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ABSTRACT 1 

 

A controller in adaptive control theory is a critical part in 
mission critical applications in military and computer-
controlled systems. An ability to identify and follow the 
binary instruction execution in the controller part enables 
fault identification and malware detection in safety critical 
applications. Electromagnetic field emission based 

identification of controllers execution state from distance 
will help ascertain security vulnerabilities early on. machine 
learning models for instruction identification, Principal 
Component Analysis (PCA), Adaptive Boosting (AB) and 
Naïve Bayes (NB) were developed to meet this goal. Our 
preliminary results of implementation on a 2-stage pipelined 

controller processor architecture demonstrate that the EM 
side-channel classification approach identifies a controller 
execution state in Adaptive control with 93% success rate. 
 
Keywords: Instruction Disassembly, Machine Learning, 
Hardware Security, IoT Devices, Computer Architecture, 

Electromagnetics. 
 
 

1.  INTRODUCTION 

 
Adaptive control, specifically self-tuning regulator (STR) is 

an important strategy for many mission critical systems like 
computer-controlled systems, missiles, and other defense 
systems. Practical implementations of self- tuning regulators 
are mainly realized using microcomputers or 
microcontrollers, and other processors ([1]-[3]). The 
controller part is one of the most important parts in adaptive 

control. Due to the mission critical nature of adaptive 
control, instruction disassembly and in turn reverse 
engineering the controller and subsequent security 
vulnerability identification is crucial. Moreover, malware is 
emerging as a new battleground in cybersecurity. Recent 

 

1 We would like to thank Mr. Chris Nuttal of Iowa State University 
for reviewing and proof-reading the final version of the paper. 

attacks like Mirai and Moose highlight the need to defend 
and identify faults early on in these devices [3], [4], [5], [6], 

[7],[8], [9], [10], [11], [12], [13], [14],[15],[16],[17]. The 
fundamental challenge in instruction disassembly is 
precisely disassembling instructions in a black-box 
environment. Hardware side-channel methods have unique 
and desirable capabilities in these scenarios as they do not 
require access to the executing binary. Instruction 

disassembly of the controller through Electromagnetic(EM) 
or power side-channel is a significantly challenging 
problem. Moreover, this needs to be done in a single clock 
cycle of the order of 0.25ns for a 4GHz processor. Even 
more, entire disassembly of the controller is a challenge in 
modern processors. We propose an electromagnetic 

spectrum-based controller security vulnerability 
identification by identifying instructions in the pipeline. In 
particular, our approach is the first to analyze 
electromagnetic characteristics of controller in Adaptive 
control design. We were able to identify and estimate the 
controller state with a high success rate. It also does not pose 

any requirements in terms of physical access to the device.  
 
Our contributions are summarized as follows:  

• We propose a novel at-distance electromagnetic 
spectrum domain approach of controller 

disassembly in adaptive control that exposes 
vulnerabilities and performance problems in 
critical Adaptive control 

• We develop an electromagnetic spectrum domain 
framework, based on dimensionality reduction and 

feature selection using Principal Component 
Analysis for a set of features for the high 
probability individual instructions in the processor 
as a training library first. Subsequently, machine 
learning, classifiers like Adaptive Boosting and 
Naïve Bayes, are used to identify the controller 

operation in flight. 
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• Our experiments on ATMeg328 demonstrate that 
our technique can disassemble an entire controller 

operation in flight with 93% accuracy.  
 
The rest of the paper is organized as follows. In Section 2, 
importance of controller in Adaptive control is discussed. 
Section 3 details  EM Characterization on the device under 
test. Section 4 presents feature selection and Machine 

learning approaches. Functional evaluation is presented in 
section 5. Details of hardware implementation are given in 
Section 6. Hardware results and evaluation of performance 
of classifiers are discussed in Section 7. Section 8 
summarizes the work.  
 

 
2.  IMPORTANCE OF CONTROLLER AND 

FAULTLESS OPERATION IN ADAPTIVE 

CONTROL 

 
The schematic diagram of a Self tuning regulator is 
represented in Fig.1. Minimum Degree Pole Placement 

block is an important part of stochastic self-tuning regulator.  
Consider 𝐴 and 𝐵 denoting two polynomials which do not 
have any common factors in neither differential operator, 

𝑝 = 𝑑/𝑑𝑡  and forward shift operator 𝑞 . Also, let 𝐴  be 

monic. 

From the above assumptions, a process can be defined as a 

single-input, single-output (SISO) system [1],  

 𝐴𝑦(𝑡) = 𝐵(𝑢(𝑡) + 𝑣(𝑡)) (1) 

 

 

Figure 1 Stochastic Self Tuning Regulator 

and, a general linear controller can be given by, 

 𝑅𝑢(𝑡) = 𝑇𝑢𝑐(𝑡) − 𝑆𝑦(𝑡), (2) 

Here,  𝑣  is the disturbance,  𝑢  is the input, 𝑢𝑐(𝑡)  is the 
command signal and, 𝑅, 𝑆 and 𝑇are polynomials. Then, a 

transfer operator 𝑇/𝑅  feed forward and transfer operator 
−𝑆/𝑅  negative feedback is represented by control law. 
Hence, identifying the faults in the controller early on is very 
crucial in successful operation and performance capabilities 

in safety critical applications. 

A faulty controller can result from an addition of new lines 
or tampering of instructions by an adversary and malware. 
An EM instruction disassembly based fault identification 
helps in detecting if the controller is tampered with based on 

a comparison with the fault free model available to us. For 
an illustration, let the fault free model for the controller 

consist of instructions 𝑖1 , 𝑖2 , 𝑖3 ,…. However, if a malware 
tampers the code and if the controller instructions become 
𝑖1, 𝑖4, 𝑖3 ,…. , it can be detected through EM level execution 
state identification compared against the fault-free model. 
Such a comparison against a fault-free golden model is 

efficient.  This fault identification can be performed 
selectively based on the importance of an instruction to some 
other controller property for further efficiency 
enhancements.  If we do not have the binaries for legacy 
controllers for a fault-free model, we still will be able to 
predict the executing controller instructions based on the 

available training model of individual instructions.  The 
fault-free model could be developed from multiple legacy 
controllers through consensus between the EM extracted 

instructions streams. 

 

3.  EM ANALYSIS 

 

Static power consumption of circuits can be defined as: 

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉𝐷𝐷𝐼𝑠𝑢𝑝𝑝𝑙𝑦. This is primarily due to the leakage 

from 𝑉𝐷𝐷  to Ground. In contrast, in the dynamic switching 
case, charging and discharging of different capacitances is 
from input switching.  And as a consequence, dynamic 

power consumption is related to the signal frequency. 
Moreover, for small fall and rise times, dynamic power 
consumption is entirely related to the energy for charging 
and discharging of the load capacitances. Dynamic power 

can be defined as, 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝐿𝑉𝐷𝐷
2 𝑓, where 𝐶𝐿 is the total 

load capacitance whereas 𝑓   represents signal frequency. 
Thereby, Dynamic power and consequently Electromagnetic 
waves related to it are very reliable for identifying the 
instructions being executed on the processor – in particular 
because of the correlation from power signature with data 
value/switching. The EM probe antenna factor can be 
defined as the ratio of magnetic or electric field of the DUT 

to the induced voltage of the probe, 𝐴𝐹 = 𝐻(𝑑𝐵) −  𝑉(𝑑𝐵). 
Consider an antenna having radius 𝑎, 𝑠  as the coordinate 
around the loop perimeter, 𝑙 as the total loop perimeter and 

let us assume 𝑎 is small and also that the loop is symmetrical 

about axis and has incident field variation, 𝑒𝑗𝜔𝑡 = 𝑒𝑗𝑘𝑐𝑡 , we 

can represent relation   −𝑗𝑘 ∫ 𝑐𝐵. 𝑑𝑆
𝑠

= ∮ 𝐸. 𝑑𝑠
𝑠

[18]. 

Here, 𝑐𝐵  denotes the magnetic field and has the same 

dimensions of 𝐸 . Sum of incident field 𝐵𝑖 and reradiated 

field 𝐵𝜏  represent the magnetic field. Using Helmholtz 
integrals and Ohm’s law, and further splitting current to zero 
phase sequence current and first phase sequence current, we 

get 𝐼(𝑠) = 𝐼0(𝑠) + 𝐼1(𝑠) ,   𝐼 (𝑠 +
𝑙

2
) = 𝐼0(𝑠) − 𝐼1(𝑠) . 

Based on this, the general integral equation for zero phase 

sequence current case becomes −𝑗𝑘 ∬ 𝑐𝐵𝑖
𝑠

. 𝑑𝑆 =
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∮ 𝐼0(𝑠)𝑍𝑖𝑑𝑠
𝑠

+
𝑗𝜔𝜇

4𝜋
∮∮ 𝐼0(𝑠)

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑠. 𝑑𝑠 . Here, 𝑅  is the 

distance between field and source points and 𝑘 =
2𝜋

𝜆
, 𝑍𝑖 is 

the internal impedance/unit length.  Accordingly, a general 
case zero-phase sequence current can be inferred to be 

related to the incident magnetic field, 𝑩𝒊.   

For a small enough loop, integral of the incident magnetic 

field becomes 𝐵𝑧0
𝑖 , which is equivalent of removing even 

derivatives of Taylor series expansion for 𝑩𝒊  at the loop 
center. Based on that, a first order approximation of zero 
phase-sequence current can be derived based on constant 

current 𝐼0. As we know, in constant current scenarios, the 

low-frequency input admittance of the loop is 𝑌0 =

[∮ 𝑍𝑖 𝑑𝑠 +
𝑗𝜔𝜇

4𝜋
∮∮ 𝐼0(𝑠)

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑠. 𝑑𝑠]

−1

and we have ℎ𝑏 =

−𝑗𝑘𝑆. 

Based on approximations in last paragraph and 𝐾𝐵 =
𝑌0ℎ𝑏/𝝀, the unloaded magnetic sensitivity constant 𝐾𝐵 can 
be defined as being dependent on the probe geometry. 

Accordingly, solution for 𝐼0(0)  can be identified with: 

𝐼0(0) ≈ 𝐼0 = 𝝀𝐾𝐵(𝑐𝐵𝑠𝑒
𝑖 ). Besides, because the electric field 

on the plane of loop does not enter 𝐼0 , 𝐼0 is effectively the 

magnetic field at loop center. 

Let us take the dipole mode which is primarily the first-

phase-sequence current 𝑰(𝟏) ,  and directly dependent to the 
electric field. It can be broken to two parts: one which is 

symmetric across x-axis 𝐼𝑥
(1)

 and other across y-axis 𝐼𝑦
(1)

. 

Besides, 𝐼𝑥
(1)

 and 𝐼𝑦
(1)

 are further related to 𝐸𝑦0
𝑖  and 𝐸𝑧0

𝑖 . 

Owing to the fact that the loads mainly are restricted to the 

ones at 𝑠 = 0 or 𝑙/2  only, 𝐼𝑥
(1)

can be eliminated while 
computing load currents. Consequently, the current 

corresponding to at 𝑠 = 0 can be represented as: 𝐼𝑦
(1)

 (0) = 

ℎ𝑒𝐼𝑌𝐼𝐸𝑦0
𝑖 , where 𝑌𝐼 , being the input admittance at the center 

of antenna can be determined by solving the antenna 

problem directly. Furthermore, ℎ𝑒𝐼 can be determined from 
Rayleigh-Carson reciprocal theorem for a two-port passive 

system. Implying, 𝑘ℎ𝑒𝐼 = 𝐹𝐼 , where 𝐹𝐼  denotes the far-zone 
field factor at each half on the midplane in the broadside 

direction. Considering 𝐼𝑦  to be 𝑦  component during 

transmission and 𝐼𝑦0 is the value at driving point, 𝐹𝐼  can be 

determined as 𝐹𝐼 =
𝑘

𝐼𝑦0
∫ 𝐼𝑦(𝑠)𝑑𝑠

𝒍/𝟒

−𝒍/𝟒
. That yields unloaded 

electric sensitivity to be: ℎ𝑒𝐼 =
2

𝐼𝑦0
∫ 𝐼𝑦(𝑠)𝑑𝑠

𝑙/4

0
. 

Furthermore, relation for 𝐼𝑦
(1)

 (0) can alternatively be written 

as 𝐼𝑦
(1)

 (0) = 𝜆𝐾𝐸𝐸𝑦0
𝑖 , where 𝐾𝐸denotes ℎ𝑒𝐼𝑌𝐼/𝜆. In addition, 

𝐼𝑦
(1)

 can be used as a measure of parallel component of the 

electric field because the average magnetic field 

perpendicular to the plane will not enter 𝐼𝑦
(1)

.  From 

compensation theorem, it is possible to replace load by the 

equivalent generator 𝑉 = −𝐼𝑍𝐿in case of single load. That 
implies, the sum of the transmitting current generated from 
equivalent generator and the current from unloaded 

receiving loop due to external fields gives the effective 

current. Consider 𝐼𝑇(𝑠) = 𝑉𝑣(𝑠) , that implies: 𝐼(0) =

𝐼 (0)(0) + 𝐼𝑦
(1)(0) − 𝐼(0)𝑍𝐿𝑣(0).  But, 𝑣(0) is the total input 

admittance Y for the loop when being driven during 𝑠 = 0. 

Based on that, load current is: 𝐼𝐿 = 𝐼(0) =  𝜆𝐾𝐵
(1)

𝑐𝐵𝑧0
𝑖 +

𝜆𝐾𝐸
(1)

𝐸𝑦0
𝑖 , with two single loaded sensitivity 

constants: 𝐾𝐵
(1)

=
𝑌𝐿

𝑌𝐿 +𝑌
𝐾𝐵 and 𝐾𝐸

(1)
=

𝑌𝐿

𝑌𝐿+𝑌
𝐾𝐸 . For the loop 

when loaded at 𝑠 =
𝑙

2
,  which is similar to rotating 1800 in 

its own plane, the load current is 𝐼𝐿
′ = 𝐼(𝑙/2) = 

𝜆𝐾𝐵
(1)

𝑐𝐵𝑧0
𝑖 − 𝜆𝐾𝐸

(1)
𝐸𝑦0

𝑖 . Therefore, both the 𝐼𝐿  and 𝐼𝐿
′  

readings are required to measure the magnetic field. 

 
4.  CLASSIFICATION APPROACH 

 

The EM traces from experiments have large number of 

sampling points. This in turn produces a high dimensionality 
problem. A mapping, 𝑥 → 𝑊𝑥, of the large dimension EM 

signature having 𝑊𝑥 Є 𝑅𝑛  to be the lower dimensionality 

representation of 𝑥 , and matrix  𝑊 Є 𝑅𝑛,𝑑 , with 𝑛 < 𝑑 , 
lowers the dimensionality of vectors 𝑥1, 𝑥2 ,… . . , 𝑥𝑚 . 
Principal Component Analysis (PCA) is the best way to find 

the compression matrix 𝑊  and for recovering matrix 𝑈 , 
thereby making total squared distance between both to be 

minimal [15]. 

1.1 Adaptive Boosting 

Adaptive Boosting (AdaBoost), a low empirical risk method, 

identifies a hypothesis on an EM signatures training set, 𝑆 =
(𝑥1 ,𝑦1),… … . . , (𝑥𝑚, 𝑦𝑚), dependent on labelling function 𝑓 
for each 𝑖,  𝑦𝑖 = 𝑓(𝑥𝑖) [19]. Accordingly, a sequence of 
consecutive rounds are calculated. Here booster defines a 

distribution, 𝐃(𝑡) in 𝑆  for a certain round 𝑡.  That implies, 

𝐃(𝑡)Є 𝑅+
𝑚 and ∑ 𝐷𝑖

(𝑡)
= 1𝑚

𝑖=1 .  Then distribution and sample 

are passed on to the weak learner. Using distribution 𝐃(𝑡) 
and 𝑓,  weak learner builds several i.i.d. examples. Weak 

hypothesis, ℎ𝑡 , which is error from weak learner can be 

represented as,  

𝜖𝑡 ≝ 𝐿𝐃(𝑡)(ℎ𝑡) ≝ ∑ 𝐷𝑖
(𝑡)

1[ℎ𝑡(𝑥𝑖)≠𝑦𝑖]
𝑚
𝑖=1  ≤

1

2
− 𝛶 . The 

algorithm assigns weights related inversely to the error of ℎ𝑡 

given as 𝑤𝑡 =
1

2
𝑙𝑜𝑔 (

1

𝜖𝑡
− 1). A higher probability mass gets 

assigned if ℎ𝑡 increases the error and a lower probability 

mass if ℎ𝑡 reduces the error. Consequently, output is based 

on weighted sum of all the weak hypotheses.  

1.2 Naïve Bayes 

For an event, 𝐸 = (𝑥1 ,𝑥2, … … . . , 𝑥𝑛) for class 𝑐,  based on 

Bayes rule, the probability becomes, 𝑝(𝑐|𝐸) =
[𝑝(𝐸|𝑐)𝑝(𝑐)]/𝑝(𝐸). Here, 𝐸  can be classified to be in a  

class 𝐶 = + when  

                     𝑓𝑏(𝐸) =
𝑝(𝐶 = +|𝐸)

𝑝(𝐶 = −|𝐸)
≥ 1,                            (3) 
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where 𝑓𝑏(𝐸)  is the Bayesian classifier. Based on the 
assumption of independence among attributes, class 

variable, 𝑝(𝐸|𝑐) = 𝑝(𝑥1 ,𝑥2 ,… … . . , 𝑥𝑛|𝑐) = ∏ 𝑝(𝑥𝑖|𝑐)𝑛
𝑖=1 , 

Naïve Bayes classifier can be defined as, 

         𝑓𝑛𝑏(𝐸) =
𝑝(𝐶 = +|𝐸)

𝑝(𝐶 = −|𝐸)
∏

𝑝(𝑥𝑖|𝐶 = +|𝐸)

𝑝(𝑥𝑖|𝐶 = −|𝐸)
𝑛
𝑖=1                      (4) 

 
 

5.  FUNCTIONAL EVALUATION 

 

Functionality of a controller was verified on a Self- tuning 

regulator in MATLAB. A unit amplitude square wave 
command signal was used as the reference input. In the 
initial phase, we get an oscillatory process output, owing to 
the estimation error. However, in the next phase, estimated 
parameters converge to true parameters and the system 

stabilizes as in Fig.2.  

 

Figure 2 Process oscillations after initial transient state. 

 

6.  HARDWARE IMPLEMENTATION 
 

The Device Under Test (DUT) running the controller is 
given in Fig.4. The feature vectors captured for training and 
classification of individual opcode of instructions in the 
controller is primarily due to the EM spectrum variations 

owing to the CMOS switching on every execution stage of 
individual instructions. In Fig.5, details of the DUT on a 
single instruction execution are outlined showing different 
stages like                                                           

 

Figure 4. Hardware implementation for controller 

instruction disassembly  

register operand fetch, ALU operation execute and Result 
write back stages. As we can see in Fig.5., the major 
challenge is that instruction execute of the first instruction 
and Instruction Fetch of next instruction overlaps because of 

the pipeline. This also entangles the side-channel power and 
EM signals of two overlapping instructions. Identification of 
two such overlapping instructions in pipeline is the main 
challenge in identifying instructions in controller. In this 
work, we mainly focus on this overlapping region of 
instructions with models to separate the leading instruction 

from the following instructions. The controller polynomial 
values were assumed to be arbitrary but reasonably inside 
real time limits.  The hardware setup developed for the 
Instruction Disassembly experiments is given in Fig.4. The 
EM traces from the controller instructions in pipeline of 
Atmega328 were first received on the TPBS01 EM probe. 

Additional traces were captured on DPO 4032 oscilloscope 
with a bandwidth of 350MHz and sampling rate of 1.5GS/s. 
For the experiment, the EM probe was kept as a receiver at 
a 10cm distance from the DUT. The calibration of 

Oscilloscope and probe was by a sleep and trigger  

mechanism on the Atmega328.  Subsequently, EM trace was 
obtained through a UART interface and then was 

preprocessed for the EM signal analysis. Further, to identify 
the probability of controller instructions in the frequency 
spectrum, it was transformed to spectral domain. Owing to 
the large dimensional feature space, dimensionality was 
reduced to 50 dimensions with principal component 
analysis. Subsequently, the processed data was trained with 

feature vector of individual instructions 𝑖1𝑖2,….  to 100% 
accuracy into different classes. Furthermore, traces from 
controller were identified using Adaptive Boosting 
(AdaBoost) and Naïve Bayes. Finally, the success rates of 

controller identification was evaluated using the ML 

classifiers. 

 
7.  HARDWARE RESULTS AND EVALUATION 

 

We recorded a stream of controller instructions in flight on 
the ATmega328. The onset of every EX stage of new 
instruction manifested onto the EM spectrum. For each 

instruction for the controller, it was classified based on 

0 100 200 300 400 500 600 700 800 900 1000
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-0.5

0

0.5

1

1.5

No. of iterations

out
put

 

 

output

command signal

 

Figure 3 Two-stage Pipeline Operation of DUT 

 

 

Figure 5 Single cycle ALU Operation of DUT 
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models of the pre-trained independent instructions. Initially, 
EM spectrum had 200 dimensions for every instruction. Fig. 
6 shows the important principal components with highest 
variance to be the first 8 components. Principal component 

analysis was used for dimensionality reduction. 

In the experiment, individual instructions were run in a 

stream inside a loop with loop count, 𝑛 = 200. Hence, we 
get 200 instances of different individual instruction classes. 
For identifying the controller instructions in flight, the 

controller was run in loop of loop count 𝑛 = 200 as in real 
Adaptive control situation where control signal must be 
generated consistently. Further, Machine learning classifiers 
were used to identify the instructions of the controller 

running on the processor. We characterized the performance 
of different Machine Learning classifiers in identifying the 
controller based on prediction capability of overlapping 
instructions due to the pipeline which is summarized in 

Fig.7.  

For performance evaluation, Machine Learning classifiers 
like AdaBoost and Naïve Bayes were programmed in 
Python. AdaBoost with 70 n_estimators and a learning_rate 

of 0.3 showed the best performance. In our earlier 
experiments of two instruction streams, AdaBoost showed 
reliable success rates and hence we give higher weightage to 

AdaBoost. 

 

 

 Figure 6 Cumulative Explained Variance of Training data 

of Instructions  

 
Figure 7. Performance evaluation of Classification 

approaches for controller 
 

8.  CONCLUSIONS 

 

A novel Electromagnetic spectrum based Instruction 
disassembly and fault identification of controller in Adaptive 

control on a 2-stage pipelined architecture is introduced.  
The machine learning training models can be built and 
instructions in the controller can be identified without any 
alterations to the device. The training feature vectors for 
individual instructions were developed instead of instruction 
combinations or groups, in turn reducing combinatorial 

complexity of hierarchical classification. Performance 
evaluation with Adaptive Boosting (AB) and Naïve Bayes 
(NB) for the controller was conducted. Over 90% accuracy 
in instruction identification in spite of adjacent instruction 
interference in the pipeline is achieved. Since this EM 
approach can operate at distance from DUT without needing 

to alter the device or interfere with operation of the 
controller, it opens up many more possibilities in code 
reverse engineering and fault identification of Adaptive 

Control. 

 
9. FUTURE WORK 

 

The electromagnetic spectrum-based controller instruction 
disassembly of Adaptive control showed promise in 
predicting and identifying instructions in flight in a 2-stage 
pipeline. In future, we expect to identify entire Adaptive 

control system including Minimum degree pole placement.  
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