
Accelerating Image Based Scientific Applications
using Commodity Video Graphics Adapters

Randy P. Broussard

Systems Engineering Department, U.S. Naval Academy
Annapolis, MD 21402, USA

and

Robert W. Ives

Electrical and Computer Engineering Department, U.S. Naval Academy
Annapolis, MD 21402, USA

ABSTRACT
The processing power available in current video graphics cards
is approaching super computer levels. State-of-the-art graphical
processing units (GPU) boast of computational performance in
the range of 1.0-1.1 trillion floating point operations per second
(1.0-1.1 Teraflops). Making this processing power accessible to
the scientific community would benefit many fields of research.
This research takes a relatively computationally expensive
image-based iris segmentation algorithm and hosts it on a GPU
using the High Level Shader Language which is part of DirectX
9.0. The selected segmentation algorithm uses basic image
processing techniques such as image inversion, value squaring,
thresholding, dilation, erosion and a computationally intensive
local kurtosis (fourth central moment) calculation. Strengths and
limitations of the DirectX rendering pipeline are discussed. The
primary source of the graphical processing power, the pixel or
fragment shader, is discussed in detail. Impressive acceleration
results were obtained. The iris segmentation algorithm was
accelerated by a factor of 40 over the highly optimized C++
version hosted on the computer’s central processing unit. Some
parts of the algorithm ran at speeds that were over 100 times
faster than their C++ counterpart. GPU programming details
and HLSL code samples are presented as part of the
acceleration discussion.

Keywords: Image processing, DirectX, GPU, graphics card.

1. INTRODUCTION
Research has been performed to utilize the computational power
within video graphics cards for scientific computing tasks such
as sparse matrix solutions [1], linear algebra operations [2], fast
Fourier transforms [3], discrete wavelet transforms [4], [5], and
image-based relighting [6]. This research will focus on the field
of iris recognition to demonstrate GPU acceleration. The iris is
currently believed to be one of the most accurate biometrics for
human identification. Error rates of one in ten million have been
achieved in production systems [7].

Iris processing demands
Current iris identification algorithms execute quickly on images
that are controlled with respect to lighting, resolution,
orthogonality and occlusion. When images are acquired under
non-ideal conditions, additional image processing is often
required. Non-orthogonal iris images (viewed from an angle
other than perpendicular to the iris) require extra processing to

transform the image to a viewing angle that is compatible for
comparison to a stored orthogonal database [8]. Advanced
image processing techniques that detect and remove the effects
of lighting (glint) and occlusion (eyelids and eyelashes) can also
introduce a processing delay in a real-time identification
system. High resolution systems such as “Iris on the move” and
“Iris at a distance” require the real-time processing of high
resolution images. As processing demands grow, so does the
need for increased computational power. This research takes a
relatively computationally expensive iris segmentation
algorithm and hosts it on a GPU using the High Level Shader
Language (HLSL) which is part of DirectX 9.0. The goal of this
research is to demonstrate that an image processing-based
scientific algorithm can be greatly accelerated using commodity
graphics adapters. The selected segmentation algorithm uses
basic image processing techniques such as image inversion,
value squaring, thresholding, dilation, erosion and a
computationally intensive local kurtosis (fourth central moment)
calculation to identify the pupil and limbic boundaries of the
iris.

The graphics processing unit
One approach to accelerate an image-based scientific algorithm
is to move the processing into dedicated hardware such as a
math coprocessor or a Field Programmable Gate Array (FPGA).
The powerful graphics processing unit (GPU) found in
commodity video graphics cards provide a low cost and widely
available alternative to these dedicated solutions. The fact that
the speed of modern graphics hardware has grown at a rate of
3.0-3.7 every 18 months, while CPU speeds have only grown by
a factor of 2.2 makes GPUs even more appealing [9]. A GPU is
a special purpose processor that is optimized for graphical
processing of triangle vertices and individual pixels. State-of-
the-art GPUs claim theoretical computational performance in
the range of 1.0-1.1 trillion floating point operations per second
(1.0-1.1 Teraflops). When multiple GPUs are placed within
standard computer systems, the processing power of a single
computer can approach super computer levels. Another
advantage of the video graphics card is that video memory
bandwidth is often greater than the memory bandwidth within
the host computer. The memory bandwidth of the fastest
consumer video card (GeForce GTX 285, circa 2009) is
currently 159 Gigabytes per second while the fastest 64-bit
computer memory (DDR3-1600) has a bandwidth of 12.8
Gigabytes per second [10].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 3 - YEAR 2009 1ISSN: 1690-4524

The Teraflop processing power of the GPU combined with the
Gigabyte bandwidth of the video graphics card can provide
tremendous acceleration for scientific applications. The GPU’s
operation is not coupled to the computer’s CPU, thus both can
run in parallel. GPU code that conforms to the DirectX
specification (or some other high level interface) could
automatically take advantage of advances in GPU performance
as they appear [11]. Some code would not even require a
recompile.

A GPU contains multiple pipelines which perform many
graphics operations such as coordinate transformations, lighting
effects, triangle texturing and pixels rendering. Only the pixel
rendering pipeline was evaluated in this research

DirectX
DirectX is a Microsoft Windows-based Application
Programming Interface (API) which offers programming
functions that can access the graphical processing capabilities
within a video graphics card. In DirectX, three-dimensional
objects are formed using multiple triangles (facets). These
triangles represent the surface area of the object. By
manipulating the location, orientation and size of these
triangles, the object can be moved to any location and
orientation within a three-dimensional space. By manipulating
the texture and color within these triangles, many lighting and
visual effects can be produced. The entire DirectX framework is
based on scaling and rotating a set of triangles, and
geometrically applying lighting and texture to those triangles. In
current video graphics cards, these functions are accelerated in
hardware. Once the triangle manipulation is complete, the three-
dimensional objects are projected onto a two-dimension plane
which represents the output screen. The final stage of the
DirectX pipeline is a high speed Arithmetic Logic Unit (ALU),
called a pixel shader, which is used to manipulate the output
image on a pixel-by-pixel basis.

The pixel shader
The pixel shader (or fragment shader), is the primary source of
the graphical processing power utilized to perform this research.
When stored in video memory, a pixel is defined to contain four
color components; the colors red, green, blue and an extra
component. Many GPUs have processing pipelines that are 128-
512 bits wide. These wide pipelines allow all four pixel
components to be processed simultaneously. Pixel components
can range from 32-bit to 128-bit floating point values. If
desired, this parallelism could also be used to simultaneously
process four grayscale images by loading each image into a
separate color plane. Current GPUs have as many as 240 pixel
shaders that operate in parallel. This means a GPU can process
240 pixels simultaneously. Many pixel shaders have multiple
arithmetic logic units and can perform multiple mathematical
operations in parallel [12]. Figure 1 illustrates some of the
processing properties of a pixel shader.

The GPU simultaneously executes identical instructions on each
available pixel shader to process individual image pixels. This
simultaneous execution of multiple pixel shaders forms a Single
Instruction Multiple Data (SIMD) architecture [11], [13]. This
architecture is highly parallel, but also introduces several
significant restrictions on algorithm flow [12]. A pixel shader

can operate on multiple input pixels, but the output value is
always placed in a separate output image. This means the pixel
shader is highly suitable for neighborhood operations such as
filtering and morphology [14]. Since the output image is
separate from the input image, no in-place processing can be
performed. The pixel shader also does not have access to the
output of other pixel shaders, thus no global image processing
can be performed in a single pass. This restriction causes the
GPU to be less suitable for global image calculations such as
determining the mean or standard deviation of an image.

Extra Color Plane
Blue Color Plane

Green Color Plane
Red Color Plane

Input Image
(Texture)

32-128 bits per pixel

Extra Color Plane
Blue Color Plane

Green Color Plane
Red Color Plane

Output
Image

(Texture)
32-128 bits per pixel

Pixel Shader

Can access
multiple locations

within multiple
input images

Simultaneously
processes 4 color

planes

Multiple arithmetic
logic units for

parallel operations

Can only output a
single pixel to a
predetermined
output location

Fig. 1. The high level architecture and functionality of a hardware
pixel shader contained within a graphics processing unit.

2. APPROACH

To demonstrate the acceleration afforded by using a video
card’s GPU, portions of a computationally intensive iris
segmentation algorithm were implemented in the GPU. This
segmentation algorithm uses image inversion, value squaring,
dilation, erosion and a computationally intensive local kurtosis
calculation to identify the pupil and limbic boundaries of the iris
[15]. The general steps within the algorithm can be seen in Fig.
2. Additional details about the algorithm can be found in [15].
As a proof of concept, only the portions of the algorithm that
were easily ported and were suitable to processing in the GPU
were attempted. It is possible that the overall algorithm could be
modified to enhance parallelism, but no attempt was made.

To measure acceleration, sample images were processed using
the original CPU hosted functions and the video graphics card

1. Find pupil boundary:
a. Invert and square pixel values.
b. Apply statistical threshold.
c. Dilate 15 pixels.
d. Erode 15 pixels.
e. Group connected pixels into objects.
f. Select object that is most pupil-like.

2. Find limbic boundary:

a. Compute local kurtosis of image.
b. Find areas of low kurtosis and convert to

a binary image
c. Fit an annulus the the arcs that

correspond to the location of the limbic
boundary

Fig. 2. General steps performed to segment iris.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 3 - YEAR 20092 ISSN: 1690-4524

hosted functions. Average execution times for each version of
the function are presented and compared to determine algorithm
acceleration. The computer system clock was used to measure
execution time. Since the available C language clock function
had a resolution of 15 milliseconds, each function was executed
1000 times and the average execution time was used for
comparison. All CPU executed video graphics code was written
using the DirectX 9.0 interface. The DirectX High Level Shader
Language for pixel shader version 2.0b was used to compose all
GPU executed code. All CPU code was executed on an AMD
Athlon X2 3800+ dual core system with 4 gigabytes of memory.
The GPU code was executed on a NVidia GeForce 7900 GT
video card containing 512 Mbytes of memory. Both the
computer system and the graphics card were near state-of-the-
art in mid-2006, thus representing comparable technologies.

3. PROGRAMMING THE PIXEL SHADER
To upload an iris image to the video graphics card, the image is
copied to a user-defined texture map that is created in video
memory. The first step is to create an object that occupies the
entire output region of the DirectX pipeline. This is done by
locating two triangles in three-dimensional space to represent a
rectangle, that when projected onto the output screen will
exactly cover the output screen.

The pixel shader is used map the input texture to the triangles
located in the output image. Figure 3 depicts the mapping of the
texture (iris image) to the two triangles. A pixel shader will be
called once by the GPU for each pixel that lies within the
defined triangles. With each call to a pixel shader, the GPU
passes the x and y location of a single output pixel to the shader.
The pixel shader is expected to produce a four component (red,
green, blue, extra) value for that pixel. To perform image
processing, the pixel shader can access pixels from one or more
input images (called textures), process that information and pass
the result back to the GPU for storage in the output image. This
process is repeated, by the GPU, for each output pixel within
the defined triangles.

The pixel shader can access multiple pixels from one of many
input images, but has no access to the output image. The output
triangles can be mapped to any location in the input image.
Locating the triangle so they only cover a portion of the input
image causes only that portion of the input image to be

processed. This negates the need for image cropping and can
accelerate processing.

The pixel shader can be programmed in assembly language, or
in a High Level Shader Language which syntactically is nearly
identical to the C programming language. Looping constructs
and logical tests are supported, but can have a negative impact
on performance. Loops that have been unrolled (restructured as
a finite sequence of sequential steps) provide better
performance. Pixel shader code should be short and simple to
enhance the GPU compiler’s ability to optimize the code for the
available hardware. Fig. 4 shows an example of the pixel shader
code used to perform a four-connected one-pixel morphological
dilation (eight connected dilation was used in this research). The
float2 and float4 data types are arrays of two and four floating
point values respectively.

The GPU processes all pixel values using 32-bit floating point
math and normalizes them by default. Note the floating point
offsets used to access neighboring pixels. The pixel shader
normalizes all image coordinates to be within the range 0.0 to
1.0 (inclusive). Initially, achieving precise pixel alignment was
a significant challenge when mapping a texture to triangles [14].
See the DirectX documentation for more information on this
topic [17].

Since the pixel shader does not have access to the output image,
many algorithms will need to be executed in discrete sequential
stages. To execute a multi-step algorithm in the GPU, a
technique known as ping-ponging is used [14]. A traditional
GPU program would process each screen pixel once and render
the output to the viewer’s screen. To use this output as input to
another processing stage, the GPU is configured to render to a
texture map instead of the screen. By using two textures and
alternating which is input and which is output, the GPU can

float4 PixelShaderDilate(float2 PixelCoord :
 TEXCOORD0) : COLOR
{
 float4 output;
 const float Dx=1.0f/1280.0f;
 const float Dy=1.0f/960.0f;

 // sample neighborhood in texture
 PixelCoord.y += Dy; // check pixel above
 output = tex2D(BaseTex, PixelCoord);

 PixelCoord.y -= 2*Dy; // check pixel
below
 output += tex2D(BaseTex, PixelCoord);

 PixelCoord.x += Dx; // check pixel to
 PixelCoord.y += Dy; // the right
 output += tex2D(BaseTex, PixelCoord);

 PixelCoord.x -= 2*Dx; // check to left
 output += tex2D(BaseTex, PixelCoord);

 // binarize and return output value
 output = saturate(output);
 return output;
}

Fig. 4. An example of the pixel shader code used to perform a
four-connected one-pixel morphological dilation.

Fig. 3. Two triangles are used to define the image region processed
by the DirectX rendering pipeline [16].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 3 - YEAR 2009 3ISSN: 1690-4524

perform multi-step image processing. Both textures exist in the
graphics card memory, thus the GPU can process the data at full
speed.

Multiple pixel shader programs can be compiled and passed to
the GPU in any order at run time. Images processed by the GPU
can be retrieved by locking the video card’s memory and
copying the image data back to system memory. The GPU’s
execution runs in parallel with and is decoupled from the CPU.
Function calls to the GPU place a task request in the GPU’s
queue and return immediately. This means the system CPU can
perform other tasks while the GPU executes its tasks. The only
time the two processing units are synchronized is when the
GPU’s memory is locked for a data transfer. The locking
mechanism will wait until the GPU has finished modifying the
render target before giving the CPU access.

4. RESULTS
All image processing functions were accelerated using the video
graphics card. As can be seen in Table 1, the acceleration
ranged from 13 times the original speed to 103 times the
original speed. The longer, more complex functions, such as
erosion, were accelerated to a greater degree than the shorter,
less complex functions such as thresholding. As the number of
steps in an algorithm increase, the possibility for parallelism and
optimization also increase. The overall iris segmentation
algorithm was accelerated 39 times the speed of the CPU-based
algorithm. Transferring the image to and from the video card
took nearly as much time as the total combined operations
performed within the video card. Due to the overhead of
transferring images between system memory and video
memory, longer, more complex algorithms would gain greater
benefit from GPU acceleration than shorter, less complex ones.
Note that when image transfer time is included, performing
thresholding within a video graphics card takes longer than
performing this function on the CPU.
While conducting the experiments, it was found that performing
a large morphological operation in many small steps was faster
than performing the entire operation in one step. For example, it
was much faster to perform 15 one-pixel dilations than to
perform a single 15-pixel dilation. The authors theorize that the
slow down is due to the size of the pixel shader’s program cache
or due to the inability of the GPU compiler to optimize the more
complex looping code required for the larger dilation. It was
also found that logical tests introduced a speed penalty. It was
faster to dilate an entire image than it was to omit processing of
“on” pixels using an if(…) statement.

To determine the effect of image size on acceleration, all steps
listed in Table 1 were performed on images of various sizes.
The various sized images were scaled versions of the 1280x960
resolution images used in the previous experiment. Table 2
shows how acceleration is affected by image size. For smaller
images, the processing time for both the CPU and GPU code
increased linearly as image size increased. As image size grew,
the processing time for the CPU code grew at a faster rate than
the processing time for the GPU code. Thus, acceleration
increases as image size increases.

53.0 times134 mS7123 mS2560 x 1920

40.8 times76 mS3113 mS1920 x 1440

39.1 times35 mS1369 mS1280 x 960

37.6 times11 mS414 mS640 x 480

31.0 times4 mS130 mS320 x 240

AccelerationGPUCPUResolution

Acceleration as image resolution increases

53.0 times134 mS7123 mS2560 x 1920

40.8 times76 mS3113 mS1920 x 1440

39.1 times35 mS1369 mS1280 x 960

37.6 times11 mS414 mS640 x 480

31.0 times4 mS130 mS320 x 240

AccelerationGPUCPUResolution

Acceleration as image resolution increases

Table 2. The effects of image size on execution time and
acceleration.

39.1 times35 mS1369 mSTotal

n/an/a140 mSConvert Image type

n/a17 mSn/aTransfer Image to/from VGA

103.8 times8 mS830 mSErode (x15)

41.0 times8 mS328 mSDilate (x15)

13.0 times1 mS13 mSThreshold Values

58.0 times1 mS58 mSInvert and Square Values

AccelerationGPUCPUProcessing Step

Processing a 1280 x 960 image

39.1 times35 mS1369 mSTotal

n/an/a140 mSConvert Image type

n/a17 mSn/aTransfer Image to/from VGA

103.8 times8 mS830 mSErode (x15)

41.0 times8 mS328 mSDilate (x15)

13.0 times1 mS13 mSThreshold Values

58.0 times1 mS58 mSInvert and Square Values

AccelerationGPUCPUProcessing Step

Processing a 1280 x 960 image

Table 1. Execution times for the CPU- and GPU-based functions,
and the acceleration achieved.

Figure 5 shows a plot of the processing time vs. image size.
Note the line representing CPU performance has two distinct
slopes. The reason the line has two slopes is that the CPU
contains an internal two megabyte (Mbyte) level two memory
cache. When image size exceeded two Mbytes, image
processing could no longer be performed entirely within the
CPU. Accessing system memory introduced a performance
penalty resulting in the distinct second slope for images larger
than two Mbytes. The GPU contains no internal cache and
directly accesses video memory which is typically faster than
system memory. As can be seen in Fig. 5, the GPU processing
time scaled linearly as image size increased. It should be noted
that all experiments were performed using only one of the four
color planes within each pixel. If the image were divided into
four and placed into all four planes, the GPU execution times
should theoretically decrease by a factor of four. Accelerations
of 10 to 100 times the CPU based algorithm speed have also
been cited in [18] and [19]. This indicates that the current

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of image pixels (Megapixels)

To
ta

l e
xe

cu
tio

n
tim

e
(M

ill
is

ec
on

ds
)

CPU processing time

GPU processing time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of image pixels (Megapixels)

To
ta

l e
xe

cu
tio

n
tim

e
(M

ill
is

ec
on

ds
)

CPU processing time

GPU processing time

Fig. 5. Plot of the effects of image size on execution time.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 3 - YEAR 20094 ISSN: 1690-4524

function implementations are taking advantage of the inherent
parallelism in the GPU architecture.

5. CONCLUSION
Using a video graphics card can accelerate image-based
scientific algorithms by a factor of 10 to 100 times the speed of
a CPU based algorithm. The acceleration achieved on video
graphics cards is largely unaffected by and scales linearly with
image size. Some longer, more complex algorithms will execute
more quickly if the algorithm is divided into many small steps
versus performing the entire operation in one step. The DirectX
pipeline is complex and highly parallel which presents many
technical challenges when performing global image processing
functions such as summation and average value computation.
Overall, commodity video graphics adapters have proven to be a
useful tool in accelerating the performance of computationally
intensive algorithms.

6. REFERENCES
[1] J. Bolz, I. Farmer, E. Grinspun, P. Schreoder, “Sparse

matrix solvers on the GPU: Conjugate gradients and
multigrid”, in ACM Trans. Graphics, 2003.

[2] J. Kruuger, R. Westermann, “Linear algebra operators for
GPU implementation of numerical algorithms”, in ACM
Trans. Graphics, 2003.

[3] K. Moreland, E. Angel, “The FFT on a GPU”, in Proc.
HWWS, 2003.

[4] T.-T. Wong, C.-S. Leung, P.-A. Heng, J. Wang, “Discrete
Wavelet Transform on Consumer-Level Graphics
Hardware”, IEEE Transactions on Multimedia, Vol. 9,
No. 3, pp. 668-673, April 2007.

[5] C. Tenllado, et. al., “Parallel Implementation of the 2D
Discrete Wavelet Transform on Graphics Processing Units:
Filter Bank versus Lifting”, IEEE Transactions on
Parallel and Distributed Systems, March 2008 (Vol. 19,
No. 3) pp. 299-310.

[6] T.-T. Wong, S.-H. Or, C.-W. Fu, “Real-time relighting of
compressed panoramas”, in Graphics Programming
Methods, J. Lander, Ed. New York: Charles Rivers Media,
2003, pp. 375-388.

[7] J. Daugman, "Probing the uniqueness and randomness of
IrisCodes: Results from 200 billion iris pair comparisons."

2006 Proceedings of the IEEE, vol. 94, no. 11, pp 1927-
1935.

[8] L.R. Kennell, R.N. Rakvic, R.P. Broussard, R.W. Ives,
"Segmentation of Off-Axis Iris Images", published as a
chapter in the Biometrics Encyclopedia, Springer
publishing, winter 2008.

[9] M. Wloka, “Batch, Batch, Batch: What does it really
mean?”, Game Developers Conference,
http://developer.nvidia.com/docs/IO/8230/BatchBatchBatc
h.pdf.

[10] http://www.nvidia.com/object/product_geforce_gtx_285_u
s.html, accessed 31 July 2009.

[11] V. Moya, et. al., “Shader Performance Analysis on a
Modern GPU Architecture”, Proceedings of the 38th
Annual IEEE/ACM International Symposium on
Microarchitecture, 0-7695-2440-0/05, 2005

[12] WO02103638: Programmable Pixel Shading Architecture,
technical document from NVIDIA CORP., December 27,
2002.

[13] A. Purde, et. al., “Pixel shader based real-time image
processing for surface metrology”, 2004 Instrumentation
and Measurements Technology Conference, Como,
Italy, May 18-20, 2004.

[14] J.L. Mitchel, “Image Processing with 1.4 Pixel Shaders in
Direct3d”, an excerpt from ShaderX: Vertex and Pixel
Shader Tips and Tricks, Wordware Publishing Inc.,
2002, ISBN 1-55622-041-3,

[15] L.R. Kennell, R.W. Ives, R.M. Gaunt, “Binary morphology
and local statistics applied to iris segmentation for
recognition,” Proceedings of the 13th Annual
International Conference on Image Processing, Oct.
2006, in press.

[16] [2] Monro, D. M., Rakshit, S., and Zhang, D, University
of Bath, U.K. Iris Image Database,
http://www.bath.ac.uk/elec-eng/pages/sipg/irisweb.

[17] http://msdn.microsoft.com/en-us/directx/default.aspx.
[18] J.D. Owens, et. al., “A survey of general-purpose

computation on graphics hardware”, Computer Graphics
Forum, vol. 26, 2007.

[19] B. Han, B. Zhou, “High Speed Visual Saliency
Computation on GPU”, 2007 IEEE International
Conference on Image Processing, San Antonio, TX,
September 16-19, 2007.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 3 - YEAR 2009 5ISSN: 1690-4524

http://www.bath.ac.uk/elec-eng/pages/sipg/irisweb

	ZS049MC

