
A Systems Perspective on the Quality Description of Software Components1

Otto Preiss
ABB Switzerland Ltd, Corporate Research

5405 Dättwil, Switzerland

and

Alain Wegmann
School of Computer and Communications Sciences, Swiss Federal Institute of Technology

1015 Lausanne, Switzerland

1 This is an extended version of the paper presented at the 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI2002), Orlando,
July 14-18, 2002, Vol. VII, p. 250-255.

ABSTRACT

In this paper we present our rational for proposing a conceptual
model for the description of quality attributes of software
artifacts, in particular suited to software components. The
scientific foundations for our quality description model are
derived from researching systems science for its value to
software engineering. In this work we realized that software
engineering is concerned with a number of interrelated
conceptual as well as concrete systems. Each of them exhibits
the basic system theoretic principles and is strongly related to
certain types of qualities. Such qualities receive particular
attention in the context of large software systems, where
systems are a combination of in-house and third party products
and are increasingly integrated by means of software
component technology. Consequently, a quality data sheet is
needed by component users to gain trust in, and to evaluate the
possible employment of, a candidate component. Interestingly,
the concept of a software component appears in most of the
aforementioned different types of systems. Hence, it is an
excellent means to carry quality related information that
belonged to different spheres up to now. The qualities range
from those related to the development economics to those
related to the execution performance.

Keywords: Systems science, software engineering, software
components, quality attributes, non-functional properties,
quality model.

1. INTRODUCTION

While, with today’s techniques, methods and tools, we seem to
be able to build any system and its required operation somehow
and sometime, the big challenge lies in building such systems in
a repeatable manner with predictable qualities of different
kinds. These qualities range from those related to the
development economics to those related to the execution
performance. In general, they refer to the large group of
properties that are sometimes referred to as Ilities [1], non-
functional properties (in most of the literature), afunctional
qualities [2], extra-functional properties [3, 4], or simply quality
attributes. While some literature carefully distinguishes

between these terms, other sources seem to use them almost
synonymously. A common understanding is that one class of
quality attributes is observable at software system runtime (such
as dependability, usability, security, etc.) while another is not.
This latter class relates to the economics of building and
evolving a software system and its artifacts and is focused on
shortening time-to-market and on decreasing development,
maintenance, and non-conformance costs. Hence, it deals with
quality attributes that are observable over the product lifecycle
(such as maintainability, reusability, etc.). A relatively young
concept is that of a software component [5]. As we argue in [6],
the “raison d’être” for software components is to deal with
quality attributes of both basic types.
The software community’s current means to cope with quality
attributes is largely based on technology (such as software
component technology), on experience, and on codified best-
practice information. Be it in the area of development processes
[7] or in the area of architecture, design and implementation [8]
[9]. While access to such an empirical body of best-practice
knowledge is useful for a prospective design of a new system,
we are challenged by the question of whether there is an
underlying big picture, a conceptual framework or unified view
that would allow us to understand quality attributes in a bigger
context. What makes it so hard? We believe that there are two
sorts of complexity sources – the many systems related to
software systems and the abstractness of many of the quality
concepts. More concretely, we see the following obstacles:
- Computers, like brains, are intelligent, complex symbol

processing systems [10].
- The artifacts (the symbols) that are fed into a computer

system, usually in the form of some executable or source
code, are models in the form of conceptual systems.

- The environment surrounding a computer system is itself a
complex system consisting of a number of complex
systems.

- The software development team and its members are
complex systems.

- We tend to use different models, different views, and
different representations for systems to facilitate our
understanding. However, correspondences between entities
in these different understanding aids become increasingly
hard to establish and trace.

- Many of the quality attributes (e.g. maintainability) are too
abstract to be ascribed to a thing. They will only become

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 118

tangible if brought into a specific system context and
related to behavior, i.e. related to some form of interaction
with the thing.

- There is no natural distinction between a functional and
non-functional quality.

Consequently, as a first step, we wanted to better understand the
phenomena of quality attributes, and their relationship to
systems and their organization. For this, we looked into systems
science and tried to apply some of the findings, which we
document in the rest of the paper. In section 2, the heart of the
paper, we discuss systems science and our findings which are
relevant for this paper. In section 3, we briefly motivate our
decision to concentrate on software components as the main
carrier of quality related information and we present the basic
structure for a quality description model that is based on the
insights gained from our understanding of systems science. In
section 4, we summarize this paper and hint at the applicability
of such a model.

2. THE VALUE OF SYSTEMS SCIENCE

Elsewhere [11] we presented some of the basic principles of
systems science and our interpretations. In essence, we
concluded that software systems are complex systems that can
benefit from systems science as originally founded by Ludwig
Van Bertalanffy in what he called General System Theory [12].
With respect to this paper, system science was useful (a) to
derive our so-called “2-2-2 model” and (b) to understand the
value of looking at software engineering as a set of different
types of systems.
Before we discuss our application of system theoretical
principles, we cite a definition for system that we found generic
enough to be applicable in all circumstances, yet concrete
enough to be useful:
”A system is a set of interacting units with relationships among
them. The word “set” implies that the units have some common
properties. These common properties are essential if the units
are to interact or have relationships. The state of each unit is
constrained by, conditioned by, or dependent on the state of
other units. The units are coupled. Moreover, there is at least
one measure of the sum of its units which is larger than the sum
of that measure of its units.” [13]

The 2-2-2 Model
 “2-2-2” refers to our conceptual world-view which relies on the
pattern: two systems, two views, and two domains of inquiry.
The following reasons motivate this pattern:

(1) Two systems: Complex systems are hierarchical systems
[10, 13]. A system cannot be modeled without
considering the system it is embedded in. Consequently,
there are always at least two systems to be considered: the
suprasystem and the system of interest (SoI). This is not
new, of course. Checkland termed this the “twin-
systems”, in the sense that we cannot model a serving
system if we do not know what is being served [14].
Simon used the concepts of an inner and an outer
environment to describe the same circumstances [10].

(2) Two views: We must always explicitly consider both the
properties as perceived by outsiders of a system and the
mechanisms that yield these properties, i.e. the inside
view. Because of an engineer’s focus on synthesizing an
object with desired properties, we call these separate

views “the goals of a system” vs. “the means to achieve
the goals”.

(3) Life cycle based domains of inquiry: We must apply the
system science principles in a functional context. What
software engineers call the software system life cycle
lends itself to define the relevant domains of inquiry.
Hence, we pick the development context and the
execution context of a software system, which we call
operational context.

Accordingly, the 2-2-2 model depicted in Fig. 2-1 consists of
three dimensions with two distinct points of reference per
dimension. Table 2-1 gives an explanation of the reference
points per dimension. The conceivable eight intersections
represent meaningful perspectives for modeling. Each
perspective can and shall be analyzed because it addresses a
special set of concerns, i.e. it is useful to state questions and
elaborate on answers that are valid to some class of
stakeholders. Consequently, we have shown the applicability of
this conceptual framework to classify the wide variety of
stakeholders [11] and the applicability of the basic systemic
principles in an enterprise system architecture methodology
called SEAM [15].

To quickly related this framework to the everyday situation of a
software engineer, let us give concrete instances of
suprasystems and SoI for the development and operational
context, respectively:
- Suprasystem in development context: The development

company (with its units being the departments, the
development projects, etc.).

- SoI in development context: The development project
(with its units being the people, tools, repositories, etc.).
The output of that system is the developed artifacts.

SoI

Op

Dev

Supra

Goals Means

Domain of InquiryHierarchical evel

Goals/Means

Supra: Suprasystem
SoI: System of Interest
Dev: Development context
Op: Operational context

Figure 2-1: The 2-2-2 Model

- Supra-system in operational context: The company that is

using the computer system with its the application

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 19

The Different Systems software that was developed by the development
company. General system theory proposes a number of system categories

or taxonomies [13] [12]. However, it seems agreed that there
are two basic types of systems (Figure 2-2): conceptual systems
(also called symbolic or symbol systems) and concrete systems.
While a conceptual system is always a designed system (i.e.
created by man), a concrete system may be a designed or a
natural system, or even a hybrid.

- SoI in operational context: The computer system with its
application software at runtime, i.e. the developed
software executing in its deployed environment.

Table 2-1: Informal definition of framework
dimensions and reference points

Dimension Points of reference
Goals/Means Goals; concerned

only with the
perceived (required)
behavior of a
system (the
internals of which
are not relevant or
even unknown to
the interested
observer).

Means; concerned
with the internals of
the system, i.e. the
structures and
processes that
provide the total
perceived behavior.

Hierarchical
Level

SoI; one particular
system of further
interest out of the
set of systems in the
supra-system.

Supra; the
organizationally2
higher-level system,
i.e. the set of
systems including
the SoI, again seen
as a system.

Domain of
inquiry3

Dev; the life cycle
phase (a time/space
construct) that
constitutes the
conception and the
design of the
envisioned (future)
system.

Op; the life cycle
phase that stands for
the execution of a
system in its
operational
environment.

Natural
System

Designed
System

Concrete
System

Conceptual
System

0..* < models 0..*

 < models

0..*
0..*

1..* < lives 0..*

Figure 2-2: Basic Types of Systems
More specifically, concrete systems are a non-random
accumulation of matter and energy in physical time/space and
their units and relationships are empirically determinable by
some operation carried out by an observer. Conceptual systems
on the other hand may be purely logical or mathematical. Some
sort of formal identity or isomorphism (or more accurately
homomorphism) with units and relationships of concrete
systems may exist. However, all of the units and relationships
of conceptual systems are selected by scientific observers or
theorists. Conceptual systems always live in one or more
concrete systems. An organism, a human being, a social system,
an electronic system (a radio or a computer) are concrete
systems. A theory, a language, a computer program, and others
are conceptual systems.

The framework proves valuable not only to classify
stakeholders but also to position the wide range of quality
attributes and their relationships, as well as support stakeholder
traceability for these attributes. For instance, let us consider
time-to-market as an attribute relevant to the goals viewpoint of
the suprasystem in the development context, i.e. it is a goal of
the development company. One possible means for this goal
could be reuse of source code artifacts across development
projects. In this case, reuse belongs to the means viewpoint of
the suprasystem in the development context. Next, one goal for
the SoI in the development context, i.e. for a particular
development project, is to support reuse by realizing pieces of
functionality in the form of modular source code units. The
means to achieve this modularity goal is to maximize module
cohesion, minimize module coupling, etc. Thus, the causality
chain or goals decomposition, where also individual sub-goals
are relevant for certain stakeholders, is:

SystemInformation Information

Matter/EnergyMatte
r/E

nergy
Input Output

EnvironmentBoundary

time-to-market → {reusability,…} → {modularity, …} →
{cohesiveness, coupling, …}.
Frameworks and tools to support non-functional goal
decompositions are available [16].

2 In his living systems theory, Miller [13] identifies seven organizational
levels. Figure 2-3: Fundamental Concepts of a System
3 To make our point, we can limit ourselves to two life-cycle phases:
creation and operation. A finer granularity is always possible, however.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 120

The fundamental concepts for any concrete system are depicted
in Figure 2-3. The figure complements a similar one in [17]
with our understanding of information and matter/energy as
discussed in [13]. The essential message is that the concrete
systems of interest to us process matter/energy and information
(collectively seen as input and output) and that they are
composed of parts (sometimes called subsystems, units,
components, etc.), which in turn are systems. Thus, any system
is a component of its suprasystem.

Based on this basic model of a concrete system, on the 2-2-2
model as presented in the previous subsection, and on the
awareness of the different types of systems, we infer that for
software engineering purpose we need to consider at least three
distinct systems of interest of two different types, as is depicted
in Figure 2-3:

1. The development project team: It is a concrete
system, a human-activity system, that creates the
development artefacts, a subset of which is later
deployed to the target environment for the software
system to execute. In the context of quality, current
software engineering terminology refers to qualities
related to this system often as the development
process qualities.

2. The software system: It is a conceptual or symbol
system that is produced by the development project.
The observer [13] or intelligent system [10] that
processes this symbol system is the computer (or a
human when we consider the creation, modification,
or inspection of such a symbol system). Current
software engineering terminology refers to this
system often as the “software product” or as the
“system at design time”.

3. The software system in execution: It is a concrete
system (realized by inputting the software system into

the computer system). In fact, the software system is
the input information that changes the behaviour of
the computer system without the input software to the
behaviour expected from the running application.
After the input is processed. Current software
engineering terminology refers to this system often as
the “system at runtime”.

Software System
<<symbol system>>

Computer system
with new behavior

Development Context

Operation Context

Software system in
execution

<<concrete system>>
Information Information

Input Output

Development
Project

<<concrete system>>
Information Information

Input Output

Computer
System

<<concrete system>>
Information Information

Input Output

Figure 2-4: The relevant systems for software development

3. QUALITY DESCRIPTION MODEL

As a consequence of the above three types of systems, we have
to distinguish three basic categories of qualities when we refer
to software engineering and quality attributes.

a) Process qualities; these qualities attempt to characterize
the software development process and are typically found
as criteria in the assessment of the process maturity.
Examples are: configuration management usage, review
strategies and implementation, documentation habits, etc.

b) Static software product qualities; these qualities attempt
to characterize the static qualities of the symbol system.
Examples are: all attributes that relate to maintainability
or reusability such as complexity, analysability, etc. Since
we mostly treat the program (source) code as the relevant
input, the software engineering community has developed
fairly elaborate metrics to measure and describe static
qualities of source code [18]. However, since the systems
are conceptual the quality attributes are too. If the future
of “programming” were in model-based execution, we
would have to redefine and probably invent new metrics
for model qualities. We should note that properties (or
qualities) in general, but even more so properties of
conceptual systems, are inventions of man. I.e., questions
about which properties exist are empirical! That is, there

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 21

is no a priori or logical method to determine which
properties exist [19].

Software Component

1

Quality Description

Process Quality Static Product Quality Quality of Service

1 11

Context

-Name
Quality Characteristc

-Name
-Value

Quality Attribute

1..*
1..*

0..*

-Name
Metric

1..*
1

0..* 0..* 0..*

1..*

0..*

1..* 0..*

c) Execution qualities; these qualities attempt to characterize
the deployed system at runtime. They represent the
observable qualities of a software system in a concrete
end-user context, i.e. they are essentially behavioural
qualities and we can call them qualities of service.
Examples are of high-level qualities are: reliability,
security, availability, timeliness, etc.

It is interesting to note that the quality model presented in the
ISO9126-1:2001 [20] comes fairly close to this basic discovery
of three fundamental systems. The standard also bases its parts
on a three-phase lifecycle model with process (process quality),
software product (internal/external quality attributes), and effect
of software product (“quality in use” attributes). However, it is
not flexible enough because it restricts the quality
characteristics to a few defined ones.

The Case for Software Components
The definition for a system presented in the beginning of
section 2 calls for the identification of the relevant units that are
part of a system. It is interesting to notice that the concept of a
software component is a prominent unit in all of the three
systems mentioned above and has the ability to serve as a
fulcrum point in linking together these quality worlds. More
specifically, a software component is the unit of development,
of integration, of reuse, and of versioning in the development
project system. Hence, it may carry process related qualities.
Secondly, it is the unit of deployment and the unit (or term as it
is called in conceptual systems) of which the program code is
composed4. Hence, it may carry static software product
qualities, although the appropriateness of many current source
code-related metrics must be re-evaluated for software
components. Thirdly, a software component is the unit of
execution and of service provision on the target environment.
Hence, it may carry execution qualities.

Figure 3-1: A UML metamodel for the Quality
Description of a Software Component

We assume that a software component refers to a partial
solution of value that is packaged for reuse and can be of
interest for a component consumer. Conceptually, it has one
quality description that is composed of three sections: Process
Quality, Static Product Quality, and Quality of Service. Each
section consists of an enumeration of Quality Characteristics,
each of which is defined by a set of Quality Attributes. While
quality characteristics are a means to classify qualities (e.g.
performance), quality attributes are the tangible concepts that
can be assessed by an observer (e.g. latency). Quality attributes
relate to one particular Metric and they can be associated with
one Value on some scale out of the range of possible values
defined in the metric. A value may of course be a complex
structure and accommodate for things such as confidence
intervals, tolerance, parameterization, and others. It is important
to mention that at least the attributes of the quality of service
section, which in essence are behavioral, relate to one or more
Contexts. A service context is the generic concept to capture the
fact that a particular attribute has dependencies. E.g., it may
relate a quality attribute to a certain usage pattern. A pattern
could for instance represent a permissible method invocation
sequence in some form of process algebra, e.g. as a path
expression [23], or it could reference a use case description that
is available in some form. Very concretely, a quality attribute
(say latency) may be specified for certain methods or a
sequence of methods only and is thus defined in the context of
one specific interface and its one or more provided methods.
Further, the context may be used to relate a quality attribute to a
rely/guarantee type of construct.

This reasoning led us to our hypothesis that a software
component is the one concept that has the ability to carry
quality related information that is relevant for different
purposes and stakeholders. It can support those that implicitly
expect software artifact quality from development process
quality, those that expect development economics from the
static qualities of software artifacts, and those that are interested
in reasoning about runtime assembly-level properties based on
software component properties [21].
We should mention that that we base our ideas on those
definitions of a software component that define it as an
immutable, deployable unit in binary form, which is subject to
third party composition, can be put into repositories, and is
accessible as well as publishes its properties through interfaces
only [5, 22].

Data Sheet for Software Components
Based on the above discussion we propose a model for the
logical structure of a quality description of a software
component as depicted in Figure 3-1.

Since this model is only a metamodel it needs to be
specialized/extended to be instantiable for a software
component at hand. That is, the definition of concrete
characteristics, attributes, and metrics for the case at hand is to

4 It is also a prominent unit in many design models (i.e. conceptual
systems) above the program code.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 122

be made. Further, the description of the logical structure is not
enough. Pieces of information (such as parts of the descriptions)
must of course be available in some electronic form. Typically,
these are files residing on machines connected by networks. A
second model, the physical structure, could therefore define
how the sections and pieces of information that logically belong
together are physically arranged. A physical structure can be
interpreted as a virtual directory for all pieces related to a
component quality description. XML Schemas would of course
be suitable to represent the physical structure. A concrete
proposal for creating such physical structures are given in [24].

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented an interpretation of some basic
principles of systems science to better understand the wide
range of quality attributes found in software engineering.
Systems science helped to derive the 2-2-2 model and to make
explicit the various types of systems that we commonly deal
with in the software life-cycle. Developing software with
desirable qualities in a repeatable manner is one of the pressing
challenges for software development. Systematic software reuse
is still the most attractive overall approach to shorten
development time, save costs, and improve quality. As opposed
to previous reuse attempts, software components are promising
because they are the units that are present in all of the most
important different types of systems, i.e. they play an central
role in the various orthogonal means to improve quality. We
hypothesized that software components may be annotated with
quality descriptions that reflect process related-, static software
product related-, and runtime related quality attributes.
Consequently, we sketched a UML metamodel that represents
the generic quality description model for software assets, in
particular software components. Such a quality model could be
a conceivable extension of asset specification frameworks such
as the Reusable Asset Specification [25] (especially the
component profile) or a basis for works similar to the IEEE
Study Group that looks into a mechanism for grading the
quality of software component source packages5 [26].

References

[1] F. Manola, “Providing Systemic Properties (Ilities) and

Quality of Service in Component-Based Systems,” Object
Services and Consulting, Inc., Technical Report, February
1999.

[2] P. C. Clements, “Coming Attractions in Software
Architecture,” Software Engineering Institute - Carnegie
Mellon University, Pittsburgh, Technical Report
CMU/SEI-96-TR-008, January 1996.

[3] E. Hochmüller, “Towards the Proper Integration of Extra-
Functional Requirements,” The Australian Journal of
Information Systems, vol. 7 (Special Edition -
Requirements Engineering), 1999.

[4] M. Shaw, “Truth vs Knowledge: The Difference Between
What a Component Does and What We Know It Does,” in
Proc. 8th International Workshop on Software
Specification and Design (IWSSD-8), 1996, pp. 181-185.

5 In this IEEE draft “software component” refers to any set of source
code assets and its related documentation.

[5] C. Szyperski, Component Software - Beyond Object-
Oriented Programming. Reading, Massachusetts:
Addison-Wesley, 1998.

[6] O. Preiss, A. Wegmann, and J. Wong, “On Quality
Attribute Based Software Engineering,” in Proc. 27th
Euromicro Conference, 2001, pp. 114-120.

[7] S. Zahran, Software Process Improvement - Practical
Guidelines for Business Success. Harlow, England:
Addison-Wesley, 1997.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture.
Chichester, UK: John Wiley and Sons, 1996.

[9] M. Klein and R. Kazman, “Attribute-Based Architectural
Styles,” Software Engineering Institute - Carnegie Mellon
University, Pittsburgh, Technical Report CMU/SEI-99-
TR-022, October 1999.

[10] H. A. Simon, The Sciences of the Artificial, Third ed.
Cambridge, Massachusetts: The MIT Press, 1999.

[11] O. Preiss and A. Wegmann, “Stakeholder Discovery and
Classification Based on Systems Science Principles,” in
Proc. 2nd Asia-Pacific Conference on Quality Software
(APAQS 2001), 2001, pp. 194-198.

[12] L. v. Bertalanffy, General System Theory: Foundations,
Development, Applications. New York: George Braziller,
1969.

[13] J. G. Miller, Living Systems. Colorado: University Press
of Colorado, 1995.

[14] P. Checkland and S. Holwell, Information, Systems and
Information Systems - making sense of the field.
Chichester, UK: John Wiley & Sons, 1998.

[15] A. Wegmann, “On the Systemic Enterprise Architecture
Methodology (SEAM),” in Proc. 5th International
Conference on Enterprise Information Systems (ICEIS),
2003, pp. 483-490.

[16] J. Mylopulos, L. Chung, and E. Yu, “From Object-
Oriented to Goal-Oriented Requirements Analysis,”
Communications of the ACM, vol. 42, pp. 31-37, 1999.

[17] B. Banathy. (2001, March). A Taste of Systemics. The
Primer Project, A Special Integration Group of the
International Society for the Systems Sciences (ISSS)
[Online]. Available: http://www.isss.org/taste.html

[18] J. Bansiya and C. G. Davis, “A Hierarchical Model for
Object-Oriented Design Quality Assessment,” IEEE
Transactions on Software Engineering, vol. 28, pp. 4-17,
2002.

[19] C. Swoyer. (2002, July). Properties. The Metaphysics
Research Lab, Stanford University [Online]. Available:
http://www.science.uva.nl/~seop/entries/properties/

[20] ISO/IEC, “Software engineering - Product quality - Part1:
Quality model,” ISO/IEC, International Standard 9106-
1:2001(E)2001.

[21] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau,
Proceedings ICSE 4th international workshop on
Component-Based Software Engineering. Los Alamitos:
IEEE Computer Society Press, 2001.

[22] O. Nierstrasz and D. Tsichritzis, Object-Oriented
Software Composition. London: Prentice Hall, 1995.

[23] R. H. Campbell and A. N. Habermann, “The Specification
of Process Synchronization by Path Expression,” in Proc.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 23

International Symposium on Operating Systems, 1973, pp.
89-102.

[24] O. Preiss, A. Frei, D. Gaidatzis, and A. Wegmann,
“Comparison of XML Schemas for Asset Type
Descriptions Compliant with RAS,” ABB Switzerland -
Corporate Research, Baden-Daettwil, White Paper,
November 2002.

[25] Rational, “RAS - Reusable Asset Specification,” Rational
Software Corporation, Web document RAS 2001.09.04,
Sep. 04, 2001.

[26] A. F. Ackerman, “Quality Grades for Software
Component Source Code Packages,” IEEE, International
Standard, Informal Draft 0.1, 2001.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 124

	A Systems Perspective on the Quality Description of Software Components
	ABSTRACT

	INTRODUCTION
	THE VALUE OF SYSTEMS SCIENCE
	The 2-2-2 Model
	The Different Systems

	QUALITY DESCRIPTION MODEL
	
	
	The Case for Software Components

	Data Sheet for Software Components

	CONCLUSION AND FUTURE WORK

