58

Transforming UML ‘Collaborating’ Statechartsfor Verification and Simulation
Patrick O. Babbie, Yiming Ji, and Lusheng Liang
School of Computing and Software Engineering
Southern Polytechnic State University (SPSU)
1100 S. Marietta Parkway, M arietta, GA 30060

[pbobbie, yji, llsh]@spsu.edu, Tel: 770-528-4284

Keywords: Modd Checking, UML, XMI, database, Promela, SPIN

ABSTRACT

Due to the increasing complexity of real world
problems, it is costly and difficult to validate
today’ s software-intensive systems. The research
reported in the paper describes our experiences
in devdoping and applying a set of
methodologies for specifying, verifying, and
validating system temporal behavior expressed
as UML statecharts. The methods combine such
techniques/paradigms and technologies as UML,
XMI, database, model checking, and simulation.
The tool set we are devel oping accepts XMI input
files as an intermediate metadata format. The
metadata is then parsed and transformed into
databases and related syntax-driven data
dructures. From the parsed data, we
subsequently generate Promela code, which
embodies the behavioral semantics and
properties of the statechart el ements. Compiling
and executing Promela automatically invokes
SPIN, the underlying temporal logic-based tool
for checking the logical consistency of the
dtatecharts interactions and properties. We
validate and demonstrate our methodology by
modeling and simulation using both ArgoUML
and Rhapsody™, respectively.

1. INTRODUCTION AND BACKGROUND

Due to the increasing complexity of red
world problems, it is costly and difficult to
validate today’ s software-intensive systems later
in the software development cycle. An early
validation requires extensve modeling,
verification, and simulation using a combination
of tools and techniques at the design stage of the

"This work is supported by the Yamacraw Project!!

SYSTEMICS, CYBERNETICS AND INFORMATICS

cycle. Among the COTS tools, which we are
usng are SPIN and Promela SPIN is a
verification tool, which is based on linear
temporal logic (LTL) and designed to analyze
the logical consistency of concurrent systems,
specifically for data communication protocols.
SPIN runs atop Promela as its verification
modeling language. Promela, an extended C-like
language, has constructs for specifying system
logical requirements and concurrent behavior.

Statecharts are a variant of finite-state
machine modeds. The charts have one-to-one
correspondence or association with UML class
diagrams, and describe the dynamic behavior of
the objects in a given class. Also, a statechart
has modular, hierarchical, and structurd
properties for specifying and modeing the
temporal and stimulus-response properties of real
world entities.

We use ArgoUML™ to specify and model our
target software systems. ArgoUML savesitsfiles
in XMI format. Generaly, usng XMI as an
intermediate format to capture the structure of
the statecharts enables an easy interchange of
metadata between modeling tools (based on the
OMG UML) and sharing of metadata
repositories in distributed heterogeneous
environments. XMI integrates three key industry
standards: XML (eXtensible Markup Language,
a W3C dandard), UML (Unified Modeding
Language, an OMG modeling standard), and
MOF (Meta Object Faclityy, an OMG
metamodeling and metadata repository standard).

Because XMI is sandardized, our tools
accept any XMl files (based on other OMG

VOLUME 1- NUMBER 2

modelers), as input, for subsequent verification
(moddl checking). The verification process
requires a transformation of the XMl files into
database models to facilitate the traversal and
development of an abstract syntax tree for code
generation and verification.

There are a number of approaches for
mapping XMI data to Promea program. Our
solution is to take advantage of the provisions of
database technologies. First, we build several
relational tables corresponding to the UML
statecharts (expressed in the XMl files). We then
use different IDs as threads to represent the
interconnections of the collaborative statecharts.
One main advantage in using the tables is the
preservation of the hierarchical structure of the
model el ements/statechart. Another advantage is
the technique we use for parsing the XMl files,
which, in the process, purges the redundancy
often inserted into the file using various
trandators.

By extracting static and structural information
from the tables, we dynamically embed SQL
gueries into a ‘transformational’ program to
traverse all the sates, trandtions, and signal
events and generate an abstract syntax tree for
code generation. The resultant code from the
transformation processisin Promela.

The rest of the paper is organized as follows:
Section 2 describes the rdevant UML
statecharts. In section 3, we describe the overall
architectural framework of our project. In
section 4, we describe our experiencesin parsing
XMI file and generating intermediate databases.
Section 5 is on the Promela-code generation and
verification using SPIN. We conclude in section
6.

2.UML STATECHARTS

Figure 1 depicts a feedback system model for
illustrating the methodologies of the research.
The modd is general enough for modeling
various components or modules of feedback
control, real-time systems. Thus, the mode
shows the expandability of our methods for
modeling systems as statecharts, the analysis,
verification and smulation.

SYSTEMICS, CYBERNETICS AND INFORMATICS

Uninitialized

RtEmor: reset

SpFun: stopCmd BgFur}: startCmd

Figure 1: Simple feedback system

The modd is expandable in that it can be
viewed as a single unit (as a part of a complex
system) or it can be viewed as a high-leve
system, which hides the detail control or
behavioral logic insde each single state. For
example, we expanded this mode by
incorporating hierarchy and concurrency into this
unit, asshown in Fig 2 and Fig 3.

Figure 3: A more complex feedback system

In Figure 2, we expand the processing state as
another composite state, which contains a switch.
Figure 3 shows two stages of the modd: the |eft
model shows a concurrency eement (the fork)
and the two component subsystems — the On
state and the Monitor state. In addition to these
two states, the right model of Figure 3 includes a
condition-selection state and a history state.

VOLUME 1- NUMBER 2

59

60

3. THE SYSTEM ARCHITECTURE

As far as we know, there are two different
UML modeing tools, which generate XMl files
from statecharts: one is ArgoUML and the other
is Rhapsody™ 4.0. For availability and support
in our environment, we use ArgoUML from
Tigris . We build the statecharts models in
ArgoUML, and the ArgoUML simply generates
the XMI file as an output to feed a DOM parser,
which we have tailored to create an intermediate
tabular representation between the XMl file and
our target code. Figure 4 depicts the structure of
the XMI files.

LR LR] 11
P T
&] . docuranbation
a1 WAL resnaends
= L) conbed.
=} 121 Wioclel_Managarsert. Mool
¥ rid N
W i | 1--i-asidime
ay, Foairaclation, Coa. Mods Kl avard: nass Fiinys
5 L Corm g at
¥ - [l Frandstion Core, G skoshbalnest LA gor
- Foundsdion Core. G skoabbstlawent b aad

R |, Cor. Ganar inAbetract
ol Frursiotion Cove: Harsmpon o oreed et
EHE
* i e 2
& cordud 1| 10512zl

", Foundation <Jove Min et i e R

31 (10 Foardation Zors. Modalthnent sraps:ficstan
317 Pourdlation Core. GenaralcsbleEerand. sRoot
] Foundston Core, enensdosbistlanent. d ool
] Foundation ore GenensoshisElemand, ibolyad
411] Pourclation o, s, Ak
T | Prawlation e MndaFlarsant naramecs
1] Foamdkaton £ore. Hawnasnce, oares it

& Behadord _[lerants Sals P Sgnal-ag

B Beharsoral _Elhrarnts Saln_Pachea Sgnalt-ant

) Bahorsl_Flewents et Madhanes: St

Figure4: XMI structurefor UML Statecharts

We used java Dom parser to parse this XMl
file and store all the statecharts e ements into set
of tables.

Using the inherent definition of the
statechart model eement (of UML) we built
tables for each state in the statechart in Figure 5
and used the *unified ID’ as a link-key to connect
the tables The approach alowed the
preservation of the hierarchical structure of the
UML statecharts. (See Figure 5 below.) In
general, the leaf states, labeled ‘ States’ in Figure
5, may represent either general or pseudo states.
Therefore, the tables contain all the information
specified in the underlying statechart.

SYSTEMICS, CYBERNETICS AND INFORMATICS

Figure5: Tabular structure of the statecharts

We have built an SQL-based toal to extract
such information as the states, congtraints,
protocols, properties, attributes, and data
specified in the original statecharts from the
tables. The extracted information is then used as
syntactic elements in the Promela code that we
eventually generate for verifying the correctness
of the origina satechart. Finally, we built a
parser to generate the Promela code for the SPIN
verification tool.

The whole process of our methodologies is
depicted in figure 6.

System . UML) Files
Requirement Statecharts

N
Refine model
R

Simulation and SPIN

Target Code verification ™ Promelafiles
Generation

Figure 6: System architecture

4. BUILDING TABLES

As mentioned above, we build eight tables for
the UML dstatechart in Figure 5. The table
follows a “7+1" dructure one for each
corresponding box/state and one for the pseudo-
state. The root-table is the table for the top
Modd, and its mode ID is the overal key for
the whole syssem. All other dements are
constructed as sub-tables and are controlled by
this mode ID. Thus these tables drictly

VOLUME 1-NUMBER 2

preserve the hierarchical structure of the UML
statecharts.

Tk T 5P T, TA 0 TR .G 5. B, Gl 5765 B LA,
g i 330 3 AL L L AL AL AL AL WAL UL WL
i . o . i3 5 OLL VL UL WAL DL UL AL L BACBOAL L AL L
L R A AR

1
Since a statechart may contain many different L

pseudo-states, like initial state, fork/join state,
history state, and etc, it is convenient to put all
these pseudo-states into one table. Figure 7
shows the pseudo-state table of our example
system model.

FOELDOATATED BEPECCATON PEUSTATENID | CONROATERTATE
il [L il
ity st i il
ik filen it il

Figure 7: Pseudo-state table

As indicated before, different pseudo-states
can be distinguished by their IDs, and the
composite-state they belong to.

A composite-state is a state one level lower
than the state-machine state, and it is itself a unit
item that may contain sets of dtates or other
composite-states. Figure 8 shows an example
composite-table for a composite-state.

CONPOSTESTATRD. | COUPOSTTESTATENNNE | SRECICATIN STATEMCHNED
Hifh P Wit il
il stde e b 3

Figure 8: Composite-state table

In general, a state may contain an entry,
activity and exit. Each of these elements of the
state embodies specific behavior. So the state
tables for these are usually complex and big.
Figure 9 shows an example state table.

IETAE STATE 695, CO4R TR TR, ENTR. BT ENTR. 5TR. B4TD BATS. BTG JBs. 473, B,

1) i e e POL UL AL UL VAL DOLL AL DOLL AL L L L
i) Em e ML UL AL JOLL AL UL AL UL AL L UL L

i 1T o oo omih WIE N N WET N W RO WO M N N

Figure 9: Statetable

A trangtion corresponds to a transition
edge on the satecharts diagram. A transition
may contain items like trigger, guard and action,
which are contained in the corresponding
trandtion table Figure 10 is an example
trangtion table.

SYSTEMICS, CYBERNETICS AND INFORMATICS

Figure 10: Transition table

A signal-event is always associated with or
related to a transition, and causes the triggering
of the trandgition. Figure 11 is an example of a
signal-event table.

 DGMBETD | SOMEEME RFERLMON | MERNE | TRATOND

i i il il i
i st il l ML

Figure 11: Signal-event table

The various tables described above serve
as the bridge between the XMI files and the
target code, which we generate for model
checking. Thetables also serve as afilter, which
automatically eliminates the redundancies in the
XMI files. Our methodologies are general in
that, using the intermediate tables, we can
generate code for other implementations, e.g.,
SMV-based implementations. In this research,
we focused on Promela as the target language for
code generation and eventual verification using
the SPIN verification tool.

5. PROMELA FILE GENERATION AND
SPIN VERIFICATION

Promela is a C-like language for specifying
system behavior for model checking. SPIN is a
tool for analyzing the logical consistency of
concurrent systems, specificaly for data
communication protocols. Promela code is
compiled into an intermediate rule-based
program based on linear temporal logic (LTL).
The resultant logic program is then verified by
SPIN for correctness and consistency. Promela
program constructs for specifying concurrent
behaviors include processes, message channels,
and variables. The process construct specifies
the behavior of the system components.
Channels and global variables define the
environment in which the processes run.

For test runs, we associate each state with one
process. The processes of the states run
concurrently depending on the trigger events and
condition guards. We aso represent a fork

VOLUME 1- NUMBER 2

61

pseudo-state with a process, which retransmits
the event from itsinput state to its sub-states.

To gain the hierarchical representation of the
dtatecharts, our Promela programs are aso
constructed as set of blocks. Each composite-
state corresponds to one block of processes.
Only the top-level block can be initialized at the
beginning. As events are generated and
consumed, sub-blocks are triggered accordingly.

Eventsin the Promela code are extracted from
the signal-event tables (see Figure 11). Events
from the tables are associated with one particular
ID number. Each event channd holds one
message at a time. Thus, all process states
communicate with each other by sending and
retrieving message from the channels. Below is
atypical Promela skeleton for the statecharts in
Figure 3.

#define Processing 0
#define state_machine_top 1
#define startCmd 2

[*thisis channel definition*/

chan eventChannel = [1] of{int};
chan forkChannel1 = [1] of{int};
chan forkChannel2 = [1] of{int};

[*thisis globle variable*/

.l
proctype proc_Processing()
{
eventChanne ?startCmd,;
eventChannel ! Processing;
run On();
run Off();
run Monitor();
run fork22();
}
proctype proc_state_machine_top()
{
eventChannel!state_ machine_top;
run Initialized();
run Error();
run Uninitialized();
run proc_Processing()
}

proctype Initialized() {...}
proctype Error() {...}
proctype On() {...}

proctype Off() {...}
proctype Monitor() {...}
proctype Uninitialized() { ...}

proctype fork22()
{
eventChannel ?Processing;

forkChannel 1! Processing;
forkChannel 2! Processing;

SYSTEMICS, CYBERNETICS AND INFORMATICS

init

run proc_state_machine_top()

The flow of execution of the processesin the
above Promela program (automatically generated
based on the XM representation of the statechart
in Figure 3) starts with the top-leve init process,
which initializes the process
proc_state machine top, which is the outmost
layer of the statecharts. The
proc_state machine top further triggers al the
states, which it encloses. The enclosed process
dtates are the uninitialized process, initialized
process, error process and another composite-
dtate proc_Processing process. The
proc_Processing process also initializes states
inside it. The computation process permits a
hierarchy or chain of process activation and
execution. The root process,
proc_state machine top, is the initial entry for
the whole system. As a proof-of-concept, we
used SPIN to check the logical correctness and
the consistency of the specified constraints and
properties in the original satechart, and
expressed in the corresponding Promea
program. Figure 12 is a screen shot of the output
from using SPIN.

"?‘:_\I wree L ipreratebenachdw fepd Llise @ “FETwlewel (3% Bard 1 el LU
=
U grec A {ludaitialimdd T 0 9R Feoleesl O Reow 1 i~ guran 1 {romeChama 13
Tio el 4 dsbabaladSeed Qi 04 “TH Twadeas] G0 Sl 7 - guead]G e v 11
i pree 2 oilmatializedi |Il: i "M fwmbocel 5° Becy V(- guaan 1 illl'lU.'hll1:|.
ik pron i Aledeialieeds Tine B3 PO Nwaboww] £2° Sead & -» quewe 1 0w el
15 e 3 iprec ‘h:l.ullg:l Eipa = 'TE Temlewsl O ecw T - guna |. I l:l.lurl:hm.ll:l
11 e § 4 E" Fracerriegd birs 8 CFEC I-:l.- -l.&: dard @
e w7 T TG {3 TR Fwalews] 07 B L
b TR T | =l
4 omi ¥
i g
& g 7 -¥
F1dd I] 1
W prw * Enre
m: a1 IPrrar! Tise B RS -’||.h.!| I Uend B 2
[FEPPIeEy |
wmar | CrmmiChawm 131 161
wmeas § G FarkClaie 1)
e 3 FarChan 130 1
i proe F A0FFD Liwe 8% FH_Tom Lo |0 rul
T i & 10wy Miee B CFE Tusleas] X" r-:: oy 7
L1 e S oipeac fececrieg) Lies B TR I-u:l-.-:l ¥ (atake 137 dealid ewheakes
3] I'-“:. wialfeedr 1o 107 TH_ T * iprate B dvalid endstne)d
a mer 3 ier\n'i lise 71 P8 Jwbave] 257 l: totn 30 Ovalid srdzkate i
X pree i tleditelicrd? i 01 Talwmbowe] 227 {abair B2 (palid sesybpict
I e 1 Ipras_atal :Iu_n'udl-i.'\-n: L] i:l Lisa 4 "FE Twwlesal L™ Gagats i ': sl endizacse?
Tl geee B Al Dow 038 PE Sefawn] 6 frbwtn 35 iralid ardstet
I8 ransdes areared

Figure 12: Screen shot for SPIN verification

We aso developed a GUI wrapper as an
interface to our system. (See Figure 13.)

VOLUME 1- NUMBER 2

+

Figure 13: Screen shot for the GUI Interface

6. CONCLUSIONS

In this paper, we describe a sat of
methodologies for transforming UML
collaborative statecharts for verification and
smulation. (The simulation phase is currently
ongoing within the Rhapsody™ environment.)
In this paper, we focus on the techniques for
building database tables and a set of trandation
tools for generating Promela programs from
XMI representation of statecharts. We used an
integrated development environment (IDE),
which comprises ArgoUML, XMI, Java Dom
parser, the Oracle™ database system, and SPIN.
The IDE provided the necessary tools for the
development of our parser and the Promela code
generator. Our approach is based on generalized
and expandable UML satechart modds.
Another contribution of our work is the
introduction of concurrency among and within
dtatechart models, and the mapping of the
underlying behavioral structure into the
corresponding Promela code. In this way, the
correctness of the protocols (constraints/guards)
governing the communication among the states
of the statecharts can be verified.

The capahility for an automatic generation
of Promela program, coupled with the capability
for verifying distributed embedded software
systems in the early stages of the system design,
is promisng. We are currently working on
additional plug-ins, which will interface with
systems like Rhapsody.

SYSTEMICS, CYBERNETICS AND INFORMATICS

REFERENCES

[1] http://www.yamacraw.org;

[2] http://argouml.tigris.org/serviets/ProjectHome;

[3] Holzmann, G. J. 1997. “ The Model Checker
SPIN”, IEEE Transactions on Software
Engineering, Val. 23, No. 5 (May);

[4] OMG-2000. 2000. OMG Unified Modeling
Language Specification, Verson 1.3 First
Edition. (http://www.omg.org);

[5] (OMG-XML 2000) OMG XML Metadata
Interchange (XMI) Specification, Version 1.0
June 2000. (http://www.omg.org);

[6] XML and the Document Object Mode
(DOM), (http://java.sun.com/xml/jaxp/dist/1.1
[docs/tutorial/dom/);

[71A Quick Introduction to XML,
(http://java.sun.com/xml/jaxp/dist/1.1/docs/tu
torial/overview/1 xml.html);

[8] The Java™ Tutorial, A practical guide for
programmers,(http://java.sun.com/docs/books
[tutorial/index.html);

[9] ON-The-Fly, LTL MODEL CHECKING
with SPIN, (http://netlib.bell-
|abs.com/netlib/spin/whati spin.html).

Biography: Dr. Patrick Otoo Bobbie is a
Professor in the School of Computing and
Software Engineering at Southern Poly State
Univ., Marietta, GA. He is currently working
with the Yamacraw Research group on
Embedded Software modeling at Southern
Polytechnic State University, Marietta, GA. He
is researching methods and techniques for
extending UML-based languages as wadll
methodologies for processing intermediate
mode representations in XML/XMI to support
embedded real-time software model verification.
His focus is on mechanisms (temporal logic and
theorem proving) for specifying the properties or
constraints and model checking of distributed
embedded software.

VOLUME 1- NUMBER 2

63

