Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Education 5.0: Using the Design Thinking Process – An Interdisciplinary View
Birgit Oberer, Alptekin Erkollar
(pages: 1-17)

Impact of Artificial Intelligence on Smart Cities
Mohammad Ilyas
(pages: 18-39)

A Multi-Disciplinary Cybernetic Approach to Pedagogic Excellence
Russell Jay Hendel
(pages: 40-63)

Data Management Sharing Plan: Fostering Effective Trans-Disciplinary Communication in Collaborative Research
Cristo Ernesto Yáñez León, James Lipuma
(pages: 64-79)

From Disunity to Synergy: Transdisciplinarity in HR Trends
Olga Bernikova, Daria Frolova
(pages: 80-92)

The Impact of Artificial Intelligence on the Future Business World
Hebah Y. AlQato
(pages: 93-104)

Wi-Fi and the Wisdom Exchange: The Role of Lived Experience in the Age of AI
Teresa H. Langness
(pages: 105-113)

Older Adult Online Learning during COVID-19 in Taiwan: Based on Teachers' Perspective
Ya-Hui Lee, Yi-Fen Wang, Hsien-Ta Cha
(pages: 114-129)

Data Visualization of Budgeting Assumptions: An Illustrative Case of Trans-disciplinary Applied Knowledge
Carol E. Cuthbert, Noel J. Pears, Karen Bradshaw
(pages: 130-149)

The Importance of Defining Cybersecurity from a Transdisciplinary Approach
Bilquis Ferdousi
(pages: 150-164)

ChatGPT, Metaverses and the Future of Transdisciplinary Communication
Jasmin (Bey) Cowin
(pages: 165-178)

Trans-Disciplinary Communication for Policy Making: A Reflective Activity Study
Cristo Leon
(pages: 179-192)

Trans-Disciplinary Communication in Collaborative Co-Design for Knowledge Sharing
James Lipuma, Cristo Leon
(pages: 193-210)

Digital Games in Education: An Interdisciplinary View
Birgit Oberer, Alptekin Erkollar
(pages: 211-230)

Disciplinary Inbreeding or Disciplinary Integration?
Nagib Callaos
(pages: 231-281)


 

Abstracts

 


ABSTRACT


Development and Validation in Air Traffic Control by Means of Real-Time Simulations

Stephan Herr, Michael Teichmann, Tim Gesekus


The airspace in Central Europe is already one of the busiest airspaces in the world and the forecasts predict further traffic increases. The current air transport system is reaching its capacity limits, not only at airports but also in parts of the en-route area. This is mainly due to the workload constraints of air traffic controllers. In the past, many technical system functionalities were developed with the aim of reducing controller workload and thus enabling the safe handling of the predicted traffic growth. But these new functionalities alone will not provide adequate relief to air traffic controllers. Their working procedures and the airspace structure will have to be adapted accordingly. In order to obtain real operational benefits, these technical innovations must be integrated into an overall concept which – in addition to the above-mentioned factors – also takes account of ergonomic aspects and human-machine interfaces. When developing such an overall concept, additional evaluation and validation measures are indispensable to ensure that the desired operational benefits are achieved. This is why DFS has for many years used fast- and real-time simulations to assess and optimise any changes to be made to the air traffic control system. The working methods of DFS in this context are in keeping with the European Operational Concept Validation Methodology of 2007, in short E-OCVM. This paper outlines the development and validation activities of DFS using the MSP D/L project as an example. The project deals with the introduction of the new role of air traffic controllers as multi-sector planners (MSP) and new system functionalities, such as air/ground data link (D/L). The project included the development of an operational concept for using the new functionalities as well as for defining working procedures and the airspace structure. This concept was subsequently evaluated by means of a fast-time simulation and two real-time simulations and gradually optimised. This paper focuses on how data were collected during the real-time simulation. In addition to collecting traffic-specific indicators and data concerning the taskload situation, we also performed an eye-tracking analysis in cooperation with the Darmstadt University of Technology to analyse changes relating to the working methods and the information used. Another objective of the paper is to compare the use of the prototype simulation platform for the real-time simulation with the use of operational systems for simulation purposes. Adapting operational systems to new operational procedures and functionalities is always associated with considerable costs. Air traffic controllers, however, need a realistic working environment for such simulations. Otherwise, it is impossible to obtain reliable results. It is not easy to develop a simulation platform that ensures both a realistic environment and quick and flexible adaptation capabilities. The project successfully met this challenge with the help of the Advanced Function Simulator (AFS) of the R&D Centre at DFS Deutsche Flugsicherung. The major features of the prototype simulation platform, i.e. rapid data adaptation, iterative development and automatic compilation of all user interactions, are shown using Project MSP D/L as an example. An overview of the results achieved in the real-time simulation is given at the end of the paper.

Full Text