
Automatic Parallelization Tool: Classification of Program Code for Parallel

Computing

Mustafa Basthikodi, Research Scholar, Dept. Of CSE, BIT, Mangalore, India, mbasthik@gmail.com

Dr. Waseem Ahmed, Dept. Of CSE, HKBKCE, Bangalore, India, waseem.pace@gmail.com

ABSTRACT

Performance growth of single-core processors has come to a halt in

the past decade, but was re-enabled by the introduction of parallelism

in processors. Multicore frameworks along with Graphical

Processing Units empowered to enhance parallelism broadly.

Couples of compilers are updated to developing challenges

forsynchronization and threading issues. Appropriate program and

algorithm classifications will have advantage to a great extent to the

group of software engineers to get opportunities for effective

parallelization. In present work we investigated current species for

classification of algorithms, in that related work on classification is

discussed along with the comparison of issues that challenges the

classification. The set of algorithms are chosen which matches the

structure with different issues and perform given task. We have tested

these algorithms utilizing existing automatic species extraction

toolsalong with Bones compiler. We have added functionalities to

existing tool, providing a more detailed characterization. The

contributions of our work include support for pointer arithmetic,

conditional and incremental statements, user defined types, constants

and mathematical functions. With this, we can retain significant data

which is not captured by original speciesof algorithms. We executed

new theories into the device, empowering automatic characterization

of program code.

Index Terms—Access Patterns, Bones, Parallel Programming,

Algorithm Classification

1. INTRODUCTION

With the influx of many cores every processor has parallel

computational force in built which is completely used when code in

execution written consequently. Existing auto-parallelization systems

are not completely automatic. The focus of this work is a new

algorithm classification, 'Algorithmic Species' which typifies

pertinent data for parallelization of the algorithm in classes[1]-[5].

Algorithmic species is built using access patterns which are in arrays

of loop nest. The classification intends to satisfy below objectives: i)

the program code can be reasoned by the developers using algorithm

classes, ii) class data is utilized by execution models to anticipate

execution, and iii) the classification may be used to plan the

compilers. For achieving these necessities classes set

asextractedautomatically, instinctive, fine-grained, characterized

formallyand completed. Species are used for classification of parallel

code other than means to separate parallelism. The classification can

in turn be used for various purposes, e.g. to predict performance on a

given parallel architecture, reason about the algorithm; generate

parallel program code orcompile to a parallel program. An example

of a classified algorithm is given in section 3. Thiswork is unitof

current research of constructing novel programming model for

parallelization in multi-core architectures.

Additionally the parallelization tool, the par4 tool is introduced,

which is a fully automatic parallelization tool. It

automaticallygenerates the species for the given sequential C source

code without any manual intervention.

2. MOTIVATION

Parallelism is a significant feature to consider while making new

applications since it promises execution gains utilizing multicores.

For exist legacy applications there is a need to rewrite or change

them to parallel utilizing some devices [6]. The shift towards parallel

computing introduced challenges in both efficient programming and

compilation: managing multi-threading and effectively utilizing the

memory of processor are the cases which programmers and compilers

face. Algorithm classification, describing the algorithm

characteristics in a target platform independent way abstract away

from these problems [7]-[10]. The classification does not change

overtime and new parallel code can be created when the tools are

accommodated to the changes in the parallel hardware. As a result,

we foresee an algorithm classification as a suitable instrument to face

the current and future challenges in parallel computing. In this light,

our approach hassimilar thoughts as the production layer and

efficiency layer as an existing classification. In theproduction layer, a

programmer writes his program code with an associated “design

pattern”, an expert parallel programmer implements an highly

efficient solution in the efficiency layer withe.g. a skeleton

implementation or programming framework [11]-[14]. With our

algorithmic species weintroduce these so-called design patterns for

the production layer.We introduce three goals for an algorithm

classification which we believe to be vital toaid in the process of

creating parallel programs:

1) With a descriptive classification, programmers can discuss

algorithms in natural language enabling them to select known

optimizations withtargetarchitecture in mind or to finetune a

classified algorithm. This also enables them to discuss their

algorithms at anabstract level, making it easier to reason about their

computational problems.

2) Performance prediction is a key factor in a development process,

during design spaceexploration different (parallel) architectures or

accelerator configurations are explored todetermine the optimal

configuration. Instead of creating parallel programs for all

architectures, performance is predicted based on the classified

algorithm and anappropriate performance model.

3) We believe the algorithm classification facilitates the design and

optimization ofparallelizing-compilers, source-to-source compilers

and auto-tuners.

To endeavor parallelism new devices, structures, dialects or

augmentations to current dialects are required. Today a plenty of

parallelization devices, systems, dialects are accessible in the

business sector. Everyone has its significance and may be suitable for

parallelizing various types of applications. These devices can create

their decisions on data inserted in the algorithm classification which

significantly lifts the burden of designing such devices as they don't

need to extract this information themselves. The classification acts as

an enabler to these tools, providing a common front-end which

extracts information and represents it in a formally defined manner.

78 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

3. RELATED WORK

Parallel computing is a form of computation in which many

calculations are carried out simultaneously, operating on the principle

that large problems can often be divided into smaller ones, which are

then solved concurrently. There are several different forms of parallel

computing: bit-level, instruction level, data, and task parallelism. As

power consumption (and consequently heat generation) by computers

has become a concern in recent years, computing has become the

dominant paradigm in computer architecture, mainly in the form of

multi-core processors.

Recent advances in multi-core and many-core processors

require programmers to exploit an increasing amount of parallelism

from their applications. Data parallel languages such as CUDA and

OpenCL make it possible to take advantage of such processors, but

still require a large amount of effort from programmers. To address

the challenge of parallel programming, we introduce Bones .

Bones is a source-to-source compiler based on algorithmic

skeletons and a new algorithm classification. The compiler takes C-

code annotated with class information as input and generates

parallelized target code. Targets include NVIDIA GPUs (through

CUDA), AMD GPUs (through OpenCL) and x86 CPUs (through

OpenCL and OpenMP). Bones is open source, written in the Ruby

programming language. The compiler is based on the C-parser CAST,

which is used to parse the input code into an abstract syntax tree

(AST) and to generate the target code from a transformed AST. The

original algorithmic species theory included ASET, a polyhedral based

algorithmic species extraction tool. Along with a new non-polyhedral

theory, a new automatic extraction tool named A-Darwin (short for

`automatic Darwin') was introduced .

A-Darwin is a tool to automatically extract algorithmic

species. The new tool is largely equal to ASET in terms of

functionality, but is different internally. The tool is based on CAST, a

C99 parser which allows analysis on an abstract syntax tree (AST).

From the AST, the tool extracts the array references and constructs a 5

or 6-tuple for each loop nest. Following, merging is applied and the

species are extracted. Finally, the species are inserted as pragmas in

the original source code. To perform the dependence tests in A-

Darwin, a combination of the GCD and Banerjee tests was made.

Together, these tests are conservative, so it might not find all species.

The automatic use of algorithmic species is presented using

BONES source-to-source compiler. The compiler is based on

algorithmic skeletons, a technique using parameterized program

code(skeletons) to generate high performance code. A single skeleton

can be seen as template code for a specific class of computations on a

specific target processor. Skeletons can be added as new classes are

identified, creating a flexible compiler. Typically, users of skeleton-

based compilers are required to manually select a suitable skeleton for

their algorithm. However, in the case of BONES, algorithmic species

information is used to automatically select a skeleton for a given

algorithm. This makes BONES, combined with an automatic species

extraction tool such as ASET, a fully automatic source-to source

compiler.

Substantial measure of classification of algorithms has been studied

before planning novel species. Few algorithms are been analyzed by

numerous individuals, for example the approach exhibited by Allen,

Kennedy et.al. The scientific notations and toolsused by these

algorithms are different. Moreover, these don't rely on representation

of information dependence. The procedure for transformation of

similar loops where reliance vector expresses priority requirements on

emphases loops [14].

 The species of algorithms are utilized in [5] to attain

portability over diverse architectures. The skeletons may be

visualized as parameterizedsample code for particular class of

computations on particular destination processor. The instantiation of

skeleton and the creation of proficient destination code are done by

the compiler. Here, the skeletonsrefers to species of algorithms such

as picking a skeleton may be a subject of code classification.

The classifications related comparisons including array

regions proposed by B. Creusillet and F.Irigoi in their work

compilers and languages used in parallel computing and Ecute by

High Performance Embedded Architectures and Compilers by L.

Howes, A Lokhmotov, species of algorithms givesproject code

abstraction i.e. the data lost in interpretation from program to the

species.

 Thealgorithmic species inspired by the algorithm

classification is presented in [13]. In [2],the theory is according

to polyhedral model, insisting code to bedenoted as set of loop nests

which are static and affine. The use of the Polyhedral Model, imposes

some fundamental restrictions to the program code classified such as

1) ambiguity duringclassification (an algorithm can be classified in

multiple ways), 2) classes as upper bounds, 3)lack of validation for

completeness and applicability in real-life, and 4) the inability

toautomatically extract the classes from program code.

The original algorithmic species hypothesis comprised ASET, a

polyhedral based extraction tool for algorithmic species. With new

non-polyhedral hypothesis there is a novel extraction tool which is

automatic called ADarwin. The device is similar to ASET for its

functions but internally it is different. The device is according to

CAST, a parser which permits analysis on AST. The device obtains

from abstract syntax tree array references which build 5 to 6-tuple for

every loop which is used to extract species after merging operation.

At last, theinsertion of species happens as pragma's in original source

code. To perform reliance tests in ADarwin, we use GCD and

Banerjee tests combination. Combining these tests we get moderate

results, that is, all species may not be discoveredthe code segments

which are not recognized in existing works are identified and

accordingly the tool is modified in our work.

4. IMPLEMENTATION

Bones and A-Darwin along with required gems are installed in quad

core system for experimentation the species is extracted. The species

are inserted as pragmas in the original program code. The code

segments of various algorithm classes are executed to analyze the

output of A-Darwin. We have executed and analyzed classes using

Bones Compiler and found that there are few kernels of which A-

Darwin is not considering all possibilities of code.

Skeleton-based compilation has several benefits. Firstly,

compilation requires only basic transformations that can be performed

at abstract syntax tree level, omitting the need for intermediate

representations which often lose code structure and variable naming.

This allows the compiler to generate readable code, enabling

opportunities for further fine-tuning and manual optimization.

Because of the integration of algorithmic species, Bones is the first

skeleton-based compiler that can be used in a fully-automatic tool-

flow. This removes the requirements of existing skeleton-based

approaches to manually identify a skeleton and modify the code such

that the skeleton can be used. Furthermore, algorithmic species

provides a clear, structured, and formally defined way of using

skeletons, which can be beneficial in cases where manual

classification is unavoidable.

Algorithmic species is a classification which captures low-

level algorithm details from individual loops or loop nests and their

bodies. Key to the algorithmic species approach is that every array,

accessed in the classified loop nest, is assigned with one of the five

access patterns. The combination of access patterns, of the input and

output arrays of the loop nest, and then form the species. This modular

approach enables us to form an unlimited amount of species with the

use of only five access patterns. Because the theory behind

algorithmic species is built upon the Polyhedral Model, we use a

polyhedral representation of the program code as input to A-Darwin.

Algorithmic species can therefore serve as a base for current and

future work related to parallel programming. A-DARWIN also

includes basic dependence analysis, to be usable as a stand-alone tool.

All arrays in all loop nests are classified, their ranges derived and the

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 79

available parallelism extracted, they are combined into a species and

annotated in the source code.

The major contributions of our work include:

 Support for pointer arithmetic.

 Support for Conditional and Incremental Statements.

 Support for Mathematical functions

 Support for User defined Types and Constants.

 Design of a GUI that make easy for programmers to use the tool.

The algorithmic species extraction tool,takes a sequential C code as

input andautomatically generates the species-annotated C code. This

generated species-annotated C codeis then given as an input to the

'Bones' skeleton based compiler which gives the efficient

parallelcode as output as depicted in Fig. 1.

 Fig1: Overview of our auto-parallelization approach.

Algorithmic species is a classification which captures low-level

algorithm details fromindividual loops or loop nests and their bodies.

Key to the algorithmic species approach is thateveryarray retrieved in

classified loop nest, is assigned with one of access patterns. Access

patterns, of input and the output arrays of loop nest combination

formsthe species [1].

One of the objectives behind the work on algorithmic species is to

have the capacity to develop the pertinence and expressiveness of

species to support the utilization of pointers. Implanting extra data in

the array reference characterizations can enhance the present

utilizations of the algorithmic species thus empowering new users.

1 for (i = 0; i<= 256; i++) {

2 *ptr = val;

3 val = &a[i];

4 }

Listing 1: Example of one dimensional pointer reference.

In Listing 1,The reference would be characterized as (*ptr) with

respect to the loop nest. Thisalgorithm takes the pointer statement in

loop body as the input and outputs species annotations.Initially, the

variable name, initial value and its ranges are extracted theand stored

in arrays. Itsindex specifies the order of the loop and this allows the

extraction of the above values of aparticular “for” loop.The output

pattern for this algorithm is as follows:

a[0:256]|element ptr|pointer

The listing 2 creates a more detailed characterization,enablingus to

differentiate the mathematical functions among the other accesses. 5-

tuple array reference characterization has to be modified toobtain the

prefix of Math to thefunction.

1 for (m = 0; m<50; m++){

2 for (n = 0; n<50; n++){

3 c[m][m+1] = sin(b[m][n]) * cos(a[m][n]);

4 }

5 }

Listing2: Example of two dimensional loop nest with mathematical

functions.

The lines 1-5 shows the use of the mathematical functions sine

andcosine.The output pattern for this algorithm is as follows:

b[0:49,0:49]|chunk(0:0,0:49),Math.sin^a[0:49,0:49]|

chunk(0:0,0:49), Math.cosc[0:49,1:50]|element

The applicability of the static analysisis limited.Loop nests such

cannot alwaysbe fully analyzed. Therefore, species in

overapproximations is a type of some cases in user defined

classification. The over approximations is tightened using manual

approach dynamic approach.

1 for (m =0; m<50; m++){

2 for (n = 0; n<50; n++){

3 c[m][n] = sum(a[m][n]);

4 }

5 }

Listing3:Example of two dimensional loop nest with user defined

type.

In listing 3, the lines 1-5 shows the use of the user defined

functionsum.The output pattern for this algorithm is as follows:

a[0:49,0:49]|element, usertype.sumc[0:49,0:49]|element

The large number of such code segments are created and given as

input to the tool to get the design patterns consisting of algorithmic

species. There are set of bench programs used to test the tool for

working. The modified tool works comparatively well for all the set

of code segments. The algorithms given below summarizes the actual

working of the tool.

Input: Access descriptions of all arrays

Output: The access patterns of all arrays

P = ø

repeat

Sp= ø

(Ap;Bp;~cp) ←access description of array p

switch(Ap;Bp) do

caseAp= 0 &Bp= 0

Sp←“increment”

caseAp≠ 0 &Bp= 0

Sp←“element”

caseAp= 0 &Bp≠ 0

Sp←"full”

caseAp≠ 0 &Bp≠ 0

if(equation 2 holds for array p) then

Sp←“neighborhood”

else

Sp←“chunk”

end

if (equation 1 has constant ~c) then

Sp←“const”

end

endsw

endsw

P←PUSp

untilall patterns are derived;

80 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

Result: P

Algorithm1 : Deriving the array access patterns

Input: Access descriptions of all arrays

Output: The access patterns for pointer species

functionget_pointer

scope_code=get input from source code

X←scope_code.scan(/*?\w+)

for each |a| in X do

ifa contains „*‟

remove * from element a

a+=[pointer]

end if

end for

S←generate species code from pattern species

Y ← get adarwin interval from S

P←get pattern part from S

for each |a| in Y do

ifa == "pointer:pointer"

pattern ← "|pointer"

end if

end for

replace pattern part in species to P

removeadarwin interval “pointer:pointer” from species code

end function

Algorithm 2: Deriving the Pointer Species

Input: Access descriptions of all arrays

Output: The access patterns for conditional statements

functionget_if

scope_code=get input from source code

X←scopecode.scan(/\(?\[?\w+\]?\]/)

flag← false

for each |a| in X do

ifa contains „(„

ifprevious element of a== “if”

a+=[start]

flag←true

end if

end if

if flag == true and a == ‟)‟

replace „)‟ with “[end]”

end if

ifa==comparing operator

a←„=‟

end if

end for

S←generate species code from pattern species

Y ← get adarwin interval from S

P ← pattern from S

for each |a| in Y do

ifa== "end:end"

P+=}|compare

end if

end for

replace pattern part in species to P

removeadarwin interval “start:start” and “end:end”

end function

Algorithm 3: Deriving the array access patterns with conditional

statements

Input: Access descriptions of all arrays

Output: The access patterns for mathematical and user-defined types

functionget_function

scope_code=get input from source code

X←scope_code.scan(/\(?\[?\w+\)?\]?)

flag← false

for each |a| in X do

ifa contains „(„

ifprevious element of a does not include for

function_name←previous element of a

previous element of a ← " "

flag←true

end if

end if

end for

Math ←array containing list of all mathematical function

S←generated species code from pattern species

Y ← get adarwin interval from S

P ← pattern part from S

for each |a| in Y do

ifa == function_name:function_name

iffunction_name element of math

P+=”}|Math.”+function_name

else

P+=”}|UserType.”+function_name

end if

end if

end for

replace the pattern part in species to P

removeadarwin interval function_name:function from species code

end function

Algorithm 4: Deriving the Mathematical and User-defined Species

5. EXPERIMENTAL RESULTS AND ANALYSIS

The parallel compiler Bones and altered ADarwin along with the

gems are introduced in the quad core framework for analysis and
experimentation.

The Bones is composed by taking according to skeletons and species

of algorithms. The compiler takes the input C source code and creates

an output as parallel code. Destination processors incorporate CUDA

based NVIDIA GPUs,OpenCLbased AMD GPUs,

OpenMPandOpenCLbasedCPUs. The Bones depends on CAST C

program code parser, which can be utilized to parse data source code

into the AST and then produce wanted source code from converted

AST.

Automatic Darwin, is an automatic extraction device which

depends on CAST, which is C99 parser that permits investigation on

AST. After the AST is obtained, the apparatus separates array

references which develop a 5 to 6-tuple for every loop nest. Then

consolidation is applied to extract the species. The species which are

embedded as pragmas for original source code at the end.

The code sections of different algorithm classes were executed to

analyze the output obtained from the tool. To approve the utilization

of algorithmic species, we classify many algorithms.Hence we have

taken the benmark suite as PolyBench/C3.2, which comprises upto

35 algorithms chosen from 7 domains for scientific processing,

guaranteeing wide range of algorithms.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 81

An outline for algorithms inbenmarkPolyBench gathered by various
domains are tabulated in Table 1.

Table1.PolyBench benchmark Suit classification results

 6.CONCLUSION AND FUTURE WORK

The recent advancement inheterogeneous and parallel computing

platforms introducedchallenges for parallel programmers and

compiler designers. This papersaid about Algorithmic Species which

is an classifier of algorithm whichcaptures low-level algorithmic

details and represents them with the use of additional access patterns

that takes pointers, mathematical functions, user defined types,

incrementalvariables, if-conditions and constants into consideration.

Algorithmic species can be usedby programmers to converse on

algorithms or serve as a front end to performance prediction nmodels

or parallelizing compilers. Furthermore, we introduced a tool which

automaticallyclassifies the algorithms and generates the species. This

also automates the completeparallelization process.

 Future work on algorithmic species can expand the

classification to more typesofalgorithms with a particular focus on

irregular algorithms and remove limitations to the theory (e.g. using

explicit multidimensional array accesses). Next to only classifying

program code, common dependency resolving transformations (e.g.

loop peeling) can beincorporated before classifying programs in

order to extract even more parallelism. Asfuture possible use, next to

the performance-centric uses we presented so far, we

foreseealgorithmic species as input to a model to estimate the energy

consumption of an algorithm as energy is becoming an increasingly

important topic in parallel computing.

REFERENCES

[1] Mustafa B., Waseem Ahmed, Extended species for code

parallelization through algorithmic classification, IEEE IACC

2015.

[2] P. Custers. Algorithmic Species: Classifying Program Code for

Parallel Computing. Master‟s thesis, Eindhoven University of

Technology, 2012

[3] C. Nugteren, R. Corvino, and H. Corporaal. Algorithmic

Species Revisited: A program Code Classification Based on

Array References, Eindhoven University of Technology, 2014.

[4] C. Nugteren, P. Custers, and H. Corporaal. Algorithmic

Species: An Algorithm Classification of Affine Loop Nests for

Parallel Programming. ACM TACO: Transactions on

Architecture and Code Optimisations, 9(4):Article 40, 2013.

[5] C. Nugteren, P. Custers, and H. Corporaal. Automatic

Skeleton-Based Compilation through Integration with an

Algorithm Classification. In APPT ‟13: Advanced Parallel

Processing Technology. Springer, 2013.

[6] S. Guelton, M. Amini, and B. Creusillet. Beyond Do Loops:

Data Transfer Generation with Convex Array Regions. In

LCPC ‟12: Languages and Compilers for Parallel Computing.

Springer, 2012.

[7] C. Nugteren and H. Corporaal, “Introducing „Bones‟: A

Parallelizing Source-to-Source Compiler Based on Algorithmic

Skeletons,” in GPGPU-5: 5th Workshop on General Purpose

Processing on Graphics Processing Units. ACM, 2012.

[8] W. Caarls, P. Jonker, and H. Corporaal, “Algorithmic Skeletons

for Stream Programming in Embedded Heterogeneous Parallel

Image Processing Applications,” in IPDPS ‟06: 20th

International Parallel and Distributed Processing Symposium.

IEEE,2006.

[9] R. Allen and K. Kennedy, “Automatic translation of fortran

programs to vector form,” ACM Trans. Program. Lang. Syst.,

vol. 9, no. 4, pp. 491–542, Oct. 1987.

[10] X. Kong, D. Klappholz, and K. Psarris, “The I test: an

improved dependence test for automatic parallelization and

vectorization,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 2, no. 3, pp. 342 –349, jul 1991. [16] G.

Goff, K. Kennedy, and C.-W. Tseng, “Practical dependence

testing,” SIGPLAN Not., vol. 26, no. 6, pp. 15–29, May 1991.

[11] W. Pugh, “The Omega test: a fast and practical integer

programming algorithm for dependence analysis,”in

Proceedings of the 1991 ACM/IEEE conference on

Supercomputing, ser. Supercomputing ‟91. New York, NY,

USA: ACM, 1991, pp. 4–13.

[12] M. Amini, F. Coelho, F. Irigoin, and R. Keryell, “Static

compilation analysis for hostaccelerator communication

optimization,” in 24th Int. Workshop on Languages.

[13] C. Nugteren and H. Corporaal, A Modular and Parameterisable

Classification of Algorithms,” ES Reports. ISSN 1574-9517.

ESR-2011-02.

[14] Wolf, M.E., Computer System Lab, Stanford

University.,CA, USA Lam, M.S. “A looptransformation

theory and an algorithm to maximize parallelism".

Algorithmic Class Number

of

Kernels

Number of

KernelsExe

cuted

Hit

Ratio(

%)

2mm.c 2 2 100

3mm.c 3 3 100

adi.c 5 4 80

atax.c 2 2 100

bicg.c 2 2 100

cholesky.c 4 2 50

correlation.c 5 3 60

covariance.c 3 2 66

doitgen.c 2 2 100

durbin.c 3 2 66

dynprog.c 2 2 100

fdtd-2d.c 2 4 100

floyd-warshall.c 1 1 100

gemm.c 1 1 100

gemver.c 4 4 100

gesummv.c 1 1 100

jacobi-1d-imper.c 2 2 100

Jacobi-2d-imper.c 2 2 100

ludcmp.c 7 4 57

mvt.c 2 2 100

reg_detect.c 4 2 50

syr2k.c 1 1 100

syrk.c 1 1 100

trisolv.c 1 1 100

trmm.c 1 1 100

82 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7154862&searchWithin=%22Authors%22:.QT.Mustafa,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7154862&searchWithin=%22Authors%22:.QT.Mustafa,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7154862&searchWithin=%22Authors%22:.QT.Mustafa,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7154862&searchWithin=%22Authors%22:.QT.Mustafa,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wolf,%20M.E..QT.&searchWithin=p_Author_Ids:38162052500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lam,%20M.S..QT.&searchWithin=p_Author_Ids:37308072400&newsearch=true

	ZA927AU16

