
ing.

This system provides a binary communication scheme
which is not detectable by standard matched filtering tech-
niques and has noise-like spectra, requiring a new receiver
configuration and yielding security.

Keywords: Chaos Communications, Digital Commu-
nications, Covert, Receiver Operating Characteristics

BACKGROUND

In the world of covert communications, there are three pri-
mary measures of a successful covert communications sys-
tem: the probability of intercept, the probability of detec-
tion, and resistance to jamming. As technology progresses,
there is always a need to remain the “most covert” by en-
suring that communications technology is on the cutting-
edge.

The preeminent method for of covert communication
today uses a wide-band, spread-spectrum approach. Un-
like traditional radio transmission schemes in which there
is a carrier frequency which dominates the frequency spec-
trum of the signal, spread spectrum signals show no dis-
tinct peaks in the frequency domain, and appear more like

random noise than information. In fact, signals are chosen
to be as noise-like as possible. During the transmission of
these signals, the same power levels of typical narrow-band
transmissions are used, however, since the power is spread
over such a large frequency range, the power spectral den-
sity is much lower than traditional narrowband transmit-
ters.

The most common form of this technique today is to
use direct sequences. Two sequences are chosen, usu-
ally having similar properties as random noise (known as
pseudo noise), and usually being antipodal (one signal is
the negative of the other - this maximizes the probability
of detection for the given set of signals in additive white
Gaussian noise). The digital information to be transmitted
is then encoded using these sequences and typically single
side band suppressed carrier (SSB-SC) amplitude modu-
lated [3].

Due to the aforementioned properties of this scheme,
for the receiver, spectral analysis is rendered useless, and
other techniques are generally used to detect information
in such signals, such as through the use of matched filters.
This technique compares the received signal against spe-
cific known signal patterns through a correlation process.
Using statistical hypothesis testing, a determination is then
made as to whether a binary zero or a one is present.

This scheme has one obvious problem, and that is if the
binary signal representations become known, then covert-
ness is lost. A major improvement on this system would
be to create a spread-spectrum system whose signals are
undetectable through both spectral analysis and matched
filtering.

THEORY

The novelty of this idea comes from the application of
chaos theory and nonlinear dynamical systems in commu-
nications. A definition of chaos has not yet been agreed
upon, but the general idea is that a chaotic system is one
which, while being completely deterministic, is extremely
sensitive to initial conditions. This property can yield
chaotic signals that have the appearance of random data.
This appearance, however, does not discount the underly-
ing determinism, which is the property that is made use of
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in order to obtain a level of covertness in the design of these
communication systems. One chaotic mapping which is
explored here is defined by the Logistic Equation:

xt+1 = kxt(1− xt) (1)

This is a discrete equation which is iterated. When the con-
stant k equals 4, this equation produces chaotic behavior,
and it is said to enter the “chaotic domain.” Even in this
domain, it retains its determinism.

Another important concept is the attractor, which, for
a dynamical system (such as the Logistic Equation) is the
equilibrium state to which the system converges [5]. In
essence, after any initial transients in the system subside,
the attractor provides a roadmap as to how the system will
behave. The most common method of analyzing an attrac-
tor is by making a plot of the signal versus a delayed ver-
sion of the signal; this plot is known as a phase-space plot.

Below in figure 2 is a plot of the attractor of the system
described by the Logistic Equation. On the x-axis is x[n],
and on the y-axis is x[n+1]. For any value of x in the range
of this equation (which is from -1 to 1), this phase-space
plot determines what the next value will be.

Figure 1 - Plot of the Logistic Equation Attractor

Knowing a system’s attractor reveals the determinism of
the system, and it is from this concept that the methods
presented here were developed.

DEVELOPMENT

In total there were three systems developed, the first two
leading to the third, which was the most practical. Each de-
sign presented new insight into the problem and a greater
understanding of how to achieve the goal.

The inspiration and first approach came from [1] and
their MEan SquAred Histogram (MESAH) algorithm.

MESAH algorithm [1]

Given data set xi, i = 1, 2, N

Let xmax = max(x1, ..., xN )

Let xmin = min(x1, ..., xN )

For i = 1 to N − 1

valuei = 1
2
((xi − xmax)2 + (xi+1 − xmin)2)

Get the histogram of the value array

One observation that was made in [2] was that the Logistic
mapping tends to transition from one-to-zero and zero-to-
one rather often. The MESAH algorithm enhances the de-
tection of chaos by looking for such high-to-low and low-
to-high transitions in the input signal. Figure 2 demon-
strates the power of this algorithm. In (a) the MESAH
output for the random white Gaussian data. There is no
distinct peak for this set of random data, however, in the
chaotic data’s MESAH output in (b), there are two distinct
peaks: one at 0, and one at approximately 0.47.

(a)

(b)
Figure 2 - Comparison of MESAH Output for (a)Random and

(b)Chaotic Signals

This algorithm made it possible to distinguish chaos from
noise. McDonough [2] made the suggestion that finding
two chaotic signals with distinct MESAH outputs could
provide a basis for a covert binary communications sys-
tem. What would have to be found were two signals
which, when passed through the MESAH detector would
yield histograms which were uncorrelated. This would al-
low for a binary communication system to be established
which may be able to function in lower signal-to-noise ra-
tios (SNRs). It was determined, however, that the MESAH
algorithm, without alteration, did not yield any histograms
that were uncorrelated. For that reason, the MESAH al-
gorithm was modified to help to “uncorrelate” some of the
MESAH outputs.
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Revised MESAH Algorithm

Given data set xi, i = 1, 2, ..., N

Let xmax = max(x1, ..., xN )

Let xmin = min(x1, ..., xN )

for i = 1 to N − 1

valuei = xi − kxi+1

Get the histogram of the value array

This new algorithm’s output ranged from positive to neg-
ative values, while the original algorithm only allowed for
positive values. This differentiated a high-to-low transition
from a low-to-high transition. Also, a tuning factor was
added, the constant k, to be able to adjust the algorithm to
minimize the correlation between the chosen chaotic sig-
nals. Those signals that were chosen for this method were
the Logistic Eq.(2) and Lorenz Eq.(3) equations:

xt+1 = 4xt(1− xt) (2)
xt+1 = (xt − 2)2 (3)

These two equations are iterative mappings. A random
starting value is chosen, and through iteration the mapping
determines the next values in the sequence. These map-
pings yield values in different ranges. The Logistic Map-
ping yields values from 0 to 1, while the Lorenz Mapping
yields values from 0 to 4. For the system being developed
to be covert, the signals should have a similar standard de-
viations in their output for a zero and a one, in order to
equalize the energy in the signals. Therefore, these two
mappings were scaled to be between -1 and 1. These scaled
Logistic Eq.(4) and Lorenz Eq.(5) mappings are as follows
(these will be used as binary zero and one representations,
as indicated by the respective subscripts):

f1(xt) = −2xt
2 + 1 (4)

f0(xt) = 2xt
2 − 1 (5)

Sending the signals described by the two above mappings
through the revised MESAH algorithm, with k = 0.25,
yielded the plots in figure 3. These two histograms had
a correlation of 0.04.

Figure 3 - Revised MESAH Output Scaled Logistic and Lorenz
Equations

To simulate this system, a random string of binary bits
were created in Matlab and each ’1’ was represented by

a set of N iterations of Eq.(4), and each ’0’ was repre-
sented by N iterations of Eq.(5). Additive white Gaussian
noise (AWGN) was then added to that signal, and the re-
ceived signal was put through the revised MESAH algo-
rithm. The two histograms shown in figure 3 would be
used for comparison through correlation. If the received
signal’s MESAH output for a given bit was more closely
correlated to the MESAH output of equation (4), then the
decision would be made that a ’1’ was received, otherwise,
it would be decided that a ’0’ had been received.

This scheme did work for noiseless signals, but per-
formed quite poorly even in the slightest presence of noise.
The results can be seen receiver operating characteristic
(ROC) curves shown in figure 7. Since binary phase shift
keying (BPSK) is the optimal binary signaling scheme for
AWGN, the MESAH scheme was compared to the perfor-
mance of BPSK. It was found that there was a 33 dB differ-
ence in performance between the two systems. This made
it clear that a new scheme had to be explored.

It was during the implementation of this first design
that two interesting facts came to light. The first was that
the pure intensity histograms of both of the signals chosen
for the zero and one representations were identical. Be-
tween the identical intensity histograms and the signals’
flat Fourier Transform, this limited the ways that the signal
could be distinguished from one another, adding to the po-
tential covertness. The greatest hope came when looking
at the phase-space plots of each of these signals, where the
attractors of the two signals are antipodal - the mapping
defined in Eq.(4) is essentially an upside down parabola,
while Eq.(5) is the same parabola mirrored about the hori-
zontal axis. The correlation between these two phase-space
plots was found to be approximately -1.

With this knowledge, a second method was developed
based on comparing the behavior of the signals as they ap-
proach the attractors in phase space. The chosen chaotic
signals are extremely localized in phase space. AWGN,
on the other hand, is not as localized. Therefore, the sec-
ond method was to compare the phase space plots of each
bit of received data, in order to determine if it matches the
mapping of Eq.(4) or the mapping of Eq.(5). To accom-
plish this a two-dimensional histogram was taken of the re-
ceived signal, as shown in figure 4, where the phase-space
was divided into an n× n grid, and the value of each data
point was the number of points of the received signal that
fell into that “box.” The upper two plots (note the axes are
x[t + 1] vs x[t]) show the phase-space histograms of, on
the left, Eq.(4), and on the right Eq.(5). These upper his-
tograms represent the signals without noise. When 40 dB
of noise is added, as in the lower two plots, one can see
that the phase-space plots become less localized, but retain
their basic shape.

For this design, the transmitter sends the signals in ex-
actly the same way as for the MESAH scheme, however,
the phase-space histogram is found for every bit, and the
histogram which is produced is then correlated with the
two noiseless phase-space plots shown below as the upper
two plots. Whichever correlation was higher was chosen
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as the received bit, be it a zero or a one.

Figure 4 - Attractor Dimensionality Method (Box Counting)

This system worked in noiseless environments and per-
formed better than the MESAH scheme, improving the
SNR performance by about 13 dB. However, this tech-
nique was still 20 dB worse than BPSK. One lesson this
method did teach was that having to histogram the signal
led to larger sample sizes and poorer performance at lower
SNRs.

THE DESIGN

As in the previously explained methods the transmitter in-
takes a binary data string and produces N samples for each
bit. The transmission begins with a random number be-
tween -1 and 1, then each of the remaining N-1 data points
are determined by iterating using Eq.(4) if a one is desired,
or using Eq.(5) if a zero is desired. This data is then am-
plitude modulated and transmitted.

The transmitted data will likely encounter AWGN, and
therefore the receiver will see, for each sample xi, the
addition of noise, ni. Therefore, the received signal is
σi = xi + ni.

Given this sample, it could have either come from the
’0’ or the ’1’ mapping. Therefore, one of the original map-
pings, in this case the one-mapping was chosen, is applied
to the received value to predict the next point xi+1 (the
second mapping would simply be the negative of that pre-
dicted value). This same method is applied to every point
from x1 to xN−1. This data series of length N − 1 is then
correlated with the actual received values x2 to xN . This is
a comparison of the values predicted based on one attrac-
tor against the actual received values. If this correlation
is greater than zero, then it is statistically likely that the
received data represented a bit value of ‘1’ and the deci-
sion would be that a ‘1’ had been received; otherwise, the
decision would be that a ‘0’ had been received. Figure 5
summarizes the entire system in both block-diagram and
algorithmic form.

Figure 5 - Attractor Predictor Method Flowchart
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RESULTS

The attractor predictor method was analyzed through Mat-
lab simulations in order to judge its covertness in the time
and frequency domain, its SNR performance, and its com-
putational complexity.

This scheme was tested for time domain covertness by
simulating a matched filter receiver and applying that re-
ceiver to transmitted data from the attractor-predictor ap-
proach. A time series of one set of iterations for a ‘1’ and
a ‘0’ was provided as the two basis signals. Then, a noise-
less transmission was simulated and the probability of er-
ror for that matched filter receiver was determined. With
100,000 bits simulated and a sample size of 40 samples per
bit, the probability of error was 0.4357, which would prove
matched filters useless in receiving this data.

In order to ensure the frequency domain covertness
of this system, noiseless representations of ones and ze-
ros were produced using the attractor predictor encoding
method, and the Fourier Transforms of these signals are
presented in figure 6. There are no prominent peaks in
this transform, and have the potential to appear as noise to
spectral analyzers.

Figure 6 - Fourier Analysis of Encoded Data

In order to analyze the SNR performance of this receiver
(and each of the other methods presented in this report),
simulations of each of the chaos receivers were developed
to transmit and receive a random set of data in AWGN
and determine the receiver operating characteristic (ROC)
curves, which can then be directly compared to the opti-
mal system for Gaussian noise: binary phase shift key-
ing (BPSK), and differential binary phase shift keying
(BDPSK), the noncoherent analog to BPSK. As previously
stated, the MESAH and Box-counting methods were 33 dB
and 20 dB, respectively, away from BPSK. The Attractor-
Predictor method performs 10dB worse than BPSK. How-
ever, it performs only 7dB worse than differential BPSK
(DBPSK), which is a fairer comparison, as it is also non-
coherent. The ROC curves are shown in figure 7.

Figure 7 - Receiver Operating Characteristic Curves

In order to compare the computational intensity of the
attractor-predictor method to BPSK, the reception of two
identical random sequences of 1,000,000 bits were sim-
ulated, sent using the same number of samples, and the
time required to received those bits using a BPSK receiver
and the Chaos receiver, respectively was determined. The
chaos-based approach required on average 1.5 times more
time to receive a given signal than BPSK.

CONCLUSION

In summary, the receiver design is noncoherent, as no
knowledge of phase is required, and no knowledge of the
starting values of the chaotic signals is necessary. In terms
of covertness, all generated signals are spread-spectrum in
the frequency domain, containing no distinguishing peaks
or noticeable structure. In the time domain, signals of
sample size 10 or greater are only slightly correlated, and
those 40 or greater are uncorrelated, eliminating matched-
filtering as a viable receiver option. In addition, the sig-
nal reception time is only 50 percent greater than that
of BPSK. As for the performance of this receiver in low
SNRs, the system performance does degrade gracefully
with the introduction of noise, however, its overall perfor-
mance is 10dB away from that of BPSK and 7 dB away
from DBPSK. Due to the covert nature of this system and
the relative simplicity of the algorithm’s implementation, a
tradeoff in SNR performance is acceptable.
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