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ABSTRACT 

Vertex coloring of a graph is the assignment of labels to the 
vertices of the graph so that adjacent vertices have different labels. 
In the case of polyhedral graphs, the chromatic number is 2, 3, or 4. 
Edge coloring problem and face coloring problem can be 
converted to vertex coloring problem for appropriate polyhedral 
graphs. 

We have been developed an interactive learning system of 
polyhedra, based on graph operations and simulated elasticity 
potential method, mainly for educational purpose.  

In this paper, we introduce a learning subsystem of vertex coloring, 
edge coloring and face coloring, based on minimum spanning tree 
and degenerated polyhedron, which is introduced in this paper. 

Keywords: Vertex Coloring, Polyhedral Graph, Animation, 
Visualization, Interactivity 

1. INTRODUCTION 

Vertex coloring of a graph is the assignment of labels to the 
vertices of the graph so that adjacent vertices have different labels 
[1-3]. The 4-colour theorem proved by Appel and Haken in 1977, 
indicates that every planar graph is 4-colourable. Every polyhedral 
graph is 3-connected planar graph, according to the theorem by 
Steinitz. Therefore, it is also 4-colourable. Consequently, the 
chromatic number of a polyhedral graph is 2, 3, or 4. There are 
various coloring methods, for example, greedy coloring algorithm, 
sequential coloring algorithm, distributed algorithm, decentralized 
algorithm, and so on. Determination of 2-colourability is 
equivalent to testing bipartiteness, therefore, it is computable in 
linear time. However, in the case of more than 2 coloring, the 
computational complexity is known to be NP-complete, even for 
3-colourability [4], and 4-colourability [5]. 

The author has been developed an interactive learning system 
of polyhedra, based on graph operations and simulated elasticity 
potential method, mainly for educational purpose [6-10]. By using 
this system, the user or the learner can make and handle various 
polyhedra, including Platonic solids, Archimedean solids [9], 
Kepler-Poinsot solids [7], fullerenes molecular structures, and 
geodesic dome constructions. 

In this paper, we introduce a learning subsystem of interactive 
vertex coloring, edge coloring, and face coloring, based on 
minimum spanning tree and degenerated polyhedron. Vertex 
coloring of polyhedral graph itself is trivial in a mathematical 
sense, and it is not novel also in a practical sense. However, 
visibility and interactivity can be helpful for the user to understand 
intuitively the mathematical structure and the computational 
scheme, by visualizing the process of the calculation, and by 
allowing the user to contribute the computation. 

2. POLYHEDRON MODELING SYTEM 

In this section, we summarize the system of interactive modeling 
of polyhedra described in [6-10]. It consists of three subsystems: 
graph input subsystem, wire-frame subsystem, and polygon 
subsystem. 

Graph Input Subsystem 

Figure 1(a) shows a screen shot of graph input subsystem, where a 
graph isomorphic to truncated icosahedron is drawn. The first step 
of the modeling of polyhedron is drawing a polyhedral graph 
isomorphic to the intended polyhedron. In the subsystem, vertex 
addition, vertex deletion, edge addition, and edge deletion are 
implemented as fundamental operations. Some additional utilities 
are also implemented such as grid lines, grid snapping, vertex 
coloring according to degrees, and so on. 

Wire-Frame Subsystem 

Figure 1(b) shows a screen shot of wire-frame subsystem. After 
constructing a polyhedral graph the next step is arranging vertices 
in 3D space with virtual springs and Hooke’s law. Wire-frame 
polyhedron can be formed by controlling the natural length of 
virtual spring corresponding to three types of binary relations 
between pairs of vertices. 

Polygon Subsystem 

Figure 1(c) shows a screen shot of polygon subsystem. After 
arranging vertices in 3D space, the last step is detecting faces, 
selecting appropriate faces, and rendering the solid. Detecting 
n-polygon is equivalent to finding simple closed path with length n. 
Some additional utilities such as opening faces, meshed faces are 
implemented. 
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(a)                                  (b)                                   (c) 

Figure 1. Screen shots of Interactive Polyhedron Modeling System. 

(a) Graph input subsystem, (b) Wire-frame subsystem, and (c) Polygon subsystem. 

             

         (a) Vertex splitting (vs)                  (b) Edge contraction (ec)               (c) Diagonal addition (da) 

Figure 2. Three Graph Operations used in the wire-frame subsystem. 

 

Figure 3. Relations of five Platonic graphs and thirteen Archimedean graphs using three graph operations. 
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Table 1. The list of regular polyhedra (Platonic solids) and semi-regular polyhedra (Archimedean solids). 

v, e, and f stand for the numbers of vertices, edges and faces, respectively. 
vc, ec, and fc are the chromatic numbers of vertex-coloring, edge-coloring and face-coloring. 

Symbol Name of polyhedron v e f vc ec fc 

33
P  Tetrahedron 4 6 4 4 3 4

34
P  Cube 8 12 6 2 3 3

43
P  Octahedron 6 12 8 3 3 2

35
P  Dodecahedron 20 30 12 3 3 4

53
P  Icosahedron 12 30 20 4 3 3

2(3 4)
A ⋅  Cuboctahedron 12 24 14 3 3 2

4 6 10A ⋅ ⋅  Great Rhombicosidodecahedron 120 180 62 2 3 3

4 6 8A ⋅ ⋅  Great Rhombicuboctahedron 48 72 26 2 3 3

2(3 5)
A ⋅  Icosidodecahedron 30 60 32 3 3 2

3 4 5 4A ⋅ ⋅ ⋅  Small Rhombicosidodecahedron 60 120 62 3 3 2

33 4
A ⋅  Small Rhombicuboctahedron 24 48 26 3 3 2

43 4
A ⋅  Snub Cube 24 60 38 3 3 3

43 5
A ⋅  Snub Dodecahedron 60 150 92 4 3 3

23 8
A ⋅  Truncated Cube 24 36 14 3 3 4

23 10
A ⋅  Truncated Dodecahedron 60 90 32 3 3 4

25 6
A ⋅  Truncated Icosahedron 60 90 32 3 3 4

24 6
A ⋅  Truncated Octahedron 24 36 14 2 3 3

23 6
A ⋅  Truncated Tetrahedron 12 18 8 3 3 4

 

 

Graph Operation for Polyhedral Graph 

Three graph operations are defined for polyhedral graphs: vertex 
splitting (vs), edge contraction (ec), and diagonal addition (da) 
(Figure 2) [9]. By these three operations, 5 regular polyhedra 
(Platonic solids) and 13 semi-regular polyhedra (Archimedean 
solids) are interconnected as shown in Figure 3. By using these 
operations, the user can model various polyhedra from one seed 
polyhedron. 

3. ANIMATION VISUALIZATION OF VERTEX 
COLORING 

Table 1 shows the complete list of regular polyhedra and 
semi-regular polyhedra. Symbols v, e, and f stand for the numbers 
of vertices, edges and faces. Symbols vc, ec, and fc are the 

chromatic numbers of vertex coloring, edge coloring and face 
coloring, respectively. Face coloring of a planar graph G is 
equivalent to vertex coloring of the dual of G. Edge coloring of a 
polyhedral graph G is equivalent to vertex coloring of the ambo of 
G. Ambo is one of Conway Polyhedron notations [10]. 

It is known that k-colorability and k-partiteness are equivalent for 
any graph. In the case of planar graph or polyhedral graph, the 
chromatic number, that is the maximum value of k, can be 2, 3 or 4. 
If we identify the vertices in each part of k-partite graph, one of 
polytopes is obtained among line segment (1-simplex), triangle 
(2-simplex), or tetrahedron (3-simplex). We call such polytopes 
obtained from polyhedra, degenerated polyhedra. Figure 4 shows 
three examples of degenerated polyhedra: icosahedron 
degenerated to tetrahedron, truncated icosahedron to triangle, and 
great rhombicuboctahedron to line segment. 
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                       (a) Tetrahedron             (b) Triangle           (c) Line segment 

Figure 4. Examples of degenerated polyhedra (polytopes). 

When the user selects the menu “Degenerate” from a popup menu, 
the system tests the chromatic number of the graph G in the order 
of 2, 3, and 4 colorabilities. If the graph G is k-colorable, it is 
partitioned to k-partite graph. There is no edge within each part of 
the k-partite graph. For each part of G, a minimum spanning tree is 
generated, however the tree is not visible by the user. For each 
edge of the tree, virtual spring with zero-length is assigned. By 
applying the Hooke’s law, the graph G is degenerated to one of 
line segment, triangle, or tetrahedron, with animations (Figure 5 
(a-e)). 

After the user selects different color for each vertex of the 
degenerated polyhedron (Figure 5 (f)), when the user selects the 
menu “Release” from the popup menu, the polyhedron recovers 
the original shape with also animations (Figure 5 (g-j)).  

Through the interactive operations, the user or learner can observe 
how the colors are assigned to the vertices so that adjacent vertices 
have different colors, and also understand unconsciously that 
k-colorable and k-partite are equivalent. 

         

         (a)                    (b)                    (c)                     (d)                     (e) 

         

         (f)                     (g)                    (h)                     (i)                     (j) 

Figure 5. An example of animation-visualized vertex coloring (truncated icosahedron and triangle).  
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4. SUMMARY 

In this paper, a vertex coloring system for polyhedral graph has 
been presented. It was developed as a subsystem of an interactive 
learning system of polyhedra, based on graph theory. A notion of 
degenerated polyhedron was introduced. It is known a polyhedral 
graph is 4-colorable, therefore, a polyhedral graph is degenerated 
to one of polytopes among a tetrahedron, a triangle, and a line 
segment. Through interactive operations, the learner can not only 
observe how the colors are assigned to the vertices, but also 
understand unconsciously that the notions of k-colorability and 
k-partiteness are equivalent. 

We confirmed the effectiveness of our system through several 
actual lectures in under-graduate course. At present, a quantitative 
evaluation is progressing. 
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