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ABSTRACT 

 

Software development has rapidly moved toward 

collaborative development models where multiple 

partners collaborate in creating and evolving software 

intensive systems or components of sophisticated 

ubiquitous socio-technical-ecosystems.  In this paper 

we extend the concept of software interface to a 

flexible high-level interface as means for 

accommodating change and localizing, controlling and 

managing the exchange of knowledge and functional, 

behavioral, quality, project and business related 

information between the partners and between the 

developed components.      

 

Keywords: collaborative software development, 

abstract component interfaces, knowledge 

management. 

 

1. INTRODUCTION 

 

Software development has rapidly moved toward 

collaborative development models where multiple teams 

from different organizations and possibly companies, 

distributed across the globe, work together to define, 

develop, deploy and often collectively maintain complex 

software systems [25].  The complexity of such projects 

and the rate of change they are exposed to are 

unprecedented.  These include but are not limited to 

dynamic changes in industry trends and market landscape, 

in customer needs and user expectations, in user and 

stakeholder communities, in standards, tools and 

environments, and in project organization and partner 

polices. To effectively accommodate such change product 

and process means, including flexible architectures and 

interfaces, iterative development, and cooperative, 

hierarchical risk management are required [19].  In this 

paper, we specifically focus on high-level component 

interfaces and examine their role and structure as well as 

the benefits they can bring to large collaborative projects. 

 

The boundary between partners in collaborative   comprises 

not only the definition of one or more software component 

interfaces (to which the development efforts comply) and 

the exchange of project information such as modification 

requests and risk management plans, but also business 

policy and information flow, as well as knowledge and 

expertise exchanges.   While some of the latter interactions 

may be generic, many depend on the nature of the 

components being developed and the differences between 

processes and policies between the partners.  

 

A key differentiator in collaborative software development 

is effective cooperative knowledge management — the 

process of acquisition, creation, and exchange of 

knowledge between all participants in the development 

efforts. This process is facilitated by the establishment of 

open culture and requires infrastructure services that 

support it [30].  

 

In [19], we argued for flexible software interfaces, where 

the flexibility entails the interfaces to not only 

accommodate a collection of software artifacts but also 

localized and specialized policies.  We also presented a 

structure for flexible component interfaces for change-

prone collaborative development, together with a change 

classification and a toolkit for managing change.   In [17], 

we discuss artifact flow and dependency management, and 

suggest that these also naturally factor at the boundary 

between components.  Here we consider knowledge 

management [1] and policy-driven [21]  information 

management, and argue that the cross-collaborator software 

component interface provides a natural location for 

instantiating and specializing the policies and constraints of 

project and organizational interfaces as well as selected 

aspects of the software development process. We propose 

creating a per-component-interface business 

policy/information flow/knowledge management object, 

and suggest that the combination of this with the software 

interface provides a natural location for a number of highly 

desirable and specialized business, information and 
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knowledge functions.  (We combine those into an abstract, 

high-level interface for collaborative development.)  

The rest of this paper is organized as follows. Section 2 

briefly examines the issue of change, highlighting a set of 

project and product means for addressing and 

accommodating change in large scale collaborative 

projects. Section 3 discusses key properties of a high level 

component interface and their role in distributed and 

collaborative software development efforts. In Section 4 we 

formalize component interfaces as first-class business 

entities and explore their role and effects.  Related work is 

briefly surveyed in Section 5, and Section 6 presents our 

conclusions and possible future directions. 

 

2. CHANGE CLASSIFICATION AND 

TOOLBOX 

 

Change is a key risk factor. The need to effectively 

accommodate it—whether a result of problems (corrective 

or preventive changes) or driven by changing needs and 

environments (adaptive or perfective changes)—has long 

been a major software engineering concern and is further 

exacerbated in large scale collaborative projects. Table 1 

shows our change classification: forward changes, in which 

changes in requirements (introduced, respectively, by the 

environment, customer changes, or policy or third-party 

changes) drive changes in design; revealed changes, in 

which formally specifying requirements exposes 

difficulties in requirements, implementation, or both; and 

backward changes, where difficulties in implementation 

necessitate relaxation or other modification of product 

expectations. All stakeholders—development partners, 

customers, and the users they represent—jointly participate 

in the process of introducing changes, reacting to them, and 

hence bearing the economic responsibilities of the 

additional project costs (see Table 1).  

Table 2 outlines the change toolbox, a set of approaches 

that can be combined to tame and localize change.  They 

are classified into process- and product-centric means.  In 

[19] we presented an earlier version of this toolbox, where 

the process-centric categories included agility, traceability, 

and organizational collaboration, to which we have here 

added artifact flow management (discussed in [3, 17]), 

cooperative risk management, knowledge management, and 

domain expert collaboration; the product-centric means 

included software architecture, component interfaces, 

interface patterns, and adaptive information, which we here 

extend with component interfaces. Most of these elements 

and practices have been used in different contexts; 

classifying, characterizing, and combining them, as 

presented here, adds new benefits and opens novel 

applications.  

Flexible high-level component interfaces, discussed 

hereafter, allow for proper change localization, 

encapsulation and absorption of effects at component and 

partner boundaries.   

3. FLEXIBLE SOFTWARE COMPONENT 

INTERFACES 

 

The precise nature of externally visible interfaces is a 

serious tradeoff for collaboration.  Absolutely fixed 

interfaces, as for contractual development, simplify project 

management, traceability and artifact flow, but limit the 

flow of information between components, and also inhibit 

agile development and limit flexibility in general, even 

within those components.  In [19] we propose one possible 

solution, in which the interface is “structured” but not 

fixed, so as to accommodate maximum flexibility in 

development, while limiting redundant or irrelevant effort 

and supporting artifact flow and dependency tracking.  

These flexible interfaces use layered organization, design 

and enterprise patterns, and adaptive information to provide 

stable behavior while allowing the application of modern 

process approaches within the boundary of component 

development.   

 

In order to accommodate change, provide traceability [16, 

26] and support agile development [5, 18, 28] within 

components, the proposed interface has a tripartite 

structure. It consists of an invariant kernel describing the 

flow of problem information across the interface, but 

allowing extensions to handle newly discovered exceptions; 

a shell managing the structure and patterns of information 

exchange; and auxiliary services that allow for the 

exchange of adaptive information [25], specifically 

implementation- or execution-specific information that can 

be used to allow cross-tuning of components: 

• Kernel interface architecture: the guaranteed core of a 

component’s behavior and extra-functional properties.  

The ordinary syntax and semantics are fixed, although 

the exception semantics is extensible, to respond to 

newly found problems affecting other components.  

Otherwise, the kernel interface should be changed 

only in the most extreme circumstances. (Ordinary 

syntax and semantics includes but is not limited to the 

“happy path”—it includes all success scenarios and 

alternatives, plus some exception behavior.  

Unspecified exceptions might, for example, arise from 

design or implementation decisions, or from 

unanticipated limitations in services or platform.)
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Change type Arises from Identified by 

Primary economic 

responsibility  

(subject to negotiation) 

Real-world changes Customer or Developer Joint 

Customer requests Customer Customer 
Forward 

Policy changes 
Customer, Developer  or 

External 
Varies 

Revealed Specification problems Developer Joint 

Backward Implementation problems Developer Developer 

 

Table 1.  Change types and organizational responsibilities 

 

• Shell interface architecture: actual call-return or message 

structure, and additional services used in extending or 

evolving component behavior.  Boundaries should be fixed, 

although details may be negotiable.  The shell may include 

optimized or specialized calling patterns or asynchronous 

messages, wrapped sequences or selections of kernel calls, 

leverage of implementation decisions in partners, or 

forwarding of calls/results from clients or to services.  It 

may also include desirable but optional features, since the 

nature of such late features can usually wait to be 

completely fixed.  This is also a natural location to support 

changes in drivers, or more generally in platforms. 

• Auxiliary services and incidental information (adaptive 

data/metadata): System, history, profiling, configuration, 

and other information developed in one component, not 

part of interface semantics, but usable by other 

components. In [19] we discuss in more detail an approach 

for enriching the interfaces with adaptive data to support 

global objectives and cross-component tuning and 

optimization. 

 

Variation is supported through use of uniform software 

architectures [11, 24, 29], design patterns [10, 19] and enterprise 

patterns [12], and tools or views [16] combining traceability 

with software configuration management [23].   For example, 

agile, iterative design of a component may result in a modified 

interface with the outside world, but is more constrained when it 

affects the interactions with a foreign component.  Nonetheless, 

many changes in the interface can be masked through use of 

design patterns, so that information is transmitted from one 

component to the other via the pre-defined physical interface, 

but each side sees its own logical version of the interface 

(analogous to the logical and physical views of a DBMS), using 

design patterns such as Façade, Adapter, and Bridge. 

Another dimension of flexibility arises from moving the data 

boundary between components.  Sometimes information 

produced and managed by one component can be used in 

another to provide or support improved performance, testing, 

tuning, record-keeping, implementation decisions, dynamic 

compilation and state-dependent conditional execution [24].  

There are numerous opportunities here, for example: (1) 

Forwarding the identity of a service via Proxy can remove the 

need for the component to find and connect to such a service on 

its own; (2) Data structure state information can facilitate use of 

the State, Strategy, or Template Method patterns to improve 

performance; (3) History information may be simpler to keep on 

the caller side, but still be useful for dynamic specialization or 

optimization of component calls, and snapshots can be passed 

through use of Memento; or (4) Databases and knowledge bases 

shared between service and client will function more effectively 

if strategy and history information is allowed across the 

interface barrier. 

Such information can also be used to simplify provision or 

verification of timing properties or reliability, or simplify 

enforcement of security and access control.  While an initial 

description of this information may be desirable, the extent and 

nature of this information remains open to negotiation (although 

not ordinarily revocation), and its use is largely at the discretion 

of the component developers. 

4. MAKING THE INTERFACE A FIRST-CLASS 

BUSINESS ENTITY 

 

Flexible interfaces can also provide support for business and 

management processes [2, 21], including risk management [19], 

traceability and artifact flow [17], security [13], and knowledge 

management [1].  They provide a natural place to hook: 

• Policies for accessibility, transmission, and inter-

component security. 

• Policies and procedures for information hiding (whether for 

abstraction, access control, security, protection of 

intellectual property and privacy, or for more efficient and 

effective use in risk management), handling of revealed 

changes, or other management contingency policies. 

• Translation of artifacts (language-to-language, notation-to-

notation, perhaps glossary-to-glossary [motivated by 

standards and regulatory compliance across jurisdictions, as 

well as important national/regional variations in idiom]) 

and generation of abstract views. 

• Selective propagation plus context-sensitive versioning of 

change information, artifacts, and possibly policies, 

depending on information about the context and status of 

the adjoining components and the interface itself. 

• Generation of some types of summary artifacts, including 

schedule tracking. 

 

They also provide a natural place for aspects of knowledge 

management [1, 14], where various uses of information hiding 

also apply.  Most of the above policies and actions have security 

[13] and knowledge management implications.
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Means for dealing 

with change 

Project Characteristics Critical property when dealing with 

change 

Agility 

Short iterations, team collaboration, 

customer involvement; change tolerance 

and flexibility, easier evolvability 

High evolvability; relatively small, 

hierarchical or idiomatic project; tight 

scheduling constraints 

Traceability 

(artifact 

dependency 

management) 

Easy to navigate traceability matrix; well-

structured artifacts required to minimize 

dependencies; “immediate-automated” 

identification of change impact; proactive 

monitoring of churn; tracking project 

progress 

Large-scale projects with clearly identified 

requirements; known requirements paired 

with need for high innovation; large number 

of diverse dependencies or complex 

dependence web 

Artifact flow 

management 

Clearly identifies artifact types, partner 

responsibilities, and communication; 

basis for controlled artifact state and 

transformations; positive interaction with 

SCM 

Large and complex project with diverse set of 

artifacts; large number of active stakeholders; 

complex flow of information 

Organizational 

Collaboration 

Open organizational collaboration, open 

channels of information exchange, 

cooperative risk management, ease of 

change propagation via uniform and 

interconnected process views  

Bidirectional component interaction; end-to-

end product constraints or security, integrity, 

reliability requirements; high demand for 

information processing capacity; cross-

partner domain expert collaboration 

Cooperative 

Risk 

Management 

Clear roles and responsibilities of 

stakeholders when dealing with change; 

change taxonomy; hierarchical risk 

management plans   

Large and complex project with diverse set of 

artifacts; large number of active stakeholders; 

complex flow of information; high level of 

innovation 

Knowledge 

Management 

Identify, structure, and specialize implicit 

knowledge and relationships; identify 

implicit patterns (data mining);  handle 

need-to-know, security and intellectual 

property  

Domain uses implicit knowledge and/or 

subjective judgment; patterns of use matter; 

substantial intellectual property 

P
ro

ce
ss

-c
en

tr
ic

 M
ea

n
s 

Domain Expert 

Collaboration 

Identify critical cross-component domain 

issues, inconsistencies, and tradeoffs 

Heavy use of domain knowledge; domain 

models or vocabulary variable or unstable 

Software 

Architecture 

Support for “plug-and-play” modular 

replacement, idioms to handle 

complexity and problems, easier change 

analysis and propagation via uniform 

structure; approach for cross-cutting 

concerns (e.g., aspects) 

Hierarchical application; structural 

complexity; evolvability of behavior; service-

oriented architecture with families of 

services/clients; inter-component cross-cuts 

Component 

Interfaces 

Restricted propagation of change impact 

across component boundaries, reduced 

complexity of dependence web via 

information hiding; design for 

abstractability of dependence information 

Partners responsible for different subsystems; 

complex or heavy information flow across 

boundaries; intellectual property or security 

concerns 

Interface 

Patterns 

Flexibility of logical interfaces with fixed 

physical interfaces; access to legacy or 

COTS/GOTS services/databases;  better 

information hiding at component 

boundaries; improved agility within 

components; support for refactoring 

within components 

Collaborative development; negotiable 

boundaries between components; agile 

component development P
ro

d
u

ct
-c

en
tr

ic
 M

ea
n

s 

Adaptive 

Information 

Propagation of content, system and 

bookkeeping information across 

component boundaries; safe extensibility 

of  information semantics and component 

interfaces; improved agility within 

components 

High component coupling; component-

crossing extra-functional constraints 

(performance, timing, etc.); negotiable 

information flow 

 

Table 2.  Means for dealing with change (“Change Toolbox”) 
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In addition:  

• Data mining [31, 32] of components—can use both pattern 

discovery in the component to find information, and 

filtering and abstraction, both to protect information and to 

hide obfuscating details—both during development and 

upon deployment/execution and maintenance/evolution. 

• History and change information, component state, 

coherence of artifact configurations across components [23] 

• Interesting question for discussion: ordering of filter-

abstract-discover.  Which leads to most patterns being 

discovered?  Is there a chance of covert leakage? 

 

Such interface objects will have references to the public state of 

the components it connects—not just object state, but process, 

project, product and business artifacts states. 

 

Another advantage, specifically for emergent ubiquitous socio-

technical-ecosystems, is that one or more partially instantiated 

first-class interfaces—software, information flow, and 

management policy—can be stored with a component, 

especially one providing fundamental business or technical 

support (whether for the product or the development process). 

 When reuse of a component is considered, such interfaces can 

be considered simultaneously, and may greatly simplify the 

tasks of adaptation and integration. 

 

5. EXTENDING THE MODEL: MULTI-PARTNER, 

MULTI-COMPONENT INTERACTIONS AND 

GLOBAL CONCERNS 

 

Multi-dimensional interactions between partners and 

components require additional considerations: 

• The simple model assumes that all interfaces are binary, 

and that there is only one interface between components 

developed by the same pair of partners.  We expect most 

but not all n-ary interfaces can be factored into binary 

interfaces. The other issue is more interesting: there may be 

parallel interfaces, even potentially multiple interfaces 

between the same pair of components (for example, (1) 

from different modules inside one partner’s component, or 

(2) requesting an intermediary for forwarding on different 

kinds of service).   

• For any pair of partners with an interaction, there may be a 

single interaction object to capture legal and other details of 

that relationship.  Appropriate component interfaces may 

and typically will refer to that interaction object.  Likewise, 

since the interaction will involve all of the component 

interactions, the interaction object will need to be able to 

reference all of those interfaces. 

• Nonetheless, it is possible to consider variations in 

information sharing or in translation (for example) among 

different interfaces attaching to the same relationship.  

Examples might include (1) two modules with different 

levels of internal security, or interacting with different third 

parties (whether partners or external entities), or (2) 

context-driven information hiding and translation, based on 

knowledge of the two communicating components and 

modules, and the intent of the given interface—so that 

technical vocabulary can be properly translated for 

different specialties, or details important for one module 

can be suppressed in another.  The policies these 

differences generate can be separate, or simply 

modifications to a central policy attached to the interaction 

object.   

• The negotiation for exceptional behavior, call and message 

sequences, and auxiliary services can still be separate, even 

if the modules on the ends of the interface are the same, 

through the use of interface and design patterns, provided 

that the interface pattern handles otherwise uncaught (and 

presumably uninteresting to the caller) exceptions properly. 

 

Likewise, data mining and pattern recognition can be driven by 

context. Where two or more interfaces with the same partners 

(largely) share context, they can of course delegate to a common 

interface policy and knowledge object. 

 

Finally, just as some design requirements remain global 

concerns, some aspects of knowledge management are likely to 

be better located either globally or hierarchically.  The 

marketing plan is necessarily a global object, and the use of 

knowledge management for marketing will therefore be global.   

Identification of patterns in the change history of the project is 

hierarchical, since it needs both a local and a global view.  In 

addition, cross-partner domain expert collaboration [9] is 

necessarily orthogonal to the component structure, although the 

information contributed by an individual partner’s experts will 

be guided primarily by that partner’s component (or 

components) and its interfaces. 

 

6. RELATED WORK 

The issues of change and its accommodation have been studied 

from many different perspectives: evolution and traceability 

[27], architectural flexibility [15], and interface design patterns 

[18] and enterprise patterns [12].  There is related work on 

dependence analysis and change impact analysis, mostly related 

to software configuration management and work separately on 

traceability [16]. For risk analysis in the context of 

collaboration, see [2, 20].  There is an enormous body of work 

on design and enterprise patterns [10, 12, 17].  For an overview 

of software architectures, and architecture modeling and 

specification, see [11, 22, 24, 28].   

New architectural paradigms, such as Service Oriented 

Architecture (SOA) [8] define flexible architectural models that 

can provide basis for both the organization of the system being 

developed as well as the structure and operation of the 

collaborative environments used to develop the systems.   

Inter-enterprise knowledge management is discussed in [14] in a 

general context; the use of knowledge management in software 

engineering is explored in [4, 6, 7]. Cross-component domain 

expert collaboration forms part of knowledge management and 

communication in [9]. Data mining of software artifacts is 
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considered in [31], although largely limited to design- and 

implementation-level artifacts.  There are numerous works and 

tools for distributed software configuration management [23], 

but nothing explicitly designed for collaborative development.  

7. CONCLUSIONS AND FUTURE WORK 

 

We propose expanding our prior work on collaborative software 

component interfaces to support localized treatment of change, 

project management information, management contingency 

policies and knowledge management.  We have identified 

several advantages, and also discuss which aspects are best left 

centralized or delegated to a common business object.   

 

Future work will include handling non-binary interfaces, 

possibly by modeling the interface as a set of specialized client-

service interactions, peer-to-peer negotiation, and routing 

decisions, mediated by general (e.g., Adapter and Bridge) and 

special-purpose design patterns.  We will also continue to work 

on codifying a set of special-purpose interface patterns and 

defining guidelines for their application.  
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