
Designing for Proactive Network Configuration Analysis

Magreth Mushi
1

 and Rudra Dutta
2

1
Department of ICT, Open University of Tanzania

2
Department of Computer Science, North Carolina State University

1
magreth.mushi@out.ac.tz,

2
rdutta@ncsu.edu

Abstract

Human operators are an important aspect of any computing infrastructure; however, human

errors in configuring systems pose reliability and security risks, which are increasingly

serious as such systems grow more complex. Numerous studies have shown that errors by

human administrators have contributed significantly to misconfigurations of networks. The

research community has reacted with development of solutions that largely directed at

detecting and correcting misconfigurations statically, after they have been introduced into the

configuration files. This is done either by checking against known good configuration

practices or by data mining configuration files. Though to some extent such approaches are

useful, they are in fact “treatments” rather than “preventions”. Automated tools that abstract

complex sets of network administration tasks have also been seen as a potential solution. On

the other hand, such tools simply remove the possibility of human error one step, to the

development of the workflow, and can have the effect of magnifying the risk of such mistakes

due to their speed of operation. There is a need for a proactive solution that examine

consequences of a proposed configuration before it is implemented.

In this paper, we describe the research design towards developing a proactive solution for

misconfiguration problem. Then present the design and implementation for SanityChecker-an

SDN-based solution for intercepting incoming configurations and inspecting them for human

errors before committing to the devices. SanityChecker was tested by real-world network

administrators and the results show that it can successfully improve network operations by

overseen incoming configuration for human errors.

Keywords: Software Defined Networks, Network Administration, Network Configuration,

Misconfiguration, Research Design, Workflow, OpenDaylight, OVSDB, SanityChecker.

1. Introduction

 From numerous studies and incidents (Mushi et al., 2015), (Brown and Patterson,

2001), (Lee, 2013) it is proven that humans play a key role in any computing system

or infrastructure, but at the same time involvement of humans has posed increasingly

serious reliability and security issues in recent years. In particular, enterprise

computer networks form a critical computing infrastructure that is vulnerable to

human actions.

 As computer networks become larger and more complex, the process of

administering and managing networks has also become larger and impractical for

completely manual configuration due to simple considerations of scale. The job of

configuration has been increasingly shifted to automated protocols (Javvin-

 Corresponding author

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 221

Technologies, 2007). For example, routing tables were configured manually in the

earliest days of the Internet, but in the last few decades they have become the domain

of automated protocols such as Routing Information Protocol (RIP) and Open

Shortest Path First (OSPF). However, such protocols do not eliminate the need for

human involvement in network administration and management. Rather, they make

them more complex (the administrator now needs to configure OSPF). And the

expected reduction in the volume of administrative work evaporates in the face of

rapidly increasing network sizes and scope.

 Since the 1980’s, there have been several research efforts geared toward reduction

and elimination of network misconfigurations caused by human errors. Earlier

research and tools (Feamster and Balakrishnan, 2005), (Yuan et al.,2006) were

developed for traditional networks. These are based on a reactive approach of post-

scanning configuration files to identify errors made during network configuration.

They allow the misconfigurations to occur and then at a later stage reactively scan the

network configuration files to find the errors which must then be corrected by an

administrator. According to current studies (Khurshid et al., 2012), (Al-Shaer and Al-

Haj, 2010), these reactive approaches have not proven successful in eliminating

misconfigurations. At best, they mitigate and correct the impact of errors post-facto

and cannot prevent.

 With the emergence of Software Defined Networking (SDN) concepts and its

wide acceptance by the research community, the job of the network administrator and

manager is changing with considerations of automating common workflows like

Virtual LAN (VLAN) configuration (Sezer et al., 2013). Such an evolution promises

increased efficiency and correctness in configuring or reconfiguring networks and the

possibility of abstracting workflows commonly prone to human errors into automated

processes that will not make such errors. On the other hand, any vulnerability inherent

in a set of scripts running automatically on demand (or a single command by an

administrator to hundreds of devices) can magnify the risk of such mistakes to an

unprecedented level; such scripts may well execute many hundreds of times before

any reaction at a human time scale is possible. NEAt (Zhou et al., 2018), VeriFlow

(Khurshid et al., 2012) and FlowChecker (Al-Shaer and Al-Haj, 2010) are recent

SDN plug-ins that verify the incoming policies and IP forwarding rules from the

controller applications as they are inserted. Rather than replacing (potentially faulty)

human operation with faultless execution of (potentially faulty) automated scripts and

tools, we have taken the approach that it is best to combine both worlds, and let the

automated system provide a sanity check, in real-time, on a human administrator’s

operations. To the best of our knowledge, no similar tool has previously been

advanced for verifying the human administrator’s configurations in real-time as they

are submitted to the devices through the controller.

 In this paper, we address the design of the research approach followed to develop

a proactive solution for network misconfigurations. Since this area has not been

explored to a significant degree in literature, we start from first principles. We first

seek to gain an understanding of the tasks network administrators must perform, and

insight into what misconfigurations happen, and why. To this end, we use various

methodologies, including structured and unstructured interviews, online surveys, and

follow-up discussions. We then investigate the relative impact of various

misconfigurations on network reliability by using network simulation tools. Finally,

we advance an approach using the Software Defined Networking paradigm for

222 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

automatic just-in-time detection and prevention of mistakes in network administrators

and managers performing configuration tasks.

 The paper is organized as follows. In Section 2 we review the existing literature

on the subject of human factors in computing and solutions available in traditional

and SDN network infrastructures. In Section 3 we explain the approach that our

design is based on. Section 4 provides the overall design of the SanityChecker plug-

in. Section 5 gives a description of the plug-in implementation while Section 6

provides the test and evaluation performed on SanityChecker. Finally, Section 7

provides conclusions of our research and a description of future work anticipated for

subsequent evolution of SanityChecker.

2. Related work

The role of human factor in Information Technology (IT) in general has been

examined as far back as the 1980’s across a range of disciplinary perspectives,

including aircraft, bank databases, and the telephone network (Brown and Patterson,

2001), (Kantowitz and Sorkin, 1983). These researchers found that 20-70% of system

failures are attributable to human operator errors. In network administration and

management few such studies (Wool, 2004), (Feamster and Balakrishnan, 2005),

(Mahajan et al., 2002) have been conducted and researchers again found that the

misconfigurations inherent in the devices logs were mainly due to errors by network

administrators, poor understanding of configuration semantics, or complex rule sets

which are too difficult for administrators to manage effectively. On the other hand,

other researchers have focused on tools to automate network administration and

management in order to reduce human interaction. Buchmann (2008) described

general concepts of network management and provided a prototype implementation of

a network management system software to facilitate administration of large,

heterogeneous networks. Colwill and Chen (2009) provided similar insights for the

provider’s network and proposed several joint-vendor approaches that will ensure

consistency across different providers. Some of the tools developed involve Router

Configuration Checker (RCC) (Feamster and Balakrishnan, 2005) for static analysis

of configuration files to find faults in Border Gateway Protocol (BGP) configurations.

Along the same line, other tools like FIREMAN (Yuan et al., 2006) and AT&T

configuration checker (Feldmann and Rexford, 2001) were developed. For dynamic

analysis, MINERALS (Le et al., 2009), a tool based on data mining techniques was

developed. MINERALS apply association rules mining to the routers configuration

files across an administrative domain to discover local network-specific policies.

Deviations from these local policies are considered potential misconfigurations.

Other tools such as EDGE (Caldwell et al., 2004) follows the same approach to

minimize misconfigurations in networking devices.

 The main deficiency of these tools is that they are reactive and based on

traditional network infrastructure. They are based on post scanning of configuration

files to determine misconfigurations which are then corrected manually by the

administrator. It is more logical to be proactive and prevent the misconfigurations or

minimize the chance of them happening. Therefore, enhance reliability and security

while eliminating the time it takes to post scan files and correct errors.

With the emergence and promises of SDN, several tools are being developed to

enhance the performance of the infrastructure. For the misconfiguration problem,

Khurshid et al. (2012) developed VeriFlow-SDN based tool to verify incoming

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 223

OpenFlow rules from the controller for possible misconfigurations. Zhou et al. (2018)

recently developed NEAt-a tool to automatically correct policies from controller

applications, while Kazemian et al. (2013) developed NetPlumber - a real time policy

checking tool based on Header Space Analysis (HSA). The main limitation of these

tools is that they are not looking for misconfigurations introduced into the system by

network administrators, considering them infallible. Their approach is based on rules

and policies from protocols and controller applications.

3. Research Design

 Figure 1 below shows the general approach followed in our research. This

approach was motivated by the concepts advocated by the newly emerging area of

Science of Security (SoS) (Herley and v. Oorschot, 2017). We began by studying the

problem at hand and later proposed a solution based on the findings of our study. In

studying the problem, we started with Stage 1-Understanding misconfigurations

problem. In this stage we used several research tools: literature search, professional

board examinations review, interviews, online survey, and experiments. The results of

these studies were reported in our earlier papers (Mushi and Dutta, 2017; Mushi et al.,

2015). In Stage II-Understanding the impact of misconfigurations, we modeled an

enterprise network and subjected the model to the human errors that were found in

our study. Finally, in Stage III-Engineering Solution, we used SDN platform to design

and implement the proactive solution to the human errors problem in enterprise

network. The design, implementation and evaluation of this solution form the basis

for this paper.

Figure 1: General Design

224 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

 The foundation of SanityChecker design outlined in Section 4 is based on the

results reported in our earlier studies based on Stage I and Stage II where we studied

human factors in network administration and management.

 Our findings in those studies, obtained from a survey of network administration

and management practices across an array of enterprises, indicated that most network

administrators are neither highly paid, nor highly skilled, but have an increasing

diversity of workload. In particular, only about two-thirds of network administrators

and managers hold a bachelor’s degree in a field related to computing. Of the rest,

about half have a college degree or some college education in a field unrelated to

computing, while the rest have no college education. Every person surveyed

anonymously admitted to having made mistakes in configuration, and all but a

vanishing proportion identified no other contributing cause than themselves (a small

minority attributed misconfiguration to their organizational policies).

 The other pertinent finding from our previous study is the nature of the errors

most commonly made, which guides us in our design of the SanityChecker. We

identified several common misconfigurations by network administrators which led to

categorize them into three categories below, adapting the human error model

developed by Reason (1997).

 Slips: Misconfigurations that happened due to human error in executing a

configuration workflow. The administrators knew the correct configuration,

but they forgot to write it properly during workflow execution. For example,

the most common misconfiguration in this category is forgetting “add”

keyword when adding a VLAN to a trunk port which resulted in wiping the

existing list of VLANs in the port; which in turn denied network access to end

users assigned to those VLANs.

 Mistakes: Misconfigurations that were introduced into the network due to

lack of knowledge on a particular aspect of configuration workflow, so the

mistake was made during workflow planning as well as workflow execution.

The most common misconfiguration we found in this category is using default

configurations for Spanning Tree Protocol (STP). Out of 14 interviewees and

33 survey respondents, only 3 were aware of STP parameters and how they

can be configured to perform efficiently and without causing loops in the

networks.

 Violations: Misconfigurations that were done intentionally by network

administrators based on circumstances while knowing it to be against the rules

or best practices. For example, not turning off the default native VLAN 1

despite the fact that they are aware of the consequence that might arise.

According to two of our interviewees, these kinds of misconfigurations mostly

happens during peak times when there is more work to do than the available

human resource. Therefore, they focus on configurations that will make the

network function and leave other configurations that are not required for basic

network functionality (mostly referred to as “cosmetics”). Due to this

behavior, the network is left vulnerable to attacks or other reliability problems.

 SanityChecker is designed to detect and respond to these misconfigurations by

prompting the administrator to fix the problem before committing the configuration to

the device. At this point SanityChecker performs checks for the commonest

misconfigurations found in our previous research; if a command that is not part of the

system is submitted, the administrator will receive notification about that, and the

checking will terminate. We envision that in the future a system such as

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 225

SanityChecker will provide an interface for administrators to add new

misconfigurations to be checked, as such misconfigurations are identified over time.

4. SanityChecker Design

We chose to design and develop SanityChecker within OpenDaylight (ODL)

controller (OpenDaylight.org, 2014). ODL is a modular open platform for

customizing and automating networks, it uses the Model-Driven Service Abstraction

Layer (MD-SAL). In OpenDaylight, underlying network devices and network

applications are all represented as objects, or models, whose interactions are

processed within the SAL. Despite the complexity of ODL, it makes the design far

more realistically deployable. In ODL terms, SanityChecker exists as a Model Driven

Service Abstraction Layer (MD-SAL) based plug-in. SanityChecker is designed to act

as a gateway between the network administrator’s configuration interface and the

southbound protocols. As seen in Figure 2 below, our proactive solution (labeled SC

service) resides in the ODL controller as part of its service. It is using RESTCONF

API for northbound communication and OVSDB protocol for southbound

communication.

Figure 2: SanityChecker Design in the ODL Controller

 The flowchart in Figure 3 shows algorithmic steps performed by the administrator

and the plug-in. In the beginning, the administrator submits configuration commands

one at a time or by using a text file with commands (one per line). Then the

SanityChecker modules (described in detail next) will interact as follows: First, the

InConfig Server will receive the command(s), parse them and send the details (such

as switch name, VLAN ID) to CheckEngine for the checking process. Next the

CheckEngine will check the individual configuration commands for violations,

mistakes, or slips (details given in Section 4.2. If an error is detected, the

administrator will be prompted to make correction. If no error is detected,

226 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

CheckEngine will pass the command to the OutConfig server to commit to the device

through the OVSDB manager.

Figure 3: SanityChecker Flowchart

4.1. SanityChecker Modules

 Figure 4 shows the three main SanityChecker modules and their interactions. A

brief description of each module follows.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 227

Figure 4: SanityChecker Modules

4.1.1. InConfig Server: This module receives the incoming configurations and

passes them to the CheckEngine module. It also receives feedback from

CheckEngine and passes it back to the administrator via RESTCONF. This module

takes configuration commands from a text file that contain one configuration

command per line or takes in one configuration command at a time from the

administrator.

 For the case of a text file, the administrator provides absolute link to a file,

and the server fetches the file from that location. If the path is invalid or for some

other reason the file could not be located, the InConfig server will notify the

administrator. If the file is found, the server retrieves one command at a time and

pass it to the CheckEngine. Upon receipt of the outcome from the CheckEngine,

this server writes the returned message to the output file which is saved in the user

home directory. Upon completion of the execution, the administrator will then have

to check the output file to see which commands successful and which ones were

not. For unsuccessful commands, more details about the error are also provided in

the output file.

 Upon submitting individual command, the administrator provides one

configuration command at a time. This server will pass the command to the

CheckEngine and return the outcome to the administrator.

4.1.2. CheckEngine: This is the module that performs the checking logic. It

communicates with the InConfig and/or the OutConfig servers to accomplish its

tasks depending on the nature of the incoming configuration. This module receives

individual configuration commands from the InConfig Server, then checks them for

known mistakes, slips, or violations. If any of these human errors is found, the

CheckEngine returns an appropriate message to the InConfig Server. If none of the

errors is found, the CheckEngine passes the command to the OutConfig Server. In

performing the checks, this module might need to consult the OutConfig server to

228 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

retrieve information from the intended devices as described in detail in Subsection

4.2.

4.1.3. OutConfig Server: This module serves CheckEngine requests by either

retrieving configurations from the devices or committing configurations to the

devices. As explained in the Section 4.1.2 above, the CheckEngine sends its

requests to this server in two occasions; either it needs more information from the

devices to make its decision or if it has determined that the configuration command

has no problem so it should be committed. The OutConfig server serves these two

specific functions. After completing each task, this server passes the outcome to the

CheckEngine which in turn pass it to the InConfig server. This outcome might also

be an error messages from OVSDB that cannot be solved by SanityChecker and

therefore should be passed to the administrator.

4.2. Performing the Checks

 How does SanityChecker determine if the configuration is correct? For ease of

understanding we will explain this by using an example of adding VLANs to the

trunk port in OVS setup. Based on OVS configuration semantic, when an

administrator is adding VLAN to a list of available VLANs in a trunk port, she has to

specify all the VLANs (i.e., the existing and the new VLANs) in the command. If she

does not do that, the new list of the VLANs will replace the existing VLANs causing

denial of service to the end users in the earlier VLANs.

 In order to perform the checks, the InConfig will extract the switch name and

port, then pass them to the CheckEngine with instruction on what is to be performed

in the port, in this case is adding new VLANs. The CheckEngine will check with

OVSDB manager if the switch and the port exist; if not, the error will be sent back to

the administrator. If they both exist, the CheckEngine will consult the OutConfig

server to retrieve information about the existing VLANs in the port. If the port has

some VLANs, the CheckEngine will check if those VLANs are included in the

command that was submitted. If the VLANs were included, the CheckEngine will

submit the command to the OutConfig server which will in turn commit the

configuration to the device through the OVSDB server, and the success message will

be returned to the administrator through the same channel. Otherwise, the error

message will be sent back with instructions on what is wrong.

5. SanityChecker Implementation

 In this section we explain the setup of our development environment, the

implementation of the plug-in, and give two examples of the checks that are

performed by the plug-in. As discussed in Section 4 we used OpenDaylight controller

and Mininet network emulator. Our network consisted of three switches connected to

the controller through the OVSDB manager. The plugin’s InConfig server receives

incoming configuration through RESTCONF; then parses the command and sends the

required parameters to CheckEngine to perform the checks. When all the checks are

complete, CheckEngine will send the feedback to the InConfig server, which will in

turn send the feedback to the administrator.

 Two examples are explained in Sections 5.1 and 5.2 below. Example 1 shows a

configuration error that can either be categorized as a Violation or a mistake; while

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 229

Example 2 shows configuration error that is a slip. It should be noted that at this point

the plug-in is not taking any action to correct the commands. When it encounters a

configuration that has a violation, mistake, or slip, it returns feedback to the user

including a brief description of the consequence of the configuration being submitted.

5.1. Sample Scenario 1

 Figure 5 shows an OVS configuration command that is intended to add a port to a

switch. This command is syntactically correct, but it is adding a port without

specifying its status (i.e., access or trunk). By default, the OVSDB protocol will

assign trunk status to any port that is added without specifying its status. In our study

of human network administrators (Mushi et al., 2015), it was clear that in many cases

administrators do not specify port status but instead use the default configuration. The

problem with the default configuration is that a trunk port will pass traffic for all (or a

number of specified) VLANs. Therefore, if this port is going to be used as an access

port, users can sniff traffic that is not intended for them. To prevent such errors, the

SanityChecker plug-in will prompt the administrator to specify the status of the new

port to be added as indicated in Figure 5.

Figure 5: Example of a Wrong Configuration in Adding Port

As you can see in Figure 6 the port was added successfully after the administrator

specified the status of the new port (i.e access port in VLAN 300).

230 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

Figure 6:Example of a Right Configuration in Adding Port

5.2. Sample Scenario 2

 It was clear in our study that administrators make accidental mistakes (e.g.,

configuring a port that was not intended because the administrator confused a port’s

name with another port’s name, or confused a physical port with a logical port). For

example, Figure 7 shows OVS configuration command that is trying to delete port s1-

eth1 from a virtual switch s1 (i.e., ovs-vsctl del-port s1 s1-eth1). This

particular command will delete a port that is part of the configuration and is currently

sending and receiving data. Since this command has the potential to cause Denial of

Service (DoS) in the current topology by deleting the port, the plug-in will prompt the

administrator. If the administrator is absolutely sure she wants to perform this action,

the plug-in will then accept the re-submission.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 231

Figure 7: Example of a Command that will Cause DoS

 The command in Figure 8 was successfully accepted because port s1-eth5 (created

in Figure 6) was not connected to any other port and therefore was not active. Based

on its status the CheckEngine determined that it is safe to be deleted.

Figure 8: Example of a Command that will not Cause DoS

232 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

6. Test and Evaluation

 To validate our concept, we asked volunteer participants to use our prototype

system in performing network administration tasks. We were able to recruit 20

participants, all personnel (students or staff) of North Carolina State University. The

majority of the participants were apprentice network administrators: graduate students

who had received instruction in network administration and management, but with no

previous professional experience. A small minority were participants with

professional experience of managing real networks.

We installed the ODL controller with SanityChecker, a network in mininet, and

sample test cases, on virtual machines on the campus computing system. Test

participants reserved the image, performed the tests, and filled in the test cases

template which was then returned to us. In testing SanityChecker, participants

performed both positive (using valid input) and negative (using invalid input) tests

that they determined themselves. That is, when a participant made a configuration

error, it was typically an intentional error to test SanityChecker’s response. Ten

participants provided data on every test case; the rest provided partial data. We

gathered data for the functional and operational requirements provided in Table 1. For

gathering operational test results, we used the Dstat tool.

Table 1: Sample Functional and Operational Requirements

Type Requirement

Functional F1 Should be able to receive incoming

configurations

F2 Should be able to check incoming configurations

agains well known human errors and best

practices.

F3 Should be able to save configurations to the

intended device.

F4 Should be able to return appropriate errors for

invalid input e.g. malformed command or path to

the input file, incorrect set of parameters etc.

Operational O1 Provide minimal network overhead

O2 Provide minimal CPU overhead

O3 Provide minimal memory overhead

6.1. Functional Testing

 In functional testing, our goal is to verify that the system provides functionality

as designed. Table 2 shows the false positive and false negative data. In our system

tests, false positive indicates that the system accepted input that was a

misconfiguration but did not categorize it as such; for example, failing to flag deleting

a port that does not exist. False negative indicates that the system accepted input that

was not a misconfiguration but categorize it as such; for example, flagging the

addition of a port that has a proper status specified. As indicated in Table 2, one tester

reported one false positive out of the 10. He found that SanityChecker successfully

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 233

accepted his command to add port even though he did not specify to which switch the

port should be added. For the false negative, all testers found one case; i.e.,

SanityChecker refused the command to update the trunk port that already has some

VLANs, it returned the error that says, “there exist some VLANs in the port”. These

issues will be addressed in the next version.

Table 2: False Positive and False Negative

 Yes No

Misconfiguration 90% 10% (False positive)

Not misconfiguration 10% (False negative) 90%

6.2. Operational Testing

 In operational testing, our goal was to check the performance of the system with

the SanityChecker running, using different performance metrics. The goal is to ensure

that the overhead of incorporating SanityChecker does not negate its benefits. For

performance comparison, we collected the data in two scenarios: (i) Controller

running without SanityChecker and (ii) Controller running with SanityChecker.

6.2.1. Network Overhead: The data presented in Figure 9 below illustrate network

usage statistics over time when the controller was running without SanityChecker

installed. Figure 10 shows the same statistics when the controller was running with

SanityChecker installed. For the different times we observed the network usage, the

controller alone was using up to 8500Kbps (8.5Mbps) while the controller with

SanityChecker was using up to 9000Kbps (9Mbps).

Figure 9: Network Usage Data without SanityChecker

234 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

As Seen below, we also observed more spikes in network usage with the

SanityChecker and these represent the time when queries were being sent to OVSDB.

As was expected, network overhead is still minimal since it works as a service inside

ODL controller.

Figure 10: Network Usage Data with SanityChecker

6.2.2. CPU Overhead: We also checked the CPU usage for the two scenarios over

time as seen in Figures 11 and 12. The maximum CPU usage was about 9% for the

controller alone and about 13% with SanityChecker.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 235

Figure 11: CPU Usage Data without SanityChecker

As it was the case with the network, the time we observed the increase in CPU usage

was the time we executed queries that needed to fetch data from OVSDB to

accomplish certain checks.

Figure 12: CPU Usage Data with SanityChecker

236 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

6.2.3. Memory Overhead: We also checked server buffer and cache memory usage

for the two scenarios and observed the same behavior like network and CPU. Figure

13 shows server memory usage when the controller was running without

SanityChecker.

Figure 13: Memory Usage Data without SanityChecker

Figure 14 shows memory usage with SanityChecker. As with the network and CPU

data presented above, the memory overhead was also minimal because the increase in

cache memory usage was about 200MB after installing SanityChecker while the

buffer memory usage showed no increase.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 237

Figure 14: Memory Usage Data with SanityChecker

7. Conclusion and Future work

 We have presented SanityChecker, a network administration oversight system,

implemented as an SDN plug-in, that can work in conjunction with human

administrators to eliminate the inevitable human errors from being implemented in

the network, by raising flags when operations suspected to be typical mistakes are

attempted. We have successfully designed and prototyped the system, and our testing

results show promise that such an approach can be a powerful one.

 There are a few areas that we believe deserve further study. First, it is important to

separate and extend the error checking logic in the CheckEngine module. The module

should be able to perform network-wide checks instead of focusing on individual

commands for individual devices. Second, for scalability purposes, SanityChecker

should provide interface for adding newly detected misconfigurations in future (the

present version only performs checks for specific misconfigurations that we

discovered to be common in the course of our prior research). Overall, we feel this

area is a promising one worth further research.

References

1. Al-Shaer, E. and Al-Haj, S. (2010). Flowchecker: Configuration analysis and verification of federated

openflow infrastructures. In Proceedings of the 3rd ACM Workshop on Assurable and Usable Security

Configuration, SafeConfig ’10, pages 37–44, New York, NY, USA. ACM.

2. Brown, A. B. and Patterson, D. A. (2001). Embracing failure: A case for recovery-oriented computing (roc).

3. Buchmann, D. (2008). Verified network configuration: Improving network reliability. PhD thesis, Faculty of

Maths and Natural Sciences, Univ. of Fribourg, Switzerland.

238 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 ISSN: 1690-4524

4. Caldwell, D., Gilbert, A., Gottlieb, J., Greenberg, A., Hjalmtysson, G., and Rexford, J. (2004). The cutting

edge of IP router configuration. SIGCOMM Comput. Commun. Rev., 34(1):21–26.

5. Colwill, C. and Chen, A. (2009). Human factors in improving operations reliability. Annual IEEE CQR

International Workshop.

6. Feamster, N. and Balakrishnan, H. (2005). Detecting BGP configuration faults with static analysis. In

Proceedings of the 2Nd Conference on Symposium on Networked Systems Design & Implementation -

Volume 2, NSDI’05, pages 43–56, Berkeley, CA, USA. USENIX Association.

7. Feldmann, A. and Rexford, J. (2001). Ip network configuration for intradomain traffic engineering. IEEE

Network, 15(5):46–57.

8. Herley, C. and v. Oorschot, P. C. (2017). Sok: Science, security, and the elusive goal of security as a

scientific pursuit. 2017 IEEE Symposium on Security and Privacy (SP).

9. JavvinTechnologies, I. (2007). Network Protocol Handbook. Javvin Press, fourth edition.

10. Kantowitz, B. H. and Sorkin, R. D. (1983). Human Factors: Understanding People-System Relationships.

Wiley, first edition.

11. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., and Whyte, S. (2013). Real time network

policy checking using header space analysis. In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, NSDI’13, pages 99–112, Berkeley, CA, USA. USENIX Association.

12. Khurshid, A., Zhou, W., Caesar, M., and Godfrey, P. B. (2012). Veriflow: Verifying network-wide invariants

in real time. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, HotSDN

’12, pages 49–54, New York, NY, USA. ACM.

13. Le, F., Lee, S., Wong, T., Kim, H. S., and Newcomb, D. (2009). Detecting network-wide and router-specific

misconfigurations through data mining. IEEE/ACM Transactions on Networking, 17(1):66–79.

14. Lee, M. (2013). Linkedin just one of thousands of sites hit by DNS issue: Cisco. Mahajan, R., Wetherall, D.,

and Anderson, T. (2002). Understanding BGP misconfiguration. SIGCOMM Comput. Commun. Rev.,

32(4):3–16.

15. Mushi, M. and Dutta, R. (2017). Human factors in network reliability engineering. Journal of Network and

Systems Management, 26(3):686722.

16. Mushi, M., Murphy-Hill, E., and Dutta, R. (2015). The human factor: A challenge for network reliability

design. In Design of Reliable Communication Networks (DRCN), 2015 11th International Conference on the,

pages 115–118.

17. OpenDaylight.org (2014). The opendaylight SDN controller.

18. Reason, J. (1997). Managing the Risks of Organizational Accidents. Ashgate, first edition.

19. Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen, N., Miller, M., and

Rao, N. (2013). Are we ready for SDN? implementation challenges for software-defined networks. IEEE

Communications Magazine, 51(7):36–43.

20. Wool, A. (2004). A quantitative study of firewall configuration errors. Computer, 37(6):62–67.

21. Yuan, L., Chen, H., Mai, J., Chuah, C.-N., Su, Z., and Mohapatra, P. (2006). Fireman: a toolkit for firewall

modeling and analysis. In 2006 IEEE Symposium on Security and Privacy (S P’06), pages 15 pp.–213.

22. Zhou, W., Croft, J., Liu, B., Ang, E., and Caesar, M. (2018). Automatically correcting networks with neat. In

15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages 595–608,

Renton, WA. USENIX Association.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 1 - YEAR 2019 239

	ZA398CQ19

