18

A Program Recognition and Auto-Testing Approach

Wen C. Pa

Dept. of Business Mathematics
Chengshiu Institute of Technology

Soochow University
Taipe 100, Taiwan

E-mail: wencpai @msl.hinet.net

Abstract

The goals of the software testing are to
assess and improve the quality of the
software. An important problem in software
testing is to determine whether a program
has been tested enough with a testing
criterion. To raise a technology to
recongtruct the program structure and
generating test data automatically will help
software developers to improve software
quality efficiently. Program recognition and
transformation is a technology that can help
maintainers to recover the programs
structure and consequently make software
testing properly. In this paper, a
methodology to follow the logic of a
program and transform to the original
program graph is proposed. An approach to
derive testing paths automatically for a
program to test every blocks of the program
is provided. A real example is presented to
illustrate and prove that the methodology is
practicable. The proposed methodology
allows developers to recover the programs
design and makes software maintenance
properly.
Keywords: Software quality, Software
testing, Program transformation, Program
recognition, Reverse engineering

1. Introduction

Software testing is under heavy
pressure to carry out the higher quality
software as quickly as possible. The major
effort in software engineering is spent after
development on maintaining the systems to
remove existing errors and to adapt them to
changed requirements. As needs change,
oftware must be amended, or maintained,
to adapt to the new environment. Without an
adequate understanding of a program’s
meaning, it is difficult to maintain it
effectively. Maintainers often spend
considerable energy trying to recover the
design information before making changed.
If there is no information about original
design, the software becomes obsolete, and

SYSTEMICS, CYBERNETICS AND INFORMATICS

Chin-Ang Wu
Computer Center

Kaohsiung County 833, Taiwan
E-mail: cwu@cc.csit.edu.tw

the enormous resources invested in its
construction arelost.

Software testing is labor intensive and
costly in software development. In a typical
programming project, over 50% of the total
cost are expended in testing the program or
system. Testing consumes the majority of
the software developers effort of all the
phases of system devel opment.

Although a number of technologies or
CASE tools are developed to help the
developers to test program. However, these
are almost giving effort in finding syntax-
type error or program tracing. The static
testing technologies are ill the main testing
approach in the red information
devdopment world. These approaches
ingpect the program by reading the code line
by line, but not walking test cases through
the program. To raise a technology to
recongtruct the program structure and
generating test data automatically will help
software developers to improve software
quality efficiently.

Program understanding and
transformation is a technology that can be
applied at least three areas in software
engineering [3]. 1) Automatic programming
is concerned with automated generation of a
program from a description of the problem.
2) Program modification is used to change
the behavior of a program such as functional
enhancement. 3) Reverse engineering
applies transformations from code to
specification direction.

A lot of researches of program
understanding and transformation are
proposed. The PAT system, proposed by
Harandi and Ning [2], uses interval logic to
express semantic information such as
control flow dependencies among sub-
concepts in order to facilitate computation
and reasoning of abstract concepts. Rich and
Wills [4] built a prototype to find all
occurrences of a given set of clichés in a
program automatically, and build a
hierarchical description of the program in

VOLUME 1- NUMBER 3

teems of the clichés it finds. The
transformation-based maintenance modd, or
TMM, developed by G Arango, |. Baxter, P
Freeman and C. Pidgeon [5], which use
design histories of the code such as program
specifications and the set of design
decisons used to implement the program.
They assume the design information is
availability and accuracy. However, such
design histories of the code is often rarely
complete and reliable.

In this paper, a methodol ogy to follow
the logic of a program and transform to the
origina program graph is proposed. The
proposed methodology is a reasonable and
useful process that will allow maintainersto
recover the programs design and will make
software maintenance properly.

Section 2 defines a number of program
transformation rules. The program
transformation algorithm is raised in Section
3. Section 4 gives a real example to
illustrate the transformation process. Section
5 presents the concluson and the future
works we intend to finish.

2. Program recognition and

transfor mation rules

Program graph is a useful approach to
represent the logical control flow of a
program. The maintainers can understand a
program’'s flow by analyzing the program
graph. The program graph can hdp
maintainers to know the structure of a
program, to test the program, and to derive
testing paths

In general sense, the transformation of
a program is viewed as a process of
rewriting one program into another by
repeasted application of a st of
transformation rules. Since a program is a
combination of statements (or instructions),
we can decompose a program into eight
typical statement types, and define some
transformation rules based on each
statement type. Base on the transformation
rules, a program will be analyzed and
transformed to the program graph. The
program graph then used to understand and
modify the program.

There are eight typical statement types
in a program: (1). Sequence statements,
such as READ, WRITE, DEFINE a
variable, OPEN afile... etc., (2). While-loop
statements, (3). For-loop statements, (4). 1f-

SYSTEMICS, CYBERNETICS AND INFORMATICS

then-end statements, (5). If-then-ese-end
statements, (6). Repeat-loop statements, (7).
Switch-case-with-default statements, and
(8). Switch-case-without-default statements.
Each statement type, or statement type set of
the Sequence satements, essentiadly
corresponding to a block in the program. In
the paper we will derive testing paths
automatically for each of the statement
types to test every blocks of the program.

We will raise eght datement-
statement flow transformation rules in the
following. Although the eight statements
types presented in the paper may be not in
general condition, however, the other
structured language can be considered in the
similar approach. Theseruleswill beused in
the next section to transform a program. The
approach of testing paths generating will
also consider in the next section.

Rule 2.1 Sequence statements
transformation rule
The statement flow of sequence
statementsis

For example, when transform a
Microsoft FoxPro program as:
USE Vfpfile.dbf
BROWSE for |_gty > 15000
CLOSEALL
The transformed program flow based
ontherule2.1is

USE Vfpfile.dbf
BROWSE for |_gty > 15000
CLOSEALL

From the flow, mantainer's can
maintain the program according to the
program flow instead of considering the
original program meaning, which will lead
to maintain more efficiency.

Rule 2.2 If-Then-End statements
transformation rule
The statement flow of If-Then-End
statementsis

VOLUME 1- NUMBER 3

19

20

Rule 2.3 If-Then-Else-End statements
transformation rule

The statement flow of If-Then-Else-
End statementsis

£
N~

?

Rule 2.4 Switch-Case-With-Default
statements transformation rule

The statement flow of Switch-Case-
With-Default statementsis

//@5\\

@\@/@

Rule 25 Switch-Case-Without-Default
statements transformation rule

The statement flow of Switch-Case-
Without-Default satementsis

Rule 2.6 For-loop statements transformation
rule

The satement flow of For-loop
statementsis

SYSTEMICS, CYBERNETICS AND INFORMATICS

/;

Rule 2.7 While-loop statements
transformation rule

The statement flow of While-loop
statementsis

0

Rule 2.8 Repeat-loop
transformation rule

The statement flow of Repeat-loop
statementsis

Statements

Syntactically, a program is a
combination of statements. We can
transform a whole program by firs
transforming each d<atement, and then
combining the statement flow to a whole
program graph. Maintainers to understand,
audit, and modify the program can use the
combined program graph. This will make
maintenance works more efficiency. The
program transformation rule is given in the
Theorem 2.1.

Theorem 2.1 Program transformation rule

P={S;, S, ..., S} is a program with
satements S, S, ..., S, sequence. Fy, Ry,
..., F, arethe corresponding statement flows
of S, S, ..., Sytransformed with definition
2.1to2.8.

Set G isthe program graph of P

p G= F+ B+ ..+ F is a
combination of F1, F2, ..., Fn
Proof:

S F, F .., F ae the

corresponding statement flows of S,

VOLUME 1- NUMBER 3

S,, ..., S, transformed with definition
2.1to 2.8 asfollowing:

F]_:S_|_® F]_
F2:82® Fz
F.:S® F,

DefineF : P={S, S,, ..., S}® G

1)
If$S
"S® K+ Fdg, where B+ Fg't F
such that

F:P={S, S, ..., S, ..., S® G=F+
Fot ...+ F+F4'+ ... +F
Since FF:S® F,
Based on definition 2.1 to 2.8, it is a
contradiction!
2)
If G= Fi+ F+ ...+F'+...,+ F,such that
$SandS.1
' §+Sau® F', where ' ! Fit Fig
P It is trivid that § and S.ae
sequence statements
P SandS.;arein the same block
P S andS.; can be combined to one
statement block §’
ThenF : P={S, S, ..., S, Sipyeey S®
G=F+F+ ... +F'+... + F,
U F:PS, S, ..., S,..., S}®
G=F+F+ ... +F'+... + F,
i.e, the program graph G=F+ F+ ...+
F,isacombination of F1, F2, ..., Fn, and
the proof is completed.

Based on the transformation rules 2.1
to 2.8 and theorem 2.1, we can decompose a
program into a series of statements and
transform them to a series of statement
flows. The program graph of the whole
program is a combination of these statement
flows, then the program graph can be used
to understand the program. The process of
the transformation and combination will be
illustrated with a real example in the next
section.

3. Analgorithm
In a software testing job, a number of
testing paths are derived after function
requirements be defined and reviewed. A
testing path is derived according to the
program flow, and software testers must

SYSTEMICS, CYBERNETICS AND INFORMATICS

decide what test data will be used. These
jobs are processed by reviewing the
program flows. If the program flow and
testing paths can be provided automatically,
it will help testers to test software more
efficiency. In this section, a program
transformation agorithm is proposed
according to the transformation rules
presented in the previous section.

To give the agorithm of the program
transformation, we must build an instruction
table, which lists the transformation rules
between statement and statement flow
according to definition 2.1 to 2.8. Based on
the indruction table, we transform each
ingruction of the program to the
corresponding flow. The program graph is a
combination of these flows after the
program is completely scanned.

The algorithm of program
transformation is giving in the following.

algorithm
PROGRAM_TRANSFORMATION
begin
get PROGRAM
set START_NODE
set NEW_NODE
move POINTER to NEW_NODE
while not END_OF _PROGRAM
read next INSTRUCTION

search INSTRUCTION_TABLE
if INSTRUCTION = SEQUENCE_STATEMENT

Kip
else /* the other statement types */
st NEW_NODE (or NODES)
[* according to the instruction table */
move POINTER to NEW_NODE
[* according to the instruction table */
end {if}
end {while}
set END_NODE
end { PROGRAM_TRANSFORMATION }

In the next section, we will illustrate
the transformation approach with a program
written with FoxPro language.

4. An example
The rea example giving in the
following is a program of a MEMBER
MANAGEMENT INFORMATION
SYSTEM and is written with Microsoft
FoxPro language.
We scan the program and transform to

VOLUME 1- NUMBER 3

21

22

program graph with those rulesillustrated in
Section 2. The transformed program graph
of the program is showed in the Figure 1
and the steps of building program flow are
showed in Table 1.

khkkkkkkkkk A FOXPI‘O Prwram *kkkk
khkkhkkkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhkhhhkhkhkkkx
SET TALK OFF
PRIVATE LOP
STORE "F' TO LOP
DO WHILE LOP="F"
*hkkkkkkk CHOOSl NG Fl LE khkkhkkkhkkhkkkhkhkkk
STORE" " TO ANS
CLEAR
10 @ 13,30 SAY "Query..." FONT "Times New Roman",
14
11 @ 17,30 SAY " Choosing fileand pressENTER "
FONT "Times New Roman", 14;
12 GET ANS FONT "Times New Roman", 14
13 READ
14 FL=DBF()
15 khkkkkkkkhkhkkkk |N|T|AL|ZE**********
16 STORE"N" TOANS
17 DOWHILE ANS<>"Y" .and. ANS<>"y"
18 STORE" "TOYYUP
19 STORE" "TOMMUP
20 STORE" "TODDUP
21 STORE" "TOYYLOW
22 STORE" "TOMMLOW
23 STORE" "TODDLOW
24 khkkkhkkkhkkkkhkkkhkkkhk
25 CLEAR
26 @ 7,15SAY "Records Setting ..." FONT "Times New
Roman" , 14
27 @ 9,15SAY "DateFrom Year:" FONT "Times New
Roman" , 14;
28 GET YYLOW FONT "Times New Roman", 14
29 READ
30 @ 12,25 SAY "Month:" FONT "Times New Roman" ,
14;
31 GET MMLOW FONT "Times New Roman", 14
32 READ
33 @ 15,25 SAY "Day:" FONT "Times New Roman" , 14;
34 GET DDLOW FONT "Times New Roman", 14
35 READ
36 @ 18,15 SAY "Until Year:" FONT "Times New
Roman" , 14;
37 GET YYUP FONT "Times New Roman", 14
38 READ
39 @ 21,25 SAY "Month :" FONT "Times New Roman" ,
14,
40 GET MMUP FONT "Times New Roman", 14
41 READ
42 @ 24,25 SAY "Day :" FONT "Times New Roman" ,
14;
43 GET DDUP FONT "Times New Roman", 14
44 READ
45 @ 27,21 SAY "AreYou Sure(Y/N)?' FONT "Times
New Roman" , 14;
46 GET ANS FONT "Times New Roman", 14
a7 READ
48 ENDDO
49 khkkkkkkhkhkhkkhkhkhkhkkhkkk
50 STORE"N" TO ANS
51 DOWHILE ANS<>"Y" .and. ANS<>"y"
52 STORE" "TOHB
53 STORE""TODV
54 khkkkhkkkhkkkkhkkkhkkkkk
55 CLEAR
56 @ 7,15SAY "Unit Code..." FONT "Times New
Roman" , 14
57 @ 9,15SAY "Hombu..." FONT "Times New Roman" ,

©CoO~NOOUA WNEF

SYSTEMICS, CYBERNETICS AND INFORMATICS

14;

58 GET HB FONT "Times New Roman", 14

59 READ

60 @ 12,15SAY "Division..." FONT "Times New
Roman" , 14;

61 GET DV FONT "Times New Roman", 14

62 READ

63 @ 27,21 SAY "AreYou Sure(Y/N)?' FONT "Times
New Roman" , 14,

64 GET ANS FONT "Times New Roman", 14

65 READ

66 ENDDO

67 khkkkhkkkhkhkhkhkhkhkhkhkhhhkhhhkhkhkhhkhkhhkkd

68 CLEAR

69 @ 12,40 SAY "Wait ..." FONT "Times New Roman" ,

70 kkkkhkkkkkkkkkhkkkkhkkkkk

71 SET TALK OFF

72 STORE" " TODUP

73 STORE" " TODLOWUP

74 DLOW=YYLOW+MMLOW+DDLOW
75 DUP=YYUP+MMUP+DDUP

76 kkkkkkkkhkkkkkhkkkkhkkkkk

77 USE \CSPS\NSFUY O.DBF

78 DELETEALL

79 PACK

80 *kkkkkkkk Appmd *kkkkkkkkkk

81 APPEND FROM &FL FOR fuyodate>=DLOW .AND.
fuyodate<=DUP

82 *kkkkkkkhkkkkk Sart to qugy
kkkkhkkkkhkkkkhkkhkkkkhkkkkhkhkkkhkhkkkhkhkkkhkhkkkxkx

83 khkkkhkkkhkkkhkhkkhkhhkhkdkhkhkhkhkhhkxd

84 CLEAR

85 SUM FORNSFUYO.HOMBU=HB AND
NSFUYO.DIVISION=DV TO TEST

86 @ 7,40 SAY TEST PICTURE "$$#### #tH ##9" ;
87 FONT "Times New Roman" , 14

88 khkkkhkkkkkhkkkkhkkhkkkkhkhkkkkhkhkkhkkhkkk

89 ****Fkxxk% Continue or NOL ****

90 STORE" " TO ANS

91 @ 15,40 SAY "Continue (Y/N)?' FONT "Times New
Roman" , 14;

92 GET ANSFONT "Times New Roman" , 14
93 READ

94 IF ANS<>"Y" .AND. ANS<>"y"

95 STORE "T" TO LOP

96 SET TALK ON

97 ENDIF

98 ENDDO

99 kkkkhkkkkkkkkhkkkkkhkkkkhkhkkkhkkkkkxkx

100 CLOSEALL
101 CLEARALL
102 RETURN

In Figure 1, the program graph is a
combination of two While-statement flows
and one If-then-end-statement flow, which
satisfying the structure of the origina
program. With the program graph, two
testing path {<1,2,3,4,5,6,7,8,9,10,11,12,
2,13>, <1,2,345,6,7,89,10,12,2,13>} hy
testing each edge are derived. This can help
software testers to maintain the program
more efficiently.

5. Conclusions and future wor ks

To avoid software resource waste,
software maintainers need an adeguate
understanding of a program’s information.
Usually, it is difficult to make changes for

VOLUME 1- NUMBER 3

program in the absence of program
structures. An experienced programmer can
reconstruct program’s design by recognizing
data structures and algorithms. However,
programmers tend to heavy rely on ther
experience as much as possble. We need
more technologies to recognize program’'s
desgn and hep maintainers to modify
software.

This paper presents eght typical
structured statements, and proposes a
number of transformation rules to
reconstruct program graph. Besides, we also
present a real example to illustrate and
prove the methodology is practicable. The
proposed methodology allows maintainers
to recover the programs sructure and
makes software maintenance properly.

The maintainers are under pressure to
carry out the software modification as
quickly as possble The automated
recognition of programs can gresatly help the
understanding of software and support
software maintenance. The methodology
proposed in this paper can help us to
recognize programs automatically; this will
be the next work we intend to finish.

Figure 1. Program graph of the example

Line | Non-sequence | Node(s) | Pointer

number | instruction | to be set

initia Start Start
node node

1-5 Nodel |Nodel

6 Do while Node 2, |[Node3
node3

7-16 Skip Node 3

17 Do while Node 4, |Node5
node 5

SYSTEMICS, CYBERNETICS AND INFORMATICS

18-47 Skip Node 5
48 Enddo Node6 |Node6
49-50 Skip Node 6
51 Do while Node 7, |[Node8
node 8
52-65 Skip Node 8
66 Enddo Node9 |Node9
67-93 Skip Node 9
94 If Node 10 |Node 10
95-96 Skip Node 10
97 Endif Node 11 |Node 11
98 Enddo Node 12 |Node 12
99-102 Skip Node 12
end End node|End
node

Table 1. The stepsto build program flow

References

[1] 1.D. Baxter and M. Mehlich, “Reverse
engineering is reverse forward
engineering,” Science of Computer
Programming, Vol.36, pp.131-147, 2000

[2l MT. Haandi and JQ. Ning,
“Knowledge-based program analysis,”
|EEE Software, Jan., pp.74-81, 1990

[3] V. Kozaczynski, J. Ning and A.
Engberts, “Program concept recognition
and transformation,” IEEE Tran. On
SE., Vol. 18, No.12, pp.1065-1074,
1992

[4] C. Rich and L.M. Wills, “Recognizing a
program’'s design: a graph-parsing
approach,” |EEE Software, Jan., pp.82-
89, 1990

[5] G Arango, I. Baxter, P. Freeman and, C.
Pidgeon, “TMM: Software maintenance
by transformation,” |EEE Software,
May, pp.27-38, 1986

[6] 1.D. Baxter, “Dedgn maintenance
systems,” Comm. of the ACM, Val.35,
No.4, pp.73-89, 1992

[7] B. Biggerstaff, “Design recovery for
maintenance and reuse,” IEEE
Compuiter, July, 1989

[8] S.H. Edwards, “ Black-box testing using
flowgraphs. an experimental assessment
of effectiveness and automation
potential,” Software Tedting,
Verification and Reliability, Vol. 10, pp.
249-262, 2000

[9] A. Zdler, R. Hildebrandt, “ Simplifying
and isolating failure-inducing input,”
IEEE tran. On SE, Vol.28, No. 2,
pp.183-200, 2002

VOLUME 1- NUMBER 3

23

