
Multi-disciplinary System Engineering and the Compatibility Modeling Language
(U)CML

Markus BRANDSTÄTTER

Institute for Astronautics, Technische Universität München
Garching, 85748 Germany

and

Carolin ECKL
Institute for Astronautics, Technische Universität München

Garching, 85748 Germany

ABSTRACT
Over time, technical systems such as automobiles or spacecraft
have grown more complex due to the incorporation of
increasingly more and different components. The integration of
these components, which are frequently designed and
constructed within separate departments and companies may
lead to malfunctioning systems as their interplay cannot be
tested within the earlier phases of development.
This paper introduces compatibility management as one
solution to the problems of late component integration.
Compatibility management is carried out on a common cross-
domain model of the system and therefore allows to test
compatibility early on.
We show how compatibility management can be embedded into
the phased development of ECSS-M-30A and present the
(Unified) Compatibility Modeling Language ((U)CML), which
is used for the underlying cross-domain model. A case study
demonstrates the application of (U)CML in the development of
a small satellite and explains different degrees of compatibility.

Keywords: compatibility management, phased development,
multi-disciplinary system model, product life cycle, micro
process

1. INTRODUCTION
Technical systems such as automobiles or spacecraft have over
time grown more elaborate and complex due to the
incorporation of increasingly more and different components.
Especially high-tech systems have experienced this transition in
the course of which, for example, mechanical and electrical
engineering are increasingly being merged with software
engineering – for instance in the development of embedded
systems. For example, today’s cars include up to 80 micro-
controllers, which are connected with up to five bus systems
that communicate with hardware such as sensors or actuators
[3].
Moreover, components are usually developed by independent
teams and within separate departments or companies, which
frequently leads to malfunctioning systems, the need for major
rework, and quite frequently to time and production delays.
The main focus of compatibility management is to assure
compatibility of components that exist only as drawings or
textual descriptions from the early development phases on to
avoid higher costs for their integration in later phases. Therefore

compatibility management is centered on defining and
providing methods and processes for assuring the compatibility
of systems during development, production, and maintenance.

This paper describes a modeling language that allows to test
compatibility during the conception and design phases of a
product. In a second step the paper describes the phased
approach for space systems product development, proposed by
the ECSS-M-30A standard. Thirdly, the interplay between
compatibility management and phased development, as well as
how difficulties with the integration of components affect the
product lifecycle is demonstrated. The presented paper
concludes with a case study showing the application of the
compatibility modeling language in the development process of
a small satellite.

2. A NEW LANGUAGE FOR MODELING
COMPATIBILITY: (U)CML

Due to the complexity of today’s systems, their extensive
textual documentation can become very difficult to understand.
Therefore key aspects are usually extracted and considered in
models of the system. These models provide the basis for
understanding and, as [7] states: “models are central objects of
scientific communications”.
Compatibility cannot be modeled adequately in standard
modeling languages like the Unified Modeling Language
(UML) or the Systems Modeling Language (SysML), as shown
in [2]. That is why the (Unified) Compatibility Modeling
Language ((U)CML) has been developed [8].
(U)CML is an object-based modeling language laid out for the
design of technical and especially embedded systems (thus
incorporating the disciplines computer science, electrical and
mechanical engineering). With only a few adaptations, the
language can be used for modeling systems of any domain, but
this has not been proven so far and is the reason, why the
‘Unified’ of (U)CML is put in brackets.
The smallest entities of (U)CML are components, which expose
their inherent functionality through associated input and output
interfaces, which are called plugs. Each plug has a designated
direction (input or output) and belongs to exactly one
component.
Packages are used as containers to group components. They are
organized in a hierarchic tree-like fashion, because a package
may contain components as well as other packages, but cannot
contain itself. One package (the so called system package) is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 2009 11ISSN: 1690-4524

therefore the root of the package hierarchy and usually
resembles the product to be developed. In order to account for
consistency within the model, packages do not possess a
functionality of their own, but make interfaces available to their
surrounding.
This second type of interface (besides the plugs) is actually
called an interface in (U)CML. Within the following sections,
only package interfaces (within a (U)CML context) are termed
interfaces – plugs are referred to as plugs. Interfaces are used to
forward the port information of a plug associated with a
component that lies within the package to which the interface is
connected. Interfaces may also pass information through their
associated package without being consumed (by connecting an
input interface of a package to an output interface of the same
package).
The key entities for testing compatibility are connections. One
connection connects exactly two plugs (plus intermediate
package interfaces) and models a channel for the flow of matter,
electrical signals or information between the plugs. The
introduction of external plugs allows connections to the
environment of the system. External plugs are similar to normal
plugs, but are connected directly to the interfaces of the root
package (i.e. the system).
For the purpose of a bidirectional communication (e.g. a
function call), communication variants of plugs, interfaces,
connections and external plugs are provided. The graphical
representation is identical to their unidirectional counterpart in
combination with a reversely directed second plug / interface /
connection. Figure 6 shows several elements of a
communication between the components “Camera_Mech” and
“OBDH” involving the communication plugs 2a and 2b.

All representations of (U)CML entities display two aspects: a
graphical shape and an associated list of (compatibility-
relevant) attributes, which is called description field in (U)CML
(marked by “4” in Figure 6).
The graphical shape shows, with which other entities an entity
is associated (plugs are assigned to a certain component,
interfaces to a certain package, components and packages to
other packages) or with which it communicates (connections
between plugs and/or interfaces). Interfaces and plugs on the
left side of a component/package indicate an input whereas a
position on the right side characterizes an output.
The graphical notation also provides clues as to which
discipline the entity belongs and whether an entity failed the test
for compatibility by color. The border of a component that is
mechanical is marked in green. A plug filled in yellow displays
a compatibility warning. A compatibility warning indicates that
the marked plug does not fit to its connected counterpart,
although this mismatch is not critical.
As mentioned above, every graphical entity has an assigned list
of attributes. The values for these attributes are the basis for
compatibility tests. For instance, the set of attribute values of
one plug are compared with the attribute values of the other
plug, which is connected to it by one connection on whether
they “match”. “Matching” in this context means that given a set
of compatibility rules the connection is valid or at least feasible.
For example, the compatibility rule “a round building block
may be inserted into a square hole” applied in a well-known
children’s game would cause compatibility warnings in an
(U)CML model that models the game. (U)CML is designed to
include project-specific and company-specific sets of rules.
These two sets of rules may coexist and differ only by the
person that administers the rules and by their applicability.

A more detailed explanation of (U)CML and how compatibility
is defined is provided in [8].

The practical aspects of modeling compatibility
(U)CML is a useful tool in the development of a system,
because its concept enables the translation of models written in
other modeling languages like UML or SysML into an (U)CML
notation [2]. Thus (U)CML can easily be integrated into an
existing modeling landscape. A software editor supporting
system design in (U)CML – which is needed for large models –
is currently being implemented at the Technische Universität
München.
Alternatively, other modeling languages for modeling
compatibility in multi-disciplinary systems are SysML in
combination with UML, proprietary partial solutions and textual
descriptions.
SysML is designed for the creation of integrated models of
hard- and software and is supported by various commercial
editors. With SysML, the user is able to describe compatibility
through the use of comments and specialized expressions
formulated in the Object Constraint Language (OCL). But this
is a workaround, as comments have been defined for
unstructured, informal information. Therefore SysML requires
new test routines that filter out relevant information from
comments to allow for automated tests for compatibility.
Proprietary modeling environments offer compatibility rules
tailored to the company they were designed for. As a drawback,
they are designed for only a few systems. Using a proprietary
modeling language for a different type of product is usually not
feasible and thus requires the costly development of a new
modeling environment.
Lastly, textual descriptions provide an almost unlimited number
of compatibility rules, but cannot be understood as easily and
tested as structured graphical models.

3. THE PROJECT PHASING IN ECSS-M-30A
Aside from tools, system development is guided through a
process. A representative development process that is widely
used in the engineering of space systems is the standard for
project planning [5] by the European Space Agency (ESA).
This standard is part of the ECSS (European Cooperation on
Space Standardization) set of standards, which define how
systems consisting of hard- and/or software are developed
within ESA and by its suppliers. The project planning standard
ECSS-M-30-A mentioned above addresses phased development
of space systems [5]. In the following, the phases are mentioned
together with the activities they focus on. The phases are
supposed to be traversed in the given order without overlap.

Phase 0 (Mission Analysis/Needs Identification):
characterization of the intended mission, needs, operating
constraints, possible system concepts

Phase A (Feasibility): finalizing the expression of needs and
proposing solutions meeting the perceived needs

Phase B (Preliminary Definition – of project and product):
selection of technical concepts for solutions, precise
definitions, confirmation of feasibility and determination of
operating constraints

Phase C (Detailed Definition – of the product): detailed study of
the chosen solution, ‘make-or-buy’ decisions, initialization of
production and verification

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 200912 ISSN: 1690-4524

Phase D (Production/Ground Qualification Testing): qualified
definitions, production for experimental results, integration
and verification

Phase E (Utilisation): launch campaign, launch, in-flight
acceptance of space elements

Phase F (Disposal): all events from end-of-life until final
disposal of the product

Project milestones mark the end of each phase. When such a
milestone is reached, a major review is conducted to assure that
the product has completed the phase successfully, to determine
areas for rework or – in the case of major difficulties in an early
phase – abort the project. After phases B to D, the milestones
also serve the purpose of setting a controlled baseline (a
specified configuration of the product and all its artifacts, which
will not be changed anymore).
The ECSS project management standards cover a variety of
knowledge areas such as project management, schedule, cost or
risk management.
Configuration management is also part of these standards. It
specifies which versions of different system artifacts and
components have been tested together. Thereby it insures a
basic consistency between components.
In addition to that, compatibility management assists in the
exchange of consistency information between departments and
between models (instead of testing compatibility on components
that are already built).

4. THE COMPATIBILITY MANAGEMENT PROCESS
WITHIN ECSS-M-30A

This section shows, how compatibility management and the
phased development of ECSS-M-30A can work together.
As mentioned above, distributed development and problems
with the integration of subsystems are crucial issues when
developing technical systems. Within the ECSS-M-30A
process, integration takes place in phase D. In phases B and C
the components of the system are developed separately. It is
evident that an earlier detection of inconsistencies and design
errors leads to lower overall costs [10]. Compatibility
management insures consistency during distributed
development and hence a smooth integration of the system.
Therefore, compatibility management should take place in
every phase of the development process. During the design
phases, compatibility management is based on models, whereas
it is based on existing components in the construction phase.
In general, compatibility management is carried out within a
process that consists of a sequence of certain steps. These steps
are Definition, Identification, Evaluation, Measures,
Implementation and Control – called DIEMIC for their first
letters [1]. A compatibility manager (CM) is chosen, who
controls and coordinates this process with different
departments. The CM controls the six DIEMIC steps by
focusing on the activities laid out in the following subsections.

Definition
The DIEMIC process starts with a definition of compatibility
requirements and an identification of the compatibility-relevant
traits of the system.

Identification
When malfunctions, inconsistencies or incompatibilities within
the models/components are found, they have to be reported to
the CM in an extensive description of the problem. The

department then identifies affected components, hierarchy
levels and domains together with the CM.
In this step, experts are needed to assure that the observed
behavior is a mistake in the system model or an incompatibility.

Evaluation
The evaluation step assesses the criticality of the observed
malfunction and requires a decision about the future course of
action to restore functionality respectively compatibility of the
system.

Measures
Actions occurring in this step are the identification and
definition of appropriate measures. Where necessary, other
areas of management are brought in (i.e. project management,
configuration management, change management and/or
problem management).

Implementation
The CM then forwards the suggested counter-measures to
affected departments. These document and report back changes
to the system and contingently inquire about ambiguities or
mistakes.

Control
A last step for the CM is forwarding information about the
completeness of the implementation to the initiating department
and receiving a confirmation of desired effects of the measures
taken. If this confirmation is negative, a new cycle has to be
started.

DIEMIC can also be seen as a phased process, but has to be
carried out several times throughout the development of a
product and does not contain milestones. It can be linked to the
phases of the ECSS-M-30A product development process so
that this DIEMIC micro process is completed several times
within a single phase of the ECSS-M-30A macro process.

Figure 1: DIEMIC micro process in the context of phased

development [2]

During the phases 0 to C, all steps of the micro process are
usually carried out, because the most critical decisions are made
within these early phases. In phases D through E the definition
phase is usually skipped as – in general – no additional
compatibility-relevant properties are discovered. The disposal
phase F normally does not require compatibility management
(indicated through lighter coloring in Figure 1) since products
are decommissioned and do not necessitate further design
enhancement and correction processes [2].
Besides this, Figure 1 displays a fundament of a common cross-
domain model of the system for the phase model and thus for
the DIEMIC processes. The thorough utilization of a model of
the system common to all departments and disciplines is the
main driver for compatibility within the design phases A to C,
since it enables the detection of inconsistencies between models
at the time the models are created. This may not be an online
process, but regular (automated) coordination between the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 2009 13ISSN: 1690-4524

separate models and the common model already suffices. If
only little time elapses between the modeling and integration of
the system, the rationale determining the appearance of the
subsystem is preserved for evaluating the necessity of recent
changes and the proposition of alternative designs.
The ability to detect inconsistencies originates in relating the
previously unrelated CAD-models, circuit layouts, UML
diagrams etc. When these models are composed, shared
components have to be identified and differing perceptions of
the component are thus detected.
To sum up the relation between compatibility management and
the ECSS standard: it is supposed to be another field of duty
alongside project management, change management or problem
management (which [6] implements in a micro process in a
similar fashion). At the same time, it is strongly linked to these
management (sub-) processes and is therefore very pervasive
throughout development.
Due to the fact that the development process of a student project
is hardly visible, the next section describes the gain from a
common cross-domain model of the system in (U)CML.

5. CASE STUDY: CUBESAT MOVE
Currently, a small satellite is being developed within the
Institute of Astronautics at the Technische Universität
München. Students of different backgrounds are employed to
construct the picosatellite MOVE [9]. To be precise, MOVE is
designed according to the CubeSat guidelines, which demand a
maximum size of 10 x 10 x 10 cm and at most 1 kg weight [4].

Model(s) of the CubeSat
The payloads of MOVE are an optical camera system and an
experiment board. Within the following models of the satellite
only small sections of the original model(s) are covered. The
focus is on the camera payload and the mainboard of the
satellite (or in technical terms: the on-board data handling
subsystem (OBDH)).
The following figures present MOVE from three different
perspectives – Figure 2 is a CAD drawing of the structure of the
satellite and the two extracted parts camera and OBDH. The
mounting places for both extracted parts are marked by the
arrows. It is evident that these two parts have to physically fit
into the place that has been reserved for them in order to allow
for a functioning satellite. This is an example for compatibility
modeling of mechanical parts (within the domain of mechanical
engineering).

Figure 2: A CAD model of MOVE, its mainboard and camera

Figure 3 is an abstract block diagram displaying the important
aspects of the electronic communication between camera
payload and OBDH. Less detail is used to model the experiment
board and the power supply (EPS). Electronic aspects modeled
in the image sensor interfaces of camera and OBDH provide an
example for electronic compatibility as the signals sent and
those that were expected to be received have to match.

Figure 3: Block diagram of the satellite MOVE

Finally, the following two figures show UML diagrams that
model the information exchange and processing related to
images and their raw data between camera and OBDH on an
object-oriented basis.

Figure 4: UML class diagram of the image handling process

Figure 5: UML sequence diagram of the image handling

All three models are different from each other and represent
views from various disciplines onto the same subject. Even here
it becomes obvious, that a large amount of effort is needed to
connect the camera component to the component OBDH and
maintain consistency between the models used. A common
cross-domain system model in (U)CML can be constructed
from the combination of all three models to facilitate the
DIEMIC compatibility management process [2].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 200914 ISSN: 1690-4524

Figure 6: (U)CML diagram of the camera and the OBDH

A possible (U)CML model that incorporates the information of
figures 2 to 4 is given in Figure 6. This merged diagram is only
the first step towards a true cross-domain model, as links
between components that belong to different disciplines cannot
be inferred from the original diagrams. Therefore, a second step
incorporating connections between components of different
domains would greatly improve the utility of the common
model. The manual insertion of new connections between
electronic and software components requires the collaboration
of experts of the involved disciplines and enables automated
testing of the connections between different domains [2]. For
the sake of clarity and deducibility from the original domain
models, these cross-links have been omitted.
The (U)CML diagram in Figure 6 allows system architects (in
this case: students) of the involved disciplines to identify their
part of responsibility – if modeled correctly as for the camera
package and not using one component for more than one
represented domain, which is demonstrated in the OBDH
component. The engineers have to specify only their
(assumptions about) interfaces to components of other domains.
Furthermore, as both participants in an exchange of matter,
electrical signals or information may reference the same
(U)CML connection, communication between engineers from
different disciplines is simplified.

Testing compatibility of the (U)CML model
To illustrate the utility of a compatibility test on an (U)CML
model, the model drawn in Figure 6 is evaluated based on the
values given in the lists of attributes (labeled with “4” in the
same (U)CML diagram).
The comparison of plugs 1a and 1b, which constitute the two
ends of the connection that describes the handing over of image
information, will be described first. This is followed by a test on
compatibility of the communication plugs 2a and 2b and finally
a compatibility test of the plugs 3a and 3b that model a channel
for direct current.

Consistency of the image hand-over: In Figure 6, the
description fields connected to the plugs 1a and 1b show the
assumptions of both components related to the software
information that is exchanged.
Both plugs expect a value of a “rawData” type, which is
characterized (in both assumptions) by a range of [0 … 100] in
both dimensions and a unit of “DataField”. As the plug type is
also identical, both attribute lists are the same and compatibility
of “Camera_SW” and “OBDH” related to this connection can
be assumed.
Of course, this case is very trivial and could be conducted on a
simple table as easily. The compatibility examples presented in
the following tests will demonstrate that this triviality is not
always the case.

Compatibility of the electrical data transfer: This
test involves the communication plugs 2a and 2b forming the
two endpoints of the electronic communication connection that
links up the “Camera_El” to the “OBDH”.
This communication is modeled to exchange electrical signals,
which enable the transfer of the raw data of the image. As
mentioned above, this relationship between electronic and
software components is not represented within the (U)CML
diagram, because it was not (and could not be) shown in the
original domain models.

This communication connection also has a designated direction,
meaning that the communication is initiated by one partner –
which in this case is the electronic part of the camera.
Looking at the return-direction (from the OBDH to the camera),
which is described in the bottom parts of the two description
fields, the information of both plugs is identical, because
comments do not contribute to compatibility.
In contrast to that, the initiating direction (originating at the
camera) does not match completely. The camera sends integers
(int) within a range of [0 … 4096], whereas the OBDH could

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 2009 15ISSN: 1690-4524

receive integers ranging from 0 to 65536. This is not a critical
difference, since all information sent is preserved. Hence, this
would be a (U)CML warning thus indicating that the attribute
values of the plugs are not alike, but the connection is feasible.
When using a more rigid rule set that does not allow non-equal
values for connected plugs, this connection might be marked as
erroneous.
Another error can be detected within the power supply and is
explained in the following subsection.

Examination of the power supply connection: The
diagram displays a third connection between plugs 3a and 3b.
This connection models the channel for the voltage of a directed
current between OBDH and camera. Both plugs are tagged as
being electronic and provide/consume an amount of mV given
as an integer value. These are the only congruities of the
description fields belonging to plugs 3a and 3b.
The stepping given within the plugs differs by 50 mV, but the
source increases by 100mV and could – by the stepping alone –
be consumed by the receiving plug that allows steps of 50mV.
Besides the stepping, the two plugs conflict in the range of mV
they offer/can receive and in their expected starting values; the
output plug 3a delivers a narrower range of voltages than input
plug 3b is constructed to accept. This alone would – given a
normal ruleset for compatibility – not lead to an error. If,
furthermore, the starting voltage of the consuming plug is lower
than the lowest deliverable voltage by the source, a
compatibility error is certain; a given set of compatibility rules
should always evaluate this mismatch as compatibility error,
because an implementation of this electrical connection would
reveal that a component receiving a higher voltage than it is laid
out for will be damaged. For this kind of information, experts
are needed, who assert that this damage is certain (as mentioned
within the identification step of the DIEMIC process).

In the example discussed within this section, three different
types of compatibility conclusions have been discussed
including:
• strict compatibility due to identical needs on both sides,
• a compatibility warning because of non-identical, but

possibly compatible plugs and
• a compatibility error occurring when differing values for

an attribute cause malfunctions within the implemented
system

6. CONCLUSIONS
Within this paper, the modeling language (U)CML, its functions
and the applicability for space engineering were shown.
We described, how (U)CML could be used within phased
development according to ECSS-M-30A. Compatibility
management has been introduced as additional knowledge area
within space system development and as such is carried out in a
micro process of its own. The steps of this DIEMIC micro
process have been explained and it was shown how to embed
compatibility management into the phases of the ESA standard.
For the cross-domain model that is required to allow for
compatibility tests within even early development phases, we
chose (U)CML, which meets the requirements for multi-
disciplinary modeling of compatibility best.
This paper was concluded with a case study on the development
of the CubeSat MOVE. This student project involved
mechanical, electrical and software engineering and their
respective models. We translated the three models to (U)CML
and merged them into a common model. A simple compatibility
test was demonstrated on the cross-domain model, which

showed three different cases of compatibility – strict
compatibility or the exact match of interface descriptions, non-
strict compatibility or conformity of interface descriptions by a
compatibility rule and a compatibility error.
Currently, an editor for (U)CML is being developed at the
Technische Universität München. This editor will be used to
facilitate the modeling of large systems and allow for first
applications of (U)CML within companies that are concerned
with developing (complex) technical systems.

7. REFERENCES
[1] F. Bornemann, S. Wenzel, Managing compatibility

throughout the product life cycle of embedded systems
– Definition and application of an effective process to
control compatibility, INCOSE, 2006.

[2] M. Brandstätter, Modellbasierte Kompatibilitäts-
bewertung – Integration von modellbasierter
Kompatibilitätsbestimmung in das Systems
Engineering Umfeld, PhD Thesis, Technische
Universität München, to appear.

[3] M. Broy, “Automotive software and systems
engineering”, Third ACM and IEEE International
Conference on Formal Methods and Models for Co-
Design, 2005. MEMOCODE ’05. Proceedings, 2005,
pp. 143-149.

[4] CubeSat Community Website,
http://cubesat.calpoly.edu/

[5] ESA-ESTEC Requirements and Standard Division,
ECSS-M-30A Space project management, Project
phasing and planning, Noordwijk, 1996.

[6] R. Haberfellner, P. Nagel, M. Becker, Systems
Engineering – Methodik und Praxis, Orell Füssli, 11
edition, 2002.

[7] M. Kayaalp, Modeling and Learning Methods,
Technical Report LHNCBC-TR-2004-002, U.S.
National Library of Medicine, 2004.

[8] D. Koss, M. Brandstätter, (U)CML – A Modeling
Language for Modeling and Testing Compatibility,
Software Engineering and Applications (SEA 2007),
2007.

[9] Move project, http://www.move2space.de/home.php
[10] M. Schiffner, Eine objektbasierte

Modellierungsmethode für die simultane
Systementwicklung, PhD Thesis, Verlag Dr. Hut,
2008

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 200916 ISSN: 1690-4524

	ZI015IH

