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ABSTRACT 

 

Parallel computing is currently undergoing a transition from a 

niche use to widespread acceptance due to new, 

computationally intensive applications and multi-core 

processors. While parallel processing is an invaluable tool for 

increasing performance, more time and expertise are required 

to develop a parallel system than are required for sequential 

systems. This paper discusses a toolkit currently in 

development that will simplify both the hardware and software 

development of embedded distributed and parallel systems. The 

hardware interconnection mechanism uses the Serial Peripheral 

Interface as a physical medium and provides routing and 

management services for the system. The topics in this paper 

are primarily limited to the interconnection aspect of the 

toolkit. 

 

Keywords: Parallel Computing, Interconnection Networks, 

Embedded Systems. 

 

 

1. INTRODUCTION 

 

Although parallel computing has been around for decades, it 

has only been used in niche high performance computing 

(HPC) applications until recently. With the advent of multi-

core processors and new computationally intensive 

applications, such as High-Definition (HD) video processing, 

parallel computing is becoming mainstream. Unfortunately the 

development tools available to implement these applications, 

especially in the embedded market, have remained relatively 

unchanged since the mid 1990s.  

 

 

To implement an embedded parallel computing system using 

current technology, one would first have to implement an 

interconnection mechanism. Current pre-made, high-end 

options include HyperTransport  and RapidIO , while 

current low-end options include the Inter-Integrated Circuit 

(I2C) bus and the Controller Area Network (CAN) bus. The 

high-end solutions work well for parallel computing with 

bandwidth rates up to 20.8 GB/s on HyperTransport[1] and 10 

GB/s on RapidIO[2]. However, these interconnects are 

expensive to implement because very few microcontrollers 

contain the necessary interface circuitry internally, which 

means they would require additional external circuitry. The 

bandwidth offered by these interconnects is also significantly 

higher than most microcontrollers can process. The low-end 

solutions are too antiquated to support the communication 

demands of parallel computing, with bandwidths of 3.4 Mbps 

for I2C[3] and 1 Mbps for CANbus[4]. For node-to-node 

bandwidth, this might be an acceptable rate, but in I2C and 

CANbus, these bandwidths are for the entire system, which 

gives a node-to-node bandwidth equal to the total bandwidth 

divided by the number of nodes during heavy load. We require 

a new type of interconnect that most microcontrollers can 

support without external interface IC's that still provides 

adequate performance for parallel computing.  

 

The toolkit proposed here utilizes the Serial Peripheral 

Interface (SPI) protocol as a physical layer. A protocol has 

been developed to sit on top of SPI that provides routing, 

guaranteed delivery, and other services for up to 256 nodes. A 

prototype router is being developed for the protocol using a 

TMS320F2808 DSP Controller from Texas Instruments (TI) 

with 4 communication links that can operate at up to 25 Mbps. 

A subset of the Message Passing Interface (MPI) will be 

developed to take advantage of the protocol. This sub API will 
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serve as a middleware provider for SequenceL, a functional 

programming language being developed at Texas Tech 

University that features automatic concurrency. Once the 

toolkit is completed, the time necessary to develop a complete 

embedded parallel system should be greatly reduced.  

 

 

2. INTERCONNECTION HARDWARE 

 

To create an interconnection for embedded systems, a different 

perspective from computer interconnection is required. Adding 

new interconnection functionality to a PC is as simple as 

spending 10 minutes installing an expansion card. However, 

adding new interconnection functionality to an embedded 

system must be done at design time. This process requires 

designing printed circuit boards (PCB's) and writing software 

that allows microcontrollers to take advantage of the hardware, 

which is a non-trivial task. The ideal interconnection for 

embedded systems would take advantage of hardware that is 

common to most microcontrollers on the market so that 

designers can skip the entire interfacing step. At the same time, 

the interconnection must be reasonably fast in comparison to 

the clock speed of the microcontroller. While 'reasonably fast' 

is a relative term, picking a base communication link speed that 

is within an order of magnitude of the microcontroller's 

primary clock speed is probably a good choice. SPI was chosen 

because it is found on most microcontrollers on the market, and 

can typically run at clock speeds up to 1/4 or 1/2 of the clock 

speed of the microcontroller. 

 

Physical Layer Signaling 

The SPI protocol is a master-slave, point-to-point, full duplex, 

serial protocol. It consists of three or four signal lines: transmit, 

receive, clock, and an optional slave select. The slave select 

signal is not used because its behavior tends to vary from 

implementation to implementation. A master-slave protocol is 

not really ideal in parallel computing because nodes in a 

parallel system should be equal peers. To get around the 

master-slave limitation, nodes will all be slaves by default, and 

will dynamically elevate themselves to a master whenever they 

have information to transmit. This mechanism loses the full-

duplex capabilities of SPI, but allows all nodes to be true peers. 

The four signal lines for this peer-to-peer SPI are defined in 

Figure 1. The Slave-In/Master-Out and clock signals behave 

the same as their standard SPI counterparts. An arbitration 

scheme 

 

 
Figure 1: Link Signal Definitions 

 

 

 
Figure 2: Elevation Process 

 

has been created to prevent nodes from talking over each other 

that uses the masters in and out signals, MIN and MOUT 

respectively, according to the state diagram shown in Figure 2. 

This mechanism is modeled after Ethernet's back-off-and-wait-

randomly collision mechanism. 

 

Routing Boards 

To aid in the development of the toolkit software, individual 

routing boards are being designed that allow rapid prototyping 

of network topologies. These boards also serve as a reference 

design for the routing chips. Each routing board consists of a 

single routing chip, support circuitry, and headers for 

connecting with other routing boards. The block diagram for 

the board is shown in Figure 3.  

Each board contains its own power regulation circuitry 

centered around a TI TPS70102 dual voltage linear regulator, 

four link headers for connecting to other routing boards or 

hosts, a set of switches for configuring the board, a seven 

segment display for debugging purposes, and a Joint Test 

Action Group (JTAG) port.  

 

 
Figure 3: Routing Board Block Diagram 

 

 
Figure 4: Software Modules 
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Figure 5: Receive Flow Chart 

 

Router Software Architecture 

The routing software is divided into four modules: the "kernel," 

I/O management, Protocol Stack, and System Health. The 

relationships of these modules are shown in Figure 4. The 

system health module controls error handling and high-level 

management of the router. The Protocol Stack process packets 

and performs the appropriate action. The I/O management 

module serves as a driver for the peer-to-peer SPI port. The 

"kernel" consists of the Real Time Operating System (RTOS) 

DSP/BIOS by TI and the SPI subsystem. Note that DSP/BIOS 

does not interface with any SPI ports. The primary reason for 

using DSP/BIOS, despite its lack of SPI drivers for this 

particular chip, is for its threading capabilities. Each port has a 

thread dedicated to processing incoming packets. This allows 

the routers to handle multiple streams simultaneously. These 

threads exist to offload most of the computation from the SPI 

interrupt routines. The receiving process is shown in Figure 5. 

The interrupt itself is designed to be as short as possible 

because interrupts block execution in the rest of the system. 

When a 128-bit chunk of a packet comes in and the interrupt 

occurs, the interrupt routine buffers the packet and wakes up 

the processing thread. If the buffer is full, the interrupt routine 

will assert the master out pin for that port to prevent the other 

node from sending any more information. Once the interrupt 

has finished and normal threading has resumed, the processing 

thread then performs the actual processing of the packet chunk. 

If the packet chunk is the header of a new packet, it is sent to 

the protocol stack for processing. If the packet chunk is not a 

header, then it is part of a continuing transfer and is routed 

accordingly. After the processing thread is done processing the 

entire packet buffer, it goes back to sleep. Because each port 

has its own processing thread, multiple packets on multiple 

ports can be processed simultaneously. 

 

Handling Data Transfers 

If a packet doesn't have a payload, the system sends the data 

chunk to the protocol stack for processing because the entire 

packet is contained in the data chunk in question. If a packet 

has a data payload, the system must know what to do with each 

128-bit data chunk that comes through after the header. The 

initialization of a multi-chunk transfer is shown in Figure 6. 

 

 
Figure 6: Multi-Chunk Transfer Initialization 

 

 
Figure 7: Multi-Chunk Transfer 

 

After transferring the packet header using the normal transfer 

routines, the transfer settings are saved so that when the next 

chunk comes in, the chunk won't be sent to the protocol stack 

but can be transferred directly, based on the saved settings as 

seen in Figure 7. When the data payload is destined for the 

router in question, it behaves like a multi-chunk transfer except 

that it sends the data to a buffer rather than to another port. 

 

 

3. COMMUNICATION PROTOCOL 

 

A custom protocol is being designed to take advantage of the 

network. Because the protocol is only required to handle 

communication for at most 256 nodes over distances no more 

than a meter or so, the protocol doesn't need to be as complex 

as Ethernet/IP/TCP/etc. By simplifying and condensing the 

packet structure, the overhead goes down.  

 

Packet Header Definition 

Each packet consists of a header and an optional data payload. 

The header structure is defined in Figure 8, and a description of 

the fields is in Table 1. 

 

 
Figure 8: Packet Header Definition 
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Field Name Length 

1 Version 4 

2 Communication Type 4 

3 Source 8 

4 Destination 8 

5 Command 8 

6 Command Sequence Step 8 

7 Number of Hops 8 

8 Packet ID 8 

9 Source Process ID 8 

10 Destination Process ID 8 

11 Command Specific 48 

12 CRC 8 

 

Table 1: Packet Field Definitions 

 

The first field is the Version field, which supports multiple 

revisions of the protocol in play at the same time. The 

Communication Type field specifies the type of 

communication, which will be discussed in next section. The 

Source, and Destination fields define a source and destination 

node address. 

 

The Command field specifies the packet's purpose. Example 

commands include transferring data, requesting a node address, 

getting a list of running processes on a node, etc. In Ethernet, 

the equivalent would be the specification of IP in the Ethernet 

header, and then TCP/UDP in the IP header, and then the port 

number specified in the TCP/UDP header, with the port 

number ultimately specifying the packet's purpose. While the 

system used in Ethernet/IP/TCP/UDP allows greater flexibility 

and potential for growth, it also introduces significantly more 

overhead as well as a more complex protocol stack, compared 

with using a single, non-nested protocol. Given the nature of 

embedded systems (little memory or processing power) a 

simpler, if less flexible, protocol is preferred due to its memory 

and computationally friendly nature. In this protocol, a 

command represents a sequence of steps that are to be 

performed for a given action. As an example, a data transfer 

consists of a request to send data, sending the data, reporting 

whether or not the data transferred without error, and 

retransmitting the packet if necessary. The field Command 

Sequence Step keeps track of the current step in the command 

sequence. Storing the sequence in the packet allows nodes to 

send a packet and forget about it, instead of having to keep 

track of all of their pending requests. 

 

The Number of Hops field keeps track of how many routers the 

packet has passed through. This field allows a time to live limit 

to be set on packets. The Packet ID field, in conjunction with 

the Source field, allows each packet to have a unique identifier 

in the system. The hosts use the Source Process ID and 

Destination Process ID fields in the system to identify what to 

do with the data payload. These fields are used, because the 

data transfer command is a generic type; i.e. it does not specify 

what to do with the data. The Command Specific field contains 

data that is command specific. This field allows commands to 

store information directly in the header instead of in the data 

payload section. The benefit of this field is that the overall 

packet is smaller and processing the packet is a lot simpler, 

because the entire packet is contained in a single 128-bit packet 

chunk. The CRC field contains an 8-bit CRC of the data using 

the  polynomial. 

 

Communication Types 

Six types of communication have been developed: Unicast, 

Multicast, Broadcast All, Broadcast Routers, Broadcast Hosts, 

and Addressless. In this system, routers and hosts are equals in 

that both have addresses and can communicate with each other 

directly. Unicast works as expected; it allows sending a packet 

from one node to another. Broadcast works as expected as well, 

except that a node can broadcast to everyone in the system, to 

all routers but none of the hosts, or to all hosts but none of the 

routers. Multicast in the toolkit works a little different than 

multicast in TCP/IP. In the toolkit, when a node wants to join a 

multicast group, it registers with the master router, which then 

notifies all of the routers. Routers only pass along multicast 

packets when a member of the multicast group is further along 

the link, as in TCP/IP. Where multicast differs from TCP/IP is 

that there is no multicast server. Anyone in the group can send 

a multicast packet to the rest of the group. In this sense, 

multicast works like subnets do in Ethernet, except that the 

multicast groups are dynamic and a node can simultaneously 

belong to multiple multicast groups. Addressless is used when 

a node powers on and needs to request an address from the 

master router. If a node's neighbor has an address, the node 

uses its neighbor as a proxy to ask the master router for an 

address. This method is necessary because only one address 

exists for nodes, and when a node powers on there is no way of 

identifying it. Ethernet/IP/TCP, in contrast, uses a dual 

addressing scheme where the IP address can be dynamic, but 

the MAC address is hard-coded, and so it doesn't need any 

form of addressless communication. 

 

Routing Algorithm 

The routing scheme used is based on Räcke's oblivious routing 

scheme outlined in [5]. An oblivious routing scheme is one that 

takes a routing request , with source  and target 

, and produces a route  from  to  without knowledge of 

the global state of the network. This implies that the routing 

scheme is non-adaptive, i.e. it does not depend on the real-time 

congestion of the network. A general network, e.g. one that 

does not necessarily conform to a specific topology, can be 

modeled as an undirected graph  with set of nodes 
, set of edges , and number of nodes . Räcke’s 

method, in short, maps  to a tree network , finds the 

shortest path on , and maps the result back to a set of paths 

on . One of the paths in the result is selected randomly to 

produce route .[5] 

 

Tree networks are used because it is simple, even trivial, to find 

the shortest path in the tree network between two nodes. The 

tree  is constructed by created a root node that corresponds 

to , i.e. it contains all nodes. This node is then subdivided into 

children nodes. These children nodes are recursively 

subdivided until all nodes contain a single element . This 

decomposition process forms a natural tree structure as in 

Figure 9(b), given a general network as show in Figure 9(a). 

Note that all leaf nodes contain a singleton set . For 

technical reasons, an intermediate node  is inserted between 

each natural node  in the tree . Note that in Figures 9(b), 

natural nodes are represented by large circles, and intermediate 

nodes are represented by small circles. A cluster   is the 

cluster associated with  and . 
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(a) General Network  

 

 
(b) Tree Network  

Figure 9: General to Tree Network Mapping 

 

  (1) 

 

The bandwidth of an edge , defined in Eq. (1), 

states that the bandwidth of  is defined as the bandwidth of 

all outgoing edges from the intermediate node in . The level 

of a natural node in  is defined as the number of natural 

nodes on the path from  to , the root node. The level of a 

cluster  is defined as the level of its natural node . Each 

level is given a weight . 

 

The properties of  discussed above are used to define a 

concurrent multi-commodity flow (CMCF) problem for each 

cluster . A commodity  is defined for each cluster 

, where  is the source,  is the sink and  

is the demand as defined in Eq. (2). 

 

 
 (2) 

 

Given the CMCF for , a path between  and  can be found 

by decomposing  into a set of convex paths . Each path 

 is assigned a weight, and one of the paths in  is 

chosen based on the weight and a randomized input.  An 

example path in  is show in Figure 10(a), with the associated 

paths in  in Figure 10(b) and the valid paths in  after solving 

the CMCF problem in Figure 10(c).[5] 

 

 

 

 

 

 

 

 
(a) Unique  in the Tree Network 

 

 

 

 

 
(b) All Paths   in the Tree Network 

 

 

 

 

 
(c) CMCF Solution  in the General Network 

Figure 10: Path Selection on  and  
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For the implementation of the routing scheme in this system, 

all of the path sets  are pre-computed by the master router, 

and then the appropriate sets  are sent to all routers (but not 

hosts). The routing table is created in response to the master 

router broadcasting a Create Routing Table command. This 

process is detailed in Figure 11. 

 

 
Figure 11: Routing Table Creation Process 

 

 

4. CONCLUSION 

 

This toolkit is still in development, so the effectiveness of the 

toolkit is not yet known. As of this writing, the topics discussed 

in Section 2 have been implemented and work according to 

design, although the topics discussed in Section 3 are mostly 

unimplemented thus far. After these elements have been 

implemented, this project will enter its next phase. During the 

next phase, the two software systems will be implemented to 

make developing parallel algorithms much easier. A subset of 

the Message Passing Interface (MPI) version 1 will be 

implemented as a middleware layer. MPI was chosen for its 

ubiquity in parallel processing on distributed systems such as 

server clusters. Much of the functionality of MPI won't be 

implemented because many of its features aren't relevant to an 

embedded environment. For example, there is no need for job 

management, because processing jobs on this system won't be 

initiated by humans. 

 

A parallel compiler for SequenceL will be modified to run on 

the toolkit. Due to the nature of the language, it is easy for the 

compiler to find the parallelisms in the code automatically. 

This property means that programmers don't have to parallelize 

their code by hand, thereby reducing the development time 

\cite{sequencel}. The compiler will actually be a SequenceL to 

C compiler that makes use of MPI for the parallel code, which 

will make the code much more portable than a straight to 

assembly compiler. This approach also makes use of the 

decades of optimization that have gone into C compilers and 

allows easy integration of SequenceL code with embedded 

programming specific and even platform specific code. 

 

After the toolkit is finished, a developer who wants to create a 

distributed parallel embedded system should be able to do so 

much more rapidly than was previously possible. From a 

hardware perspective, this toolkit will be just about as close to 

plug and play as one can get in an embedded system. From a 

software standpoint, one need only write the sequential 

algorithm in SequenceL, and the toolkit will take care of the 

details. 
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