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ABSTRACT 
The processing power available in current video graphics cards 
is approaching super computer levels. State-of-the-art graphical 
processing units (GPU) boast of computational performance in 
the range of 1.0-1.1 trillion floating point operations per second 
(1.0-1.1 Teraflops). Making this processing power accessible to 
the scientific community would benefit many fields of research. 
This research takes a relatively computationally expensive 
image-based iris segmentation algorithm and hosts it on a GPU 
using the High Level Shader Language which is part of DirectX 
9.0. The selected segmentation algorithm uses basic image 
processing techniques such as image inversion, value squaring, 
thresholding, dilation, erosion and a computationally intensive 
local kurtosis (fourth central moment) calculation. Strengths and 
limitations of the DirectX rendering pipeline are discussed. The 
primary source of the graphical processing power, the pixel or 
fragment shader, is discussed in detail. Impressive acceleration 
results were obtained. The iris segmentation algorithm was 
accelerated by a factor of 40 over the highly optimized C++ 
version hosted on the computer’s central processing unit. Some 
parts of the algorithm ran at speeds that were over 100 times 
faster than their C++ counterpart. GPU programming details 
and HLSL code samples are presented as part of the 
acceleration discussion. 
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1. INTRODUCTION 
Research has been performed to utilize the computational power 
within video graphics cards for scientific computing tasks such 
as sparse matrix solutions [1], linear algebra operations [2], fast 
Fourier transforms [3], discrete wavelet transforms [4], [5], and 
image-based relighting [6]. This research will focus on the field 
of iris recognition to demonstrate GPU acceleration. The iris is 
currently believed to be one of the most accurate biometrics for 
human identification. Error rates of one in ten million have been 
achieved in production systems [7].
 

Iris processing demands 
Current iris identification algorithms execute quickly on images 
that are controlled with respect to lighting, resolution, 
orthogonality and occlusion. When images are acquired under 
non-ideal conditions, additional image processing is often 
required. Non-orthogonal iris images (viewed from an angle 
other than perpendicular to the iris) require extra processing to 

transform the image to a viewing angle that is compatible for 
comparison to a stored orthogonal database [8]. Advanced 
image processing techniques that detect and remove the effects 
of lighting (glint) and occlusion (eyelids and eyelashes) can also 
introduce a processing delay in a real-time identification 
system. High resolution systems such as “Iris on the move” and 
“Iris at a distance” require the real-time processing of high 
resolution images. As processing demands grow, so does the 
need for increased computational power. This research takes a 
relatively computationally expensive iris segmentation 
algorithm and hosts it on a GPU using the High Level Shader 
Language (HLSL) which is part of DirectX 9.0. The goal of this 
research is to demonstrate that an image processing-based 
scientific algorithm can be greatly accelerated using commodity 
graphics adapters. The selected segmentation algorithm uses 
basic image processing techniques such as image inversion, 
value squaring, thresholding, dilation, erosion and a 
computationally intensive local kurtosis (fourth central moment) 
calculation to identify the pupil and limbic boundaries of the 
iris. 

The graphics processing unit 
One approach to accelerate an image-based scientific algorithm 
is to move the processing into dedicated hardware such as a 
math coprocessor or a Field Programmable Gate Array (FPGA). 
The powerful graphics processing unit (GPU) found in 
commodity video graphics cards provide a low cost and widely 
available alternative to these dedicated solutions. The fact that 
the speed of modern graphics hardware has grown at a rate of 
3.0-3.7 every 18 months, while CPU speeds have only grown by 
a factor of 2.2 makes GPUs even more appealing [9]. A GPU is 
a special purpose processor that is optimized for graphical 
processing of triangle vertices and individual pixels. State-of-
the-art GPUs claim theoretical computational performance in 
the range of 1.0-1.1 trillion floating point operations per second 
(1.0-1.1 Teraflops). When multiple GPUs are placed within 
standard computer systems, the processing power of a single 
computer can approach super computer levels. Another 
advantage of the video graphics card is that video memory 
bandwidth is often greater than the memory bandwidth within 
the host computer. The memory bandwidth of the fastest 
consumer video card (GeForce GTX 285, circa 2009) is 
currently 159 Gigabytes per second while the fastest 64-bit 
computer memory (DDR3-1600) has a bandwidth of 12.8 
Gigabytes per second [10]. 
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The Teraflop processing power of the GPU combined with the 
Gigabyte bandwidth of the video graphics card can provide 
tremendous acceleration for scientific applications. The GPU’s 
operation is not coupled to the computer’s CPU, thus both can 
run in parallel. GPU code that conforms to the DirectX 
specification (or some other high level interface) could 
automatically take advantage of advances in GPU performance 
as they appear [11]. Some code would not even require a 
recompile.  
 
A GPU contains multiple pipelines which perform many 
graphics operations such as coordinate transformations, lighting 
effects, triangle texturing and pixels rendering. Only the pixel 
rendering pipeline was evaluated in this research 

DirectX 
DirectX is a Microsoft Windows-based Application 
Programming Interface (API) which offers programming 
functions that can access the graphical processing capabilities 
within a video graphics card. In DirectX, three-dimensional 
objects are formed using multiple triangles (facets). These 
triangles represent the surface area of the object. By 
manipulating the location, orientation and size of these 
triangles, the object can be moved to any location and 
orientation within a three-dimensional space. By manipulating 
the texture and color within these triangles, many lighting and 
visual effects can be produced. The entire DirectX framework is 
based on scaling and rotating a set of triangles, and 
geometrically applying lighting and texture to those triangles. In 
current video graphics cards, these functions are accelerated in 
hardware. Once the triangle manipulation is complete, the three-
dimensional objects are projected onto a two-dimension plane 
which represents the output screen. The final stage of the 
DirectX pipeline is a high speed Arithmetic Logic Unit (ALU), 
called a pixel shader, which is used to manipulate the output 
image on a pixel-by-pixel basis.  

The pixel shader 
The pixel shader (or fragment shader), is the primary source of 
the graphical processing power utilized to perform this research. 
When stored in video memory, a pixel is defined to contain four 
color components; the colors red, green, blue and an extra 
component. Many GPUs have processing pipelines that are 128-
512 bits wide. These wide pipelines allow all four pixel 
components to be processed simultaneously. Pixel components 
can range from 32-bit to 128-bit floating point values. If 
desired, this parallelism could also be used to simultaneously 
process four grayscale images by loading each image into a 
separate color plane. Current GPUs have as many as 240 pixel 
shaders that operate in parallel. This means a GPU can process 
240 pixels simultaneously. Many pixel shaders have multiple 
arithmetic logic units and can perform multiple mathematical 
operations in parallel [12]. Figure 1 illustrates some of the 
processing properties of a pixel shader. 
 
The GPU simultaneously executes identical instructions on each 
available pixel shader to process individual image pixels. This 
simultaneous execution of multiple pixel shaders forms a Single 
Instruction Multiple Data (SIMD) architecture [11], [13]. This 
architecture is highly parallel, but also introduces several 
significant restrictions on algorithm flow [12]. A pixel shader 

can operate on multiple input pixels, but the output value is 
always placed in a separate output image. This means the pixel 
shader is highly suitable for neighborhood operations such as 
filtering and morphology [14]. Since the output image is 
separate from the input image, no in-place processing can be 
performed. The pixel shader also does not have access to the 
output of other pixel shaders, thus no global image processing 
can be performed in a single pass. This restriction causes the 
GPU to be less suitable for global image calculations such as 
determining the mean or standard deviation of an image. 

Extra Color Plane
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Fig. 1. The high level architecture and functionality of a hardware 
pixel shader contained within a graphics processing unit. 

2. APPROACH 
 
To demonstrate the acceleration afforded by using a video 
card’s GPU, portions of a computationally intensive iris 
segmentation algorithm were implemented in the GPU. This 
segmentation algorithm uses image inversion, value squaring, 
dilation, erosion and a computationally intensive local kurtosis 
calculation to identify the pupil and limbic boundaries of the iris 
[15]. The general steps within the algorithm can be seen in Fig. 
2. Additional details about the algorithm can be found in [15]. 
As a proof of concept, only the portions of the algorithm that 
were easily ported and were suitable to processing in the GPU 
were attempted. It is possible that the overall algorithm could be 
modified to enhance parallelism, but no attempt was made. 
 
To measure acceleration, sample images were processed using 
the original CPU hosted functions and the video graphics card 

1. Find pupil boundary: 
a. Invert and square pixel values. 
b. Apply statistical threshold. 
c. Dilate 15 pixels. 
d. Erode 15 pixels. 
e. Group connected pixels into objects. 
f. Select object that is most pupil-like. 

 
2. Find limbic boundary: 

a. Compute local kurtosis of image. 
b. Find areas of low kurtosis and convert to 

a binary image 
c. Fit an annulus the the arcs that 

correspond to the location of the limbic 
boundary 

 
Fig. 2. General steps performed to segment iris. 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 20092 ISSN: 1690-4524



hosted functions. Average execution times for each version of 
the function are presented and compared to determine algorithm 
acceleration. The computer system clock was used to measure 
execution time. Since the available C language clock function 
had a resolution of 15 milliseconds, each function was executed 
1000 times and the average execution time was used for 
comparison. All CPU executed video graphics code was written 
using the DirectX 9.0 interface. The DirectX High Level Shader 
Language for pixel shader version 2.0b was used to compose all 
GPU executed code. All CPU code was executed on an AMD 
Athlon X2 3800+ dual core system with 4 gigabytes of memory. 
The GPU code was executed on a NVidia GeForce 7900 GT 
video card containing 512 Mbytes of memory. Both the 
computer system and the graphics card were near state-of-the-
art in mid-2006, thus representing comparable technologies. 

3. PROGRAMMING THE PIXEL SHADER 
To upload an iris image to the video graphics card, the image is 
copied to a user-defined texture map that is created in video 
memory. The first step is to create an object that occupies the 
entire output region of the DirectX pipeline. This is done by 
locating two triangles in three-dimensional space to represent a 
rectangle, that when projected onto the output screen will 
exactly cover the output screen. 
 
The pixel shader is used map the input texture to the triangles 
located in the output image. Figure 3 depicts the mapping of the 
texture (iris image) to the two triangles. A pixel shader will be 
called once by the GPU for each pixel that lies within the 
defined triangles. With each call to a pixel shader, the GPU 
passes the x and y location of a single output pixel to the shader. 
The pixel shader is expected to produce a four component (red, 
green, blue, extra) value for that pixel. To perform image 
processing, the pixel shader can access pixels from one or more 
input images (called textures), process that information and pass 
the result back to the GPU for storage in the output image. This 
process is repeated, by the GPU, for each output pixel within 
the defined triangles.  
 
The pixel shader can access multiple pixels from one of many 
input images, but has no access to the output image. The output 
triangles can be mapped to any location in the input image. 
Locating the triangle so they only cover a portion of the input 
image causes only that portion of the input image to be 

processed. This negates the need for image cropping and can 
accelerate processing.  
 
The pixel shader can be programmed in assembly language, or 
in a High Level Shader Language which syntactically is nearly 
identical to the C programming language. Looping constructs 
and logical tests are supported, but can have a negative impact 
on performance. Loops that have been unrolled (restructured as 
a finite sequence of sequential steps) provide better 
performance. Pixel shader code should be short and simple to 
enhance the GPU compiler’s ability to optimize the code for the 
available hardware. Fig. 4 shows an example of the pixel shader 
code used to perform a four-connected one-pixel morphological 
dilation (eight connected dilation was used in this research). The 
float2 and float4 data types are arrays of two and four floating 
point values respectively. 
 
The GPU processes all pixel values using 32-bit floating point 
math and normalizes them by default.  Note the floating point 
offsets used to access neighboring pixels. The pixel shader 
normalizes all image coordinates to be within the range 0.0 to 
1.0 (inclusive). Initially, achieving precise pixel alignment was 
a significant challenge when mapping a texture to triangles [14]. 
See the DirectX documentation for more information on this 
topic [17].  

Since the pixel shader does not have access to the output image, 
many algorithms will need to be executed in discrete sequential 
stages. To execute a multi-step algorithm in the GPU, a 
technique known as ping-ponging is used [14]. A traditional 
GPU program would process each screen pixel once and render 
the output to the viewer’s screen. To use this output as input to 
another processing stage, the GPU is configured to render to a 
texture map instead of the screen. By using two textures and 
alternating which is input and which is output, the GPU can 

float4 PixelShaderDilate(float2 PixelCoord : 
                         TEXCOORD0) : COLOR 
{ 
    float4 output; 
 const float Dx=1.0f/1280.0f; 
 const float Dy=1.0f/960.0f; 
  
    // sample neighborhood in texture 
 PixelCoord.y += Dy; // check pixel above 
 output = tex2D(BaseTex, PixelCoord); 
  
 PixelCoord.y -= 2*Dy; // check pixel 
below 
 output += tex2D(BaseTex, PixelCoord); 
  
 PixelCoord.x += Dx; // check pixel to 
 PixelCoord.y += Dy; // the right 
 output += tex2D(BaseTex, PixelCoord); 
  
 PixelCoord.x -= 2*Dx; // check to left 
 output += tex2D(BaseTex, PixelCoord); 
  
 // binarize and return output value 
 output = saturate(output);  
 return output; 
} 
 
Fig. 4. An example of the pixel shader code used to perform a 
four-connected one-pixel morphological dilation.

 
Fig. 3. Two triangles are used to define the image region processed 
by the DirectX rendering pipeline [16]. 
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perform multi-step image processing. Both textures exist in the 
graphics card memory, thus the GPU can process the data at full 
speed.  
 
Multiple pixel shader programs can be compiled and passed to 
the GPU in any order at run time. Images processed by the GPU 
can be retrieved by locking the video card’s memory and 
copying the image data back to system memory. The GPU’s 
execution runs in parallel with and is decoupled from the CPU. 
Function calls to the GPU place a task request in the GPU’s 
queue and return immediately. This means the system CPU can 
perform other tasks while the GPU executes its tasks. The only 
time the two processing units are synchronized is when the 
GPU’s memory is locked for a data transfer. The locking 
mechanism will wait until the GPU has finished modifying the 
render target before giving the CPU access.  

4. RESULTS 
All image processing functions were accelerated using the video 
graphics card. As can be seen in Table 1, the acceleration 
ranged from 13 times the original speed to 103 times the 
original speed. The longer, more complex functions, such as 
erosion, were accelerated to a greater degree than the shorter, 
less complex functions such as thresholding. As the number of 
steps in an algorithm increase, the possibility for parallelism and 
optimization also increase. The overall iris segmentation 
algorithm was accelerated 39 times the speed of the CPU-based 
algorithm. Transferring the image to and from the video card 
took nearly as much time as the total combined operations 
performed within the video card. Due to the overhead of 
transferring images between system memory and video 
memory, longer, more complex algorithms would gain greater 
benefit from GPU acceleration than shorter, less complex ones. 
Note that when image transfer time is included, performing 
thresholding within a video graphics card takes longer than 
performing this function on the CPU. 
While conducting the experiments, it was found that performing 
a large morphological operation in many small steps was faster 
than performing the entire operation in one step. For example, it 
was much faster to perform 15 one-pixel dilations than to 
perform a single 15-pixel dilation. The authors theorize that the 
slow down is due to the size of the pixel shader’s program cache 
or due to the inability of the GPU compiler to optimize the more 
complex looping code required for the larger dilation. It was 
also found that logical tests introduced a speed penalty. It was 
faster to dilate an entire image than it was to omit processing of 
“on” pixels using an if(…) statement. 
 

To determine the effect of image size on acceleration, all steps 
listed in Table 1 were performed on images of various sizes. 
The various sized images were scaled versions of the 1280x960 
resolution images used in the previous experiment. Table 2 
shows how acceleration is affected by image size. For smaller 
images, the processing time for both the CPU and GPU code 
increased linearly as image size increased. As image size grew, 
the processing time for the CPU code grew at a faster rate than 
the processing time for the GPU code. Thus, acceleration 
increases as image size increases. 

53.0 times134 mS7123 mS2560 x 1920

40.8 times76 mS3113 mS1920 x 1440

39.1 times35 mS1369 mS1280 x 960

37.6 times11 mS414 mS640 x 480

31.0 times4 mS130 mS320 x 240

AccelerationGPUCPUResolution

Acceleration as image resolution increases

53.0 times134 mS7123 mS2560 x 1920

40.8 times76 mS3113 mS1920 x 1440

39.1 times35 mS1369 mS1280 x 960

37.6 times11 mS414 mS640 x 480

31.0 times4 mS130 mS320 x 240

AccelerationGPUCPUResolution

Acceleration as image resolution increases

 
Table 2. The effects of image size on execution time and 
acceleration. 

39.1 times35 mS1369 mSTotal
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n/a17 mSn/aTransfer Image to/from VGA 

103.8 times8 mS830 mSErode (x15)

41.0 times8 mS328 mSDilate (x15)
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58.0 times1 mS58 mSInvert and Square Values

AccelerationGPUCPUProcessing Step

Processing a 1280 x 960 image
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Table 1. Execution times for the CPU- and GPU-based functions, 
and the acceleration achieved. 

 
Figure 5 shows a plot of the processing time vs. image size. 
Note the line representing CPU performance has two distinct 
slopes. The reason the line has two slopes is that the CPU 
contains an internal two megabyte (Mbyte) level two memory 
cache. When image size exceeded two Mbytes, image 
processing could no longer be performed entirely within the 
CPU. Accessing system memory introduced a performance 
penalty resulting in the distinct second slope for images larger 
than two Mbytes. The GPU contains no internal cache and 
directly accesses video memory which is typically faster than 
system memory. As can be seen in Fig. 5, the GPU processing 
time scaled linearly as image size increased. It should be noted 
that all experiments were performed using only one of the four 
color planes within each pixel. If the image were divided into 
four and placed into all four planes, the GPU execution times 
should theoretically decrease by a factor of four. Accelerations 
of 10 to 100 times the CPU based algorithm speed have also 
been cited in [18] and [19]. This indicates that the current 
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Fig. 5. Plot of the effects of image size on execution time. 
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function implementations are taking advantage of the inherent 
parallelism in the GPU architecture. 

5. CONCLUSION 
Using a video graphics card can accelerate image-based 
scientific algorithms by a factor of 10 to 100 times the speed of 
a CPU based algorithm. The acceleration achieved on video 
graphics cards is largely unaffected by and scales linearly with 
image size. Some longer, more complex algorithms will execute 
more quickly if the algorithm is divided into many small steps 
versus performing the entire operation in one step. The DirectX 
pipeline is complex and highly parallel which presents many 
technical challenges when performing global image processing 
functions such as summation and average value computation. 
Overall, commodity video graphics adapters have proven to be a 
useful tool in accelerating the performance of computationally 
intensive algorithms. 
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