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ABSTRACT

The goal of our solution is to deliver trustworthy decision making
analysis tools which evaluate situations and potential impacts of
such decisions through acquired information and add efficiency for
continuing mission operations and analyst information. We discuss
the use of cooperation in modeling and simulation and show
quantitative results for design choices to resource allocation. The
key contribution of our paper is to combine remote sensing decision
making with Nash Equilibrium for sensor parameter weighting
optimization. By calculating all Nash Equilibrium possibilities per
period, optimization of sensor allocation is achieved for overall
higher system efficiency. Our tool provides insight into what are the
most important or optimal weights for sensor parameters and can be
used to efficiently tune those weights.

Keywords: Game Theory, Resource Management, Modeling and
Simulation, Augmented Decision Making, Q-Learning.

1. DECISION MAKING APPROACH
Human decision making activities performed with data from
disparate sources is difficult and a highly time consuming activity
in near real time or on demand modes. Human cognition and
knowledge base within the decision making process must also be
considered as an important factor. There are additional needs for
increased information analysis capabilities demonstrating more
accurate decisions, planning factors, resource allocation, risk
management, and information analysis in a near real time, visually
oriented manner with fewer analysts and mission planners.

A major goal within industry and others is to push forward an open
architecture framework in order to: inject and fuse data and
information from a multitude of sources, contain collaborative
environments, provide increased visualization of information
(immersion), improve decision making performance in analysis and
mission planning, and increase pattern recognition among disparate
data sets in order to effectively analyze information.

One way to address the decision making process from the human
approach for analysts and mission planners is the use of serious
games or simulated environments. Serious games can provide
simulated virtual learning venues for mitigation of selected biases
found within human decision making process [5]. Training and
simulations in virtual environments can also allow for immersive
simulations and training of real world scenarios thus potentially
increasing performance within human decision making process.

The sampling of continuous Earth-observation data significantly
simplifies the problem of sensor allocation as shown in Fig 1. We
allow our system to allocate a sensor resource at a given epoch. Of
course, the time period can be modified per user specification. The
feedback loop accounts for last time the Area of Interest (AOI) was
collected. We combine the Nash Equilibrium’s (NEs) from each
dimension by a weighted sum. This methodology gives an analyst
sufficient control over model. Our research to date has shown that
it is more efficient to combine each NE from each dimension rather
than combine all reward matrices and then calculate NE. This
method also allows for more control and weighting of value of each
dimension or category. Additionally, equalizing units from each
dimension is important [10].

Fig 1. Example Fusion and Decision-making Framework

Current situational awareness efforts seek to incorporate not only
geospatial features and structures, but also the human element,
especially in urban settings. Development of tools for more rapid
refinement of flexible plans is required for adapting to a changing
operational environment. Our work can enable a methodical
approach to intelligent planning and reaction including interaction
of variables, parameters and attributes by the user resulting in
updated probabilities.
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2. INFORMATION FUSION

Our solution uses a modified Dempster’s Rule of combining
evidence with Nash Equilibrium (NE). The goal is to gather
evidence from several AOIs and determine how to allocate limited
sensor resources to maximize data collection. Sensor geometry,
along with sensor resolution, determines when and what can be
sensed. Activity Based Intelligence (ABI) and weather are critical
for where to image. This concept is shown in Fig 2. There will be
several choices that meet all the evidence criteria.

Fig 2. Multi-Dimensional Reward Matrices

Dempster-Shafer evidential reasoning for multi-sensor fusion
allows each sensor to contribute information at its own level of
detail. Dempster reasoning is an extension of Bayesian approach
that makes explicit any lack of information concerning probability.
All propositions for which there is no information are assigned an
equal a priori probability [1].

Our example can be modeled with sensors (columns in reward
matrix), parameters (rows in reward matrix), and AOIs (third
dimension in reward matrix). The Dempster Rule, along with NE,
provides a framework for combining evidence from all dimensions.
The parameter measurements of system are stored in the reward
matrix and used in the mathematical model to determine optimal
sensor for an AOI. The sensors and AOI are players in this game.
In our example, dimensions correspond to the letters A, B, C, D and
E. The A values are intersection of all reward matrices from each
category and determine which sensor to allocate.

Our multi-dimensional solution populates a reward matrix for each
parameter in near real time through powerful game theory analysis.
Once data accuracy is proven through sensitivity analysis, the
information can either be used as training data, or populated into a
reward matrix for resource allocation and adversarial planning
utilizing game theory concepts such as in a competitive or
cooperative game model. Much of the current focus is on human
geography and terrain, as well as population-based sentiment
analysis [10]. Parameters for sensor geometry dimension include:
pixel resolution (cm); elevation (deg); range (km); access duration
(sec); and most recent collection date (days old).

3. GAME THEORY

Game theory is the study of strategic decision-making and
mathematical modeling of conflict and cooperation between
intelligent, rational decision-makers, and is often thought of as an
interactive decision theory. It has been applied to economics,
political science, psychology, logic, biology and other complex
issues. Modern game theory began with the idea of the existence of
mixed-strategy equilibrium in two-person zero-sum games, applied
to economics. Later, this evolved to provide a theory of expected
utility, which allowed mathematicians and economists to treat
decision-making with uncertainty. The notion of probabilistic
predictions utilizing game theory is critical to many decision-
making applications because optimizing user experience requires
being able to compute expected utilities of mutually exclusive data.

Maximin equilibrium often is the strategy and is called the Nash
theory application of zero or constant sum strategy game [7]. Game
theory considers the effect of a player’s decision on other decision-
makers. In many situations, the opponents know the strategy that
they are following and what actions are available. The Nash
threshold can be used to determine if the player is on the blue or red
team. For example, if a reward matrix exists, then the equilibrium
point is the one where the reward is the smallest value in its row and
the largest number in its column [13].

݉�ݓݎ)�௪௦ݔܽ݉ ݅݊ ) = �݉ ݅݊ �௨ ௦( ݈ܿ ݉ݑ ݊�݉ (ݔܽ (1)

This left half of (1) presents the basic applied theory to decision-
making of our model under uncertainty. For a possible action, one
consideration is to choose the “best” worst outcome. The maximin
criterion suggests that the decision-maker should choose the
alternative, which maximizes the minimum payoff he can get. This
pessimistic approach implies that the decision-maker should expect
the worst to happen. The maximin criterion is concerned with
making worst possible outcome as pleasant as possible [13].

The right half of (1) represents minimax regret criterion, which uses
concept of opportunity cost to arrive at a decision. The regret of an
outcome is the difference between the value of that outcome and the
maximum value of all the possible outcomes. For any action and
state, there is opportunity of loss or regret. The decision-maker
should choose the alternative that minimizes the maximum regret
he could suffer [13].

Equation (2) is a translation of a reward matrix to a linear program
that can be solved mathematically. We calculate the NE for each
reward matrix [7]. Linear programming is useful for solving game
theory problems and finding optimal strategies. We can define:

x1 = probability that blue player chooses Worldview 1
x2 = probability that blue player chooses Worldview 2
x3 = probability that blue player chooses Worldview 3
x4 = probability that blue player chooses Ikonos
x5 = probability that blue player chooses QuickBird2

As an example, using reward matrix we show linear program
solution for constant sum game as follows:

ݔ݅ܽ݉ ݉ ݖ݅݁ .ݐ.ݏ�ݒ� (2)
−ݒ ଵܽଵݔଵ − ଶܽଵݔଶ − ଷܽଵݔଷ − ସܽଵݔସ − ହܽଵݔହ ≤ 0 
−ݒ ଵܾଶݔଵ − ଶܾଶݔଶ − ଷܾଶݔଷ − ସܾଶݔସ − ହܾଶݔହ ≤ 0 
−ݒ ଵܿଷݔଵ − ଶܿଷݔଶ − ଷܿଷݔଷ − ସܿଷݔସ − ହܿଷݔହ ≤ 0 
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−ݒ ଵ݀ସݔଵ − ଶ݀ସݔଶ − ଷ݀ସݔଷ − ସ݀ସݔସ − ହ݀ସݔହ ≤ 0 
−ݒ ଵ݁ହݔଵ − ଶ݁ହݔଶ − ଷ݁ହݔଷ − ସ݁ହݔସ − ହ݁ହݔହ ≤ 0 
ଵݔ + ଶݔ + ଷݔ + ସݔ + ହݔ + ݔ = 1
ହݔ,ସݔ,ଷݔ,ଶݔ,ଵݔ ≥ 0

The initial solution for optimal player’s mixed strategy in terms of
probabilities: x = (x1, x2, x3, x4, x5).

4. SENSOR RESOURCE ALLOCATION

In a fixed-prioritization approach, sensor resources are applied to
tasks starting from the highest priority task and progressing to lower
priority tasks as available resources allow. Each task will generally
contain some constraints on allowable task execution times or rates
depending on the type of task to be performed. Typically, tasks are
pre-scheduled by a sensor’s scheduling function in fixed time
intervals or scheduling intervals (SIs) prior to execution. Within the
SI, tasks are scheduled according to priority until either SI is filled
or task list is exhausted. If task list is exhausted, then it is assumed
that the sensor’s available resources were sufficient to service all
required tasks. However, if the SIs are being filled before
completing the list of tasks in the queue to be scheduled and task
time constraints are not being met, then the sensor is considered to
be resource constrained. In a fixed-prioritization scheme there is no
guarantee that lower priority tasks will be serviced at all, or if they
are, that they will meet time scheduling constraints. Extending the
length of the SI will result in more tasks being scheduled per
interval, but may jeopardize meeting scheduling constraints on all
tasks, including higher priority tasks [3].

We want to maximize overall system performance. Current model
allocates one sensor per AOI. Output is allocation decisions. Our
Optimal Detector uses NE Scoring. A hit is correct AOIs chosen. A
miss is correct AOIs not chosen. A false alarm is incorrect AOIs
chosen. A correct rejection is zero values in incorrect AOIs.

In a pure strategy game, the NE is the objective function that is the
value of the game. Game theory serves as a framework for
managing system inputs and outputs. NE provides a confidence
value for a linear programming solution. Our algorithm applies
linear programming to create a reward matrix. Determining which
sensor to use involves calculating the maximum sum of all requests
based on a reward matrix using a linear program.

In our example, there are several resource management stages
including information needs, collection objectives, observables,
tasks and plans. Resource management process seeks to decompose
information needed to satisfy mission objectives into one or more
tasks. The essence of resource management is uncertainty
management [6]. Resource allocation problems in which limited
resources must be allocated among several activities are often
solved by linear programming. Operations Research is a branch of
mathematics that studies decision-making to obtain best decision.
Game theory can help determine optimal strategy [13].

5. PARAMETER MANAGEMENT

Some tools use “strategies” are measured in different units in the
same reward matrix and can be problematic. Examples include use
of manpower (count of people) mixed with propaganda (not
necessarily units of people). If all strategies in a given decision
model reward matrix are not in the same (equalized) units, then use
of game theory and mini-max or maxi-min functions can provide
misleading results. We can create purely dominant and incorrect
solutions just due to relative size of unit measures. Our solution
addresses this properly and uniformly for any decision model. We
equalize all strategies (in a given decision model) to the same unit.
This is a key point to the application of game strategies to a general
class of decision problems. An adjustable “equalization” factor has
the purpose to convert all strategy measures to the same unit (e.g.,
cost, time) and must be done for any decision model. The
equalization factor for our solution is independent of additional
(importance) weights that may be applied [9].

Using different weights for choices highlights the importance of an
AOI, a sensor, or a parameter. A tool that can allow the user to dial
and modify the weights of modeled parameters is important to
model “what if” scenarios. Additionally, saving the weights to a file
allows for peer review in order to check and validate decisions. Our
approach is modeled, so that the process can be repeated to allow
for new or higher-quality data/information to be inserted into the
process to generate updated results [6].

In our example, it is straightforward to allocate one sensor to one
AOI. However, the problem is not obvious for how to optimally
determine parameter weights since there are N parameters per
sensor. This is an underdetermined system. We can determine the
weights of the sensor parameters through the use of Nash
Equilibrium.

We use an interior-point algorithm, the primal-dual method, which
must be feasible for convergence. The primal standard form (used
to calculate optimal AOIs and Sensors) is:

݉ ݅݊ ݅݉ ݖ݅݁ �(݂∗ .ݐ.ݏ�(ݔ (3)
ܣ ∗ =ݔ ܾ
≤ݔ� 0

The dual problem (used to calculate optimal Parameters) is:

 ࢞ࢇ ∗ᇱ࢈)�ࢋࢠ .࢚.࢙�(࢟ (4)
∗ᇱ +࢟ =࢙ ࢌ

≤࢙ 

Since we know the optimal sensor to allocate to a given AOI, we
can find the associated column or parameter (column), given the
row (sensor). Then we use the error to determine the optimal
weights and importance of each parameter.

We create a triplet of weights for AOI, Sensor, and Parameters. This
also makes it possible to use AOI with NE to determine parameter
weights. This design is shown in Fig 3. The use of information from
sequential time epochs allows additional insight into how fast a
parameter weight can be learned relative to other reward volumes.
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Fig 3. Q-Learning Block Diagram of Weight Triplets – AOI, Sensor, Parameters

We extend the 2D reward matrix to a 3D reward volume. In our case
the players are AOI, Sensor, and Parameter. This new concept of
reward volumes gives the decision maker an ability to correctly and
automatically analyze multiple factors.

6. Q-LEARNING MODELING AND SIMULATION

Q-Learning can be used for function approximation which makes it
possible to apply the algorithm to large problems, even when state
space is continuous, and therefore infinitely large [4]. Our solution
seeks to learn what the weights for each dimension should be to
achieve optimal system performance. Our solution may also save
money by offering a Pareto efficient, repeatable process for resource
management.

Our system uses Q-Learning to assign optimal weights as a Markov
decision process (MDP). Q-Learning is beneficial for determining
weights for each dimension in our system and can give insight into
relationships among objectives, improving the understanding of the
problem. While each period is modeled as independent, four
dimensions within a period are considered a dependent, sequential
Markov function [8].

We use an optimal multi-objective Markov action-selection decision
making function with Q-Learning. We currently consider input from
activity based intelligence (ABI), sensor geometry, sensor modality,
and weather. However our system is modular and flexible to handle
any number of inputs. By optimizing weights from these inputs
multiplied by the Nash Equilibrium (NE) values for each of the
dimension possibilities per period, optimization of sensor allocation is
achieved for overall higher system efficiency.

The Sensor Geometry determines the scheduling or when a sensor is
available for a given area of interest (AOI). The activity based
intelligence (ABI) section depends on the sensor geometry dimension.
The ABI section answers where, why, and who to observe. The Sensor
Modality dimension deals with the what. The weather dimension
handles the where and when. These four dimensions with conflicting
objectives depend on each other for an optimal solution of how to look
or what sensor should be used for observation.

In our simulation, the truth data is the crisis value or priority
determined by the daily executive requirements meeting. The values
shown are examples for indicating the relative importance of the sensor
type for a given AOI. In our concept of operations the weighted values
can be derived based on the requirements as per daily executive
requirements priorities. The executive daily meeting sets requirements
for sensor modality to be used for an AOI. However the daily meeting
does not assign a bird to an AOI. An algorithm then involves running
a linear program for each sensor type and number until all assets are
optimally tasked. When the action value weights are learned, the
optimal policy can be constructed. Fig 4 shows the workflow to
determine optimal AOI weights using Q-Learning with minimum
mean square error (MMSE) calculation. The MMSE estimator is a
common estimation method which minimizes the mean square error,
in our case, between requirements and information in input
dimensions.
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Fig 4. Q-Learning Weighting Optimization

When you use a mathematical model to describe reality you must make
approximations. The world is more complicated than the kinds of
optimization problems that we are able to solve. Linearity assumptions
usually are significant approximations. Another important
approximation comes because you cannot be sure of the data that you
put into the model. Your knowledge of the relevant technology may be
imprecise, forcing you to approximate values in a, b, or c in a linear
equation. Moreover, information may change. Sensitivity analysis is a
systematic study of how sensitive solutions are to changes in data. [2]

When such an action-value function is learned for weighting, the
optimal policy can be constructed by simply selecting the action by
combining the values from each AOI in each period using Dempster-
Shafer Rule [11].In our example, we define the Q-Learning equation
as:

ࢃ࢝ࢋ =࢚ࢎࢍࢋ
(ି,࢘࢘࢘ࢋ ࡰ,, ࡱ, ࢛࢘࢈࢛ࡱࢎ࢙ࢇࡺ)∗( (ࢋ࢛ࢇࢂ

∑ (ି,࢘࢘࢘ࢋ ࡰ,, ࡱ, ࢛࢘࢈࢛ࡱࢎ࢙ࢇࡺ)∗( ࢇ࢘ࢇ࢜(ࢋ࢛ࢇࢂ ࢙
(5)

where A, B, C, D, and E are parameters.

ࢃࢊࢋ࢘ࢇࢋࡸࡽ =࢚ࢎࢍࢋ ࢃࢊ +࢚ࢎࢍࢋ ∗ࢋ࢚ࢇࡾࢍ࢘ࢇࢋ
ࢃ࢝ࢋ) −࢚ࢎࢍࢋ ࢃࢊ (࢚ࢎࢍࢋ (6)

The results of our simulation are shown in Fig 5. We normalized the
parameter weights such that they add up to one. To begin with, we
initialize all the parameter weights to one. Then we learn which
parameters are most important for optimal settings. We set weights of
AOIs and Sensors and tune the Parameters weights. Tuning the
Parameter weights serves as a useful tool while providing insight to
system. The innovation is to use the NE for solving Parameter weights
given AOI and Sensor weights.

The learning rate determines to what extent newly acquired
information will override old information. A factor of 0 will make the
agent not learn anything, while a factor of 1 would make the agent
consider only the most recent information. The discount factor
determines importance of future rewards. A factor of 0 will make agent
short-sighted by only considering current rewards, while a factor
approaching 1 will strive for a long-term high reward. The initial
condition for the estimate Optimal Weight can be set to the reciprocal
of the number of dimensions or 0.25 which initially considers each of
four dimensions as equally important.

Fig 5. Iterative Q-Learning Simulation

7. ACCURACY ASSESSMENT

Classical decision theoretic scenario is that of an agent having to
choose among a set of actions, consequences of which depend either
on certain states of affairs about which agent is not completely

informed, i.e., subjective uncertainty, or the result of some random
processes that are independent, i.e., objective uncertainty [12].

The question of how do we know we have made best decision arises.
Hard decisions such as using Boolean Logic to for Access times can
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be used to help rule out some decisions since the sensor cannot see the
AOI. Resolution determines if activity can be detected using NIIRS
value or definition of activity of interest and if it will meet mission
requirements. Soft decisions using game theory serve as a structure to
develop models that better predict actual behavior. Simulation of
system performance can be shown as a function of SNR. Values used
in constructing hypothesis histograms are from a reward matrix.
Detection theory allows for design and level of expectation of system
performance with value of abnormal observations and measurements.
Fig 6 shows our sensitivity analysis using several different signal-to-
noise ratios (SNRs) under perfection conditions. The graph shows
accuracy as a function of SNR. In our example we have added
Gaussian noise to each parameter in the reward matrix. The SNR, d, is
the distance between means on two hypotheses with a variance
normalized to one. ROC Curves are shown for SNR = 12, 14, and 16.
Histograms are shown for SNR=12.

ROC curve calculates the probability of detection at all thresholds. We
calculated NE for 50 trials and all combinations of sensor allocations
to all AOIs. The Pd is probability of deciding “signal present” given
that it is present. The Pf is the probability of deciding “signal present”
given noise alone. Our goal is to design a signal process that makes the
“best” decision for sensor allocation. We evaluate performance of our
algorithm and compare with sub-optimum approaches. We want to
minimize probability of decision error and maximize the probability of
a correct decision. ROC curve is a plot of Pd and Pf as a function of all

possible threshold settings. We use the detectability index d = √Es/σ2
where Es is the energy of the signal symbols. As the SNR increases,
the ROC curve performance is improved.

Fig 6. Iterative Q-Learning Simulation

8. CONCLUSIONS

The key contribution of our paper is to combine remote sensing
decision making with Nash Equilibrium for sensor optimization. By
calculating all Nash Equilibrium possibilities per sampling period,
optimization of sensor allocation is achieved for overall higher system
efficiency.

We have identified a novel mathematical application for sensor
prioritization by collapsing multi-dimensional problems to use linear
programming optimization. We calculate optimal strategies, resource
allocation and increased likelihood of best decision available using
game theory in a zero or constant sum game. The sampling of
continuous Earth observation data significantly simplifies the problem.

Finally, we discussed a method for modeling asset management with
limited resources for multiple sensor modality requirements. One
solution is to run the Nash algorithms for each successive tasking

request and then run a dynamic fair division water fill algorithm to
ensure that each request is fair with respect to limited available assets.
The motivation for fairness is used to ensure that not all sensor assets
are dominated by one agent or player (region of interest). This is
needed so as not to miss important events occurring around the world.
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