
High-level Component Interfaces for Collaborative Development:

A Proposal

Thomas Marlowe

Department of Mathematics and Computer Science

Seton Hall University

thomas.marlowe@shu.edu

and

Vassilka Kirova

Alcatel-Lucent

kirova@bell-labs.com

ABSTRACT

Software development has rapidly moved toward

collaborative development models where multiple

partners collaborate in creating and evolving software

intensive systems or components of sophisticated

ubiquitous socio-technical-ecosystems. In this paper

we extend the concept of software interface to a

flexible high-level interface as means for

accommodating change and localizing, controlling and

managing the exchange of knowledge and functional,

behavioral, quality, project and business related

information between the partners and between the

developed components.

Keywords: collaborative software development,

abstract component interfaces, knowledge

management.

1. INTRODUCTION

Software development has rapidly moved toward

collaborative development models where multiple teams

from different organizations and possibly companies,

distributed across the globe, work together to define,

develop, deploy and often collectively maintain complex

software systems [25]. The complexity of such projects

and the rate of change they are exposed to are

unprecedented. These include but are not limited to

dynamic changes in industry trends and market landscape,

in customer needs and user expectations, in user and

stakeholder communities, in standards, tools and

environments, and in project organization and partner

polices. To effectively accommodate such change product

and process means, including flexible architectures and

interfaces, iterative development, and cooperative,

hierarchical risk management are required [19]. In this

paper, we specifically focus on high-level component

interfaces and examine their role and structure as well as

the benefits they can bring to large collaborative projects.

The boundary between partners in collaborative comprises

not only the definition of one or more software component

interfaces (to which the development efforts comply) and

the exchange of project information such as modification

requests and risk management plans, but also business

policy and information flow, as well as knowledge and

expertise exchanges. While some of the latter interactions

may be generic, many depend on the nature of the

components being developed and the differences between

processes and policies between the partners.

A key differentiator in collaborative software development

is effective cooperative knowledge management — the

process of acquisition, creation, and exchange of

knowledge between all participants in the development

efforts. This process is facilitated by the establishment of

open culture and requires infrastructure services that

support it [30].

In [19], we argued for flexible software interfaces, where

the flexibility entails the interfaces to not only

accommodate a collection of software artifacts but also

localized and specialized policies. We also presented a

structure for flexible component interfaces for change-

prone collaborative development, together with a change

classification and a toolkit for managing change. In [17],

we discuss artifact flow and dependency management, and

suggest that these also naturally factor at the boundary

between components. Here we consider knowledge

management [1] and policy-driven [21] information

management, and argue that the cross-collaborator software

component interface provides a natural location for

instantiating and specializing the policies and constraints of

project and organizational interfaces as well as selected

aspects of the software development process. We propose

creating a per-component-interface business

policy/information flow/knowledge management object,

and suggest that the combination of this with the software

interface provides a natural location for a number of highly

desirable and specialized business, information and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 6 - YEAR 2009 1ISSN: 1690-4524

knowledge functions. (We combine those into an abstract,

high-level interface for collaborative development.)

The rest of this paper is organized as follows. Section 2

briefly examines the issue of change, highlighting a set of

project and product means for addressing and

accommodating change in large scale collaborative

projects. Section 3 discusses key properties of a high level

component interface and their role in distributed and

collaborative software development efforts. In Section 4 we

formalize component interfaces as first-class business

entities and explore their role and effects. Related work is

briefly surveyed in Section 5, and Section 6 presents our

conclusions and possible future directions.

2. CHANGE CLASSIFICATION AND

TOOLBOX

Change is a key risk factor. The need to effectively

accommodate it—whether a result of problems (corrective

or preventive changes) or driven by changing needs and

environments (adaptive or perfective changes)—has long

been a major software engineering concern and is further

exacerbated in large scale collaborative projects. Table 1

shows our change classification: forward changes, in which

changes in requirements (introduced, respectively, by the

environment, customer changes, or policy or third-party

changes) drive changes in design; revealed changes, in

which formally specifying requirements exposes

difficulties in requirements, implementation, or both; and

backward changes, where difficulties in implementation

necessitate relaxation or other modification of product

expectations. All stakeholders—development partners,

customers, and the users they represent—jointly participate

in the process of introducing changes, reacting to them, and

hence bearing the economic responsibilities of the

additional project costs (see Table 1).

Table 2 outlines the change toolbox, a set of approaches

that can be combined to tame and localize change. They

are classified into process- and product-centric means. In

[19] we presented an earlier version of this toolbox, where

the process-centric categories included agility, traceability,

and organizational collaboration, to which we have here

added artifact flow management (discussed in [3, 17]),

cooperative risk management, knowledge management, and

domain expert collaboration; the product-centric means

included software architecture, component interfaces,

interface patterns, and adaptive information, which we here

extend with component interfaces. Most of these elements

and practices have been used in different contexts;

classifying, characterizing, and combining them, as

presented here, adds new benefits and opens novel

applications.

Flexible high-level component interfaces, discussed

hereafter, allow for proper change localization,

encapsulation and absorption of effects at component and

partner boundaries.

3. FLEXIBLE SOFTWARE COMPONENT

INTERFACES

The precise nature of externally visible interfaces is a

serious tradeoff for collaboration. Absolutely fixed

interfaces, as for contractual development, simplify project

management, traceability and artifact flow, but limit the

flow of information between components, and also inhibit

agile development and limit flexibility in general, even

within those components. In [19] we propose one possible

solution, in which the interface is “structured” but not

fixed, so as to accommodate maximum flexibility in

development, while limiting redundant or irrelevant effort

and supporting artifact flow and dependency tracking.

These flexible interfaces use layered organization, design

and enterprise patterns, and adaptive information to provide

stable behavior while allowing the application of modern

process approaches within the boundary of component

development.

In order to accommodate change, provide traceability [16,

26] and support agile development [5, 18, 28] within

components, the proposed interface has a tripartite

structure. It consists of an invariant kernel describing the

flow of problem information across the interface, but

allowing extensions to handle newly discovered exceptions;

a shell managing the structure and patterns of information

exchange; and auxiliary services that allow for the

exchange of adaptive information [25], specifically

implementation- or execution-specific information that can

be used to allow cross-tuning of components:

• Kernel interface architecture: the guaranteed core of a

component’s behavior and extra-functional properties.

The ordinary syntax and semantics are fixed, although

the exception semantics is extensible, to respond to

newly found problems affecting other components.

Otherwise, the kernel interface should be changed

only in the most extreme circumstances. (Ordinary

syntax and semantics includes but is not limited to the

“happy path”—it includes all success scenarios and

alternatives, plus some exception behavior.

Unspecified exceptions might, for example, arise from

design or implementation decisions, or from

unanticipated limitations in services or platform.)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 6 - YEAR 20092 ISSN: 1690-4524

Change type Arises from Identified by

Primary economic

responsibility

(subject to negotiation)

Real-world changes Customer or Developer Joint

Customer requests Customer Customer
Forward

Policy changes
Customer, Developer or

External
Varies

Revealed Specification problems Developer Joint

Backward Implementation problems Developer Developer

Table 1. Change types and organizational responsibilities

• Shell interface architecture: actual call-return or message

structure, and additional services used in extending or

evolving component behavior. Boundaries should be fixed,

although details may be negotiable. The shell may include

optimized or specialized calling patterns or asynchronous

messages, wrapped sequences or selections of kernel calls,

leverage of implementation decisions in partners, or

forwarding of calls/results from clients or to services. It

may also include desirable but optional features, since the

nature of such late features can usually wait to be

completely fixed. This is also a natural location to support

changes in drivers, or more generally in platforms.

• Auxiliary services and incidental information (adaptive

data/metadata): System, history, profiling, configuration,

and other information developed in one component, not

part of interface semantics, but usable by other

components. In [19] we discuss in more detail an approach

for enriching the interfaces with adaptive data to support

global objectives and cross-component tuning and

optimization.

Variation is supported through use of uniform software

architectures [11, 24, 29], design patterns [10, 19] and enterprise

patterns [12], and tools or views [16] combining traceability

with software configuration management [23]. For example,

agile, iterative design of a component may result in a modified

interface with the outside world, but is more constrained when it

affects the interactions with a foreign component. Nonetheless,

many changes in the interface can be masked through use of

design patterns, so that information is transmitted from one

component to the other via the pre-defined physical interface,

but each side sees its own logical version of the interface

(analogous to the logical and physical views of a DBMS), using

design patterns such as Façade, Adapter, and Bridge.

Another dimension of flexibility arises from moving the data

boundary between components. Sometimes information

produced and managed by one component can be used in

another to provide or support improved performance, testing,

tuning, record-keeping, implementation decisions, dynamic

compilation and state-dependent conditional execution [24].

There are numerous opportunities here, for example: (1)

Forwarding the identity of a service via Proxy can remove the

need for the component to find and connect to such a service on

its own; (2) Data structure state information can facilitate use of

the State, Strategy, or Template Method patterns to improve

performance; (3) History information may be simpler to keep on

the caller side, but still be useful for dynamic specialization or

optimization of component calls, and snapshots can be passed

through use of Memento; or (4) Databases and knowledge bases

shared between service and client will function more effectively

if strategy and history information is allowed across the

interface barrier.

Such information can also be used to simplify provision or

verification of timing properties or reliability, or simplify

enforcement of security and access control. While an initial

description of this information may be desirable, the extent and

nature of this information remains open to negotiation (although

not ordinarily revocation), and its use is largely at the discretion

of the component developers.

4. MAKING THE INTERFACE A FIRST-CLASS

BUSINESS ENTITY

Flexible interfaces can also provide support for business and

management processes [2, 21], including risk management [19],

traceability and artifact flow [17], security [13], and knowledge

management [1]. They provide a natural place to hook:

• Policies for accessibility, transmission, and inter-

component security.

• Policies and procedures for information hiding (whether for

abstraction, access control, security, protection of

intellectual property and privacy, or for more efficient and

effective use in risk management), handling of revealed

changes, or other management contingency policies.

• Translation of artifacts (language-to-language, notation-to-

notation, perhaps glossary-to-glossary [motivated by

standards and regulatory compliance across jurisdictions, as

well as important national/regional variations in idiom])

and generation of abstract views.

• Selective propagation plus context-sensitive versioning of

change information, artifacts, and possibly policies,

depending on information about the context and status of

the adjoining components and the interface itself.

• Generation of some types of summary artifacts, including

schedule tracking.

They also provide a natural place for aspects of knowledge

management [1, 14], where various uses of information hiding

also apply. Most of the above policies and actions have security

[13] and knowledge management implications.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 6 - YEAR 2009 3ISSN: 1690-4524

Means for dealing

with change

Project Characteristics Critical property when dealing with

change

Agility

Short iterations, team collaboration,

customer involvement; change tolerance

and flexibility, easier evolvability

High evolvability; relatively small,

hierarchical or idiomatic project; tight

scheduling constraints

Traceability

(artifact

dependency

management)

Easy to navigate traceability matrix; well-

structured artifacts required to minimize

dependencies; “immediate-automated”

identification of change impact; proactive

monitoring of churn; tracking project

progress

Large-scale projects with clearly identified

requirements; known requirements paired

with need for high innovation; large number

of diverse dependencies or complex

dependence web

Artifact flow

management

Clearly identifies artifact types, partner

responsibilities, and communication;

basis for controlled artifact state and

transformations; positive interaction with

SCM

Large and complex project with diverse set of

artifacts; large number of active stakeholders;

complex flow of information

Organizational

Collaboration

Open organizational collaboration, open

channels of information exchange,

cooperative risk management, ease of

change propagation via uniform and

interconnected process views

Bidirectional component interaction; end-to-

end product constraints or security, integrity,

reliability requirements; high demand for

information processing capacity; cross-

partner domain expert collaboration

Cooperative

Risk

Management

Clear roles and responsibilities of

stakeholders when dealing with change;

change taxonomy; hierarchical risk

management plans

Large and complex project with diverse set of

artifacts; large number of active stakeholders;

complex flow of information; high level of

innovation

Knowledge

Management

Identify, structure, and specialize implicit

knowledge and relationships; identify

implicit patterns (data mining); handle

need-to-know, security and intellectual

property

Domain uses implicit knowledge and/or

subjective judgment; patterns of use matter;

substantial intellectual property

P
ro

ce
ss

-c
en

tr
ic

 M
ea

n
s

Domain Expert

Collaboration

Identify critical cross-component domain

issues, inconsistencies, and tradeoffs

Heavy use of domain knowledge; domain

models or vocabulary variable or unstable

Software

Architecture

Support for “plug-and-play” modular

replacement, idioms to handle

complexity and problems, easier change

analysis and propagation via uniform

structure; approach for cross-cutting

concerns (e.g., aspects)

Hierarchical application; structural

complexity; evolvability of behavior; service-

oriented architecture with families of

services/clients; inter-component cross-cuts

Component

Interfaces

Restricted propagation of change impact

across component boundaries, reduced

complexity of dependence web via

information hiding; design for

abstractability of dependence information

Partners responsible for different subsystems;

complex or heavy information flow across

boundaries; intellectual property or security

concerns

Interface

Patterns

Flexibility of logical interfaces with fixed

physical interfaces; access to legacy or

COTS/GOTS services/databases; better

information hiding at component

boundaries; improved agility within

components; support for refactoring

within components

Collaborative development; negotiable

boundaries between components; agile

component development P
ro

d
u

ct
-c

en
tr

ic
 M

ea
n

s

Adaptive

Information

Propagation of content, system and

bookkeeping information across

component boundaries; safe extensibility

of information semantics and component

interfaces; improved agility within

components

High component coupling; component-

crossing extra-functional constraints

(performance, timing, etc.); negotiable

information flow

Table 2. Means for dealing with change (“Change Toolbox”)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 6 - YEAR 20094 ISSN: 1690-4524

In addition:

• Data mining [31, 32] of components—can use both pattern

discovery in the component to find information, and

filtering and abstraction, both to protect information and to

hide obfuscating details—both during development and

upon deployment/execution and maintenance/evolution.

• History and change information, component state,

coherence of artifact configurations across components [23]

• Interesting question for discussion: ordering of filter-

abstract-discover. Which leads to most patterns being

discovered? Is there a chance of covert leakage?

Such interface objects will have references to the public state of

the components it connects—not just object state, but process,

project, product and business artifacts states.

Another advantage, specifically for emergent ubiquitous socio-

technical-ecosystems, is that one or more partially instantiated

first-class interfaces—software, information flow, and

management policy—can be stored with a component,

especially one providing fundamental business or technical

support (whether for the product or the development process).

 When reuse of a component is considered, such interfaces can

be considered simultaneously, and may greatly simplify the

tasks of adaptation and integration.

5. EXTENDING THE MODEL: MULTI-PARTNER,

MULTI-COMPONENT INTERACTIONS AND

GLOBAL CONCERNS

Multi-dimensional interactions between partners and

components require additional considerations:

• The simple model assumes that all interfaces are binary,

and that there is only one interface between components

developed by the same pair of partners. We expect most

but not all n-ary interfaces can be factored into binary

interfaces. The other issue is more interesting: there may be

parallel interfaces, even potentially multiple interfaces

between the same pair of components (for example, (1)

from different modules inside one partner’s component, or

(2) requesting an intermediary for forwarding on different

kinds of service).

• For any pair of partners with an interaction, there may be a

single interaction object to capture legal and other details of

that relationship. Appropriate component interfaces may

and typically will refer to that interaction object. Likewise,

since the interaction will involve all of the component

interactions, the interaction object will need to be able to

reference all of those interfaces.

• Nonetheless, it is possible to consider variations in

information sharing or in translation (for example) among

different interfaces attaching to the same relationship.

Examples might include (1) two modules with different

levels of internal security, or interacting with different third

parties (whether partners or external entities), or (2)

context-driven information hiding and translation, based on

knowledge of the two communicating components and

modules, and the intent of the given interface—so that

technical vocabulary can be properly translated for

different specialties, or details important for one module

can be suppressed in another. The policies these

differences generate can be separate, or simply

modifications to a central policy attached to the interaction

object.

• The negotiation for exceptional behavior, call and message

sequences, and auxiliary services can still be separate, even

if the modules on the ends of the interface are the same,

through the use of interface and design patterns, provided

that the interface pattern handles otherwise uncaught (and

presumably uninteresting to the caller) exceptions properly.

Likewise, data mining and pattern recognition can be driven by

context. Where two or more interfaces with the same partners

(largely) share context, they can of course delegate to a common

interface policy and knowledge object.

Finally, just as some design requirements remain global

concerns, some aspects of knowledge management are likely to

be better located either globally or hierarchically. The

marketing plan is necessarily a global object, and the use of

knowledge management for marketing will therefore be global.

Identification of patterns in the change history of the project is

hierarchical, since it needs both a local and a global view. In

addition, cross-partner domain expert collaboration [9] is

necessarily orthogonal to the component structure, although the

information contributed by an individual partner’s experts will

be guided primarily by that partner’s component (or

components) and its interfaces.

6. RELATED WORK

The issues of change and its accommodation have been studied

from many different perspectives: evolution and traceability

[27], architectural flexibility [15], and interface design patterns

[18] and enterprise patterns [12]. There is related work on

dependence analysis and change impact analysis, mostly related

to software configuration management and work separately on

traceability [16]. For risk analysis in the context of

collaboration, see [2, 20]. There is an enormous body of work

on design and enterprise patterns [10, 12, 17]. For an overview

of software architectures, and architecture modeling and

specification, see [11, 22, 24, 28].

New architectural paradigms, such as Service Oriented

Architecture (SOA) [8] define flexible architectural models that

can provide basis for both the organization of the system being

developed as well as the structure and operation of the

collaborative environments used to develop the systems.

Inter-enterprise knowledge management is discussed in [14] in a

general context; the use of knowledge management in software

engineering is explored in [4, 6, 7]. Cross-component domain

expert collaboration forms part of knowledge management and

communication in [9]. Data mining of software artifacts is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 6 - YEAR 2009 5ISSN: 1690-4524

considered in [31], although largely limited to design- and

implementation-level artifacts. There are numerous works and

tools for distributed software configuration management [23],

but nothing explicitly designed for collaborative development.

7. CONCLUSIONS AND FUTURE WORK

We propose expanding our prior work on collaborative software

component interfaces to support localized treatment of change,

project management information, management contingency

policies and knowledge management. We have identified

several advantages, and also discuss which aspects are best left

centralized or delegated to a common business object.

Future work will include handling non-binary interfaces,

possibly by modeling the interface as a set of specialized client-

service interactions, peer-to-peer negotiation, and routing

decisions, mediated by general (e.g., Adapter and Bridge) and

special-purpose design patterns. We will also continue to work

on codifying a set of special-purpose interface patterns and

defining guidelines for their application.

REFERENCES

[1] W. Agresti: Knowledge Management, Advances in

Computers, Vol. 53, 2000.

[2] H. Barki , S. Rivard , J. Talbot: An Integrative Contingency

Model of Software Project Risk Management; Journal of

Management Information Systems, 17 (4), 37-69, Number

4/Spring 2001.

[3] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su:

Towards Formal Analysis of Artifact-Centric Business

Process Models; Proc. of Business Process Management,

5th Intl. Conf. (BPM 2007), Brisbane, Australia, September

24-28, 2007, 288-304.

[4] L. C. Briand: On the many ways software engineering can

benefit from knowledge engineering, Proceedings of the

14th International Conference on Software Engineering and

Knowledge Engineering (SEKE 2002), 3-6, 2002.

[5] J. Coplien, N. Harrison: Organizational Patterns of Agile

Software Development; Prentice Hall PTR, 2005.

[6] K. C. Desouza: Barriers to Effective Use of Knowledge

Management Systems in Software Engineering. Comm.

ACM, Vol. 46, No. 1, pp. 99-101, 2003.

[7] K. C. DeSouza, J.R. Evaristo: Managing Knowledge in

Distributed Projects, Communications of the ACM, 47 (4),

87-91, April 2004.

[8] Th. Erl: Service-oriented Architecture: Concepts,

Technology, and Design; Prentice Hall, 2005.

[9] D. Flynn, E. Brown, R. Krieg: A Method for Knowledge

Management and Communication within and across

Multidisciplinary Teams, 2008 Workshop on Knowledge

Generation, Communication and Management (KGCM

2008), June 2008.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design

Patterns: Elements of Reusable Object-Oriented Software;

Addison-Wesley, 1995.

[11] D. Garlan, M. Shaw: An introduction to software

architectures; Proc. of the IEEE, ICSE-15 Tutorial Notes:

Architecture for Software Systems, 1993.

[12] G. Hohpe, B. Woolf: Enterprise Integration Patterns;

Addison-Wesley, 2004.

[13] K.-S. Hong, Y.-P. Chi, L. R. Chao, J.-H. Tang: An

Integrated System Theory of Information Security

Management, Information Management and Computer

Security, 11 (5), 243-248, 2003.

[14] N. Jastroch: Adaptive Interenterprise Knowledge

Management Systems, 2008 Workshop on Knowledge

Generation, Communication and Management (KGCM

2008), June 2008.

[15] D. Kelly: A study of design characteristics in evolving

software using stability as a criterion; IEEE Transactions

on Software Engineering, 32 (5), 2006, 315-329.

[16] V. Kirova, N. Kirby, D. Kothari, G. Childress: Effective

Requirements Traceability: Models, Tools, and Practices;

Bell Labs Technical Journal, 12 (4), Winter 2008, 143-157.

[17] V. Kirova, T. J. Marlowe: Addressing Change in

Collaborative Software Development through Integrated

Artifact Flow and Dependence Analysis, Proc. of 21st

International Conference on Software and Systems

Engineering and their Applications, December 2008 (to

appear).

[18] C. Larman: Applying UML and Design Patterns; 3rd ed.,

Prentice Hall, 2004.

[19] T. Marlowe, V. Kirova: Addressing Change in

Collaborative Software Development: Process and Product

Agility and Automated Traceability, Proc. of the 12th

World Multi-Conference on Systemics, Cybernetics and

Informatics, June 2008, 209-215.

[20] M. Mohtashami, T. Marlowe, V. Kirova, F.P. Deek: Risk

Management for Collaborative Software Development;

Information Systems Management, 23 (4), 2006, 20-30.

[21] M. Mohtashami, V. Kirova, T. Marlowe, F. Deek: Risk-

Driven Management Contingency Policies in Collaborative

Software Development, Proc. of the 40th DSI Annual

Meeting Conference, Nov. 2009

(http://www.decisionsciences.org/Annualmeeting/documen

ts/DSI2009Saturday.pdf, accessed 10/19/09) .

[22] Object Management Group: Model Driven Architecture;

Available at http://www.omg.org/mda/ (Accessed October

24, 2008).

[23] Open Directory Project: Software Configuration

Management Tools, Available at

http://www.dmoz.org/Computers/Software/Configuration_

Management/Tools/, accessed 11/11/08.

[24] D. Perry, A. Wolf: Foundations for the Study of Software

Architecture; Software Engineering Notes, 17 (4), 1992,

40-52.

[25] J. Pollock, R. Hodgson: Adaptive Information; Wiley-

Interscience, 2004.

[26] B. Ramesh, M. Jarke: Toward reference models for

requirements traceability; IEEE Transactions on Software

Engineering, 27 (1), 2001, 58-93. R. Sangwan et al: Global

Software Development Handbook, CRC Press, 2006.

[27] K. Schwaber, M. Beedle: Agile Software Development

with Scrum; Prentice Hall, 2002.

[28] M. Shaw, D. Garlan: Software Architectures: Perspectives

on an Emerging Discipline; Prentice-Hall, 1996.

[29] United Kingdom Office of Government Commerce: ITIL-

Continual Service Improvement, 2007, 125-126.

[30] I. H. Witten, E. Frank: Data Mining, Morgan Kaufmann

Publishers, 2000.

[31] T. Xie, J. Pei, A. E. Hassan, “Mining Software Engineering

Data”, Companion to the Proceedings of the 29th

International Conference on Software Engineering, 172-

173, 2007.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 6 - YEAR 20096 ISSN: 1690-4524

	XF104TM

