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ABSTRACT 

 
Stereo correspondence is one of the most active research 
areas in computer vision. It consists in identifying 
features in two or more stereo images that are generated 
by the same physical feature in the three-dimensional 
space. In our approach, the matching problem is first 
turned into an optimization task where a fitness function, 
representing the constraints on the solution, is to be 
minimized. The optimization process is then performed 
by means of a genetic algorithm with a new encoding 
scheme. Experimental results are presented to 
demonstrate the robustness and the reliability of the 
proposed approach for obstacle detection in front of a 
vehicle using linear stereo vision. 
 
Keywords: Genetic Algorithms, Linear Stereo Vision, 
Obstacle detection, Optimization, Stereo Matching. 
 
 

1. INTRODUCTION 
 
In the computer vision field, passive stereo vision is a 
well known approach for obtaining depth information of 
objects seen by two or more video cameras from different 
viewpoints [1-2]. The difference of the viewpoint 
positions in the stereo vision system causes a relative 
displacement, called disparity, of the corresponding 
features in the stereo images. This relative displacement 
encodes the depth information, which is lost when the 
three dimensional structure is projected on a retinal plane. 
The key problem is hence the stereo matching task, which 
consists in comparing each feature extracted from one 
image with a number, generally large, of features 
extracted from the other image in order to find the 
corresponding one, if any. Once the matching is 
established and the stereo vision system parameters are 
known, the depth computation is reduced to a simple 
triangulation technique. 
 

According to the considered application, the existing 
stereo techniques are roughly grouped into two 
categories: the feature-based methods and the intensity- 
or area-based methods [3]. The feature-based methods 
use zero-crossing points, edges, line segments, etc. and 
are generally applied when only 3D information are 
required, as for obstacle detection. Intensity-based 
methods use dense low-level features and intensity. This 
type of approaches is considered for 3D scene 
reconstruction applications. 
 
The problem addressed in this paper concerns the 
matching of features extracted from stereo linear images. 
Many approaches have been proposed to solve the stereo 
matching problem. A classical approach is to use 
correlation techniques [4]. In order to improve this basic 
approach, it has been proposed to explore the features of 
the two linear images sequentially, from one end to the 
other. A majority of candidate features can be matched 
without ambiguities by means of this scheme, performed 
forward and backward [5]. However, this sequential 
procedure can leave some unmatched features, and may 
lead to false matches, which are difficult to identify. To 
circumvent these difficulties, many authors have 
proposed to turn the matching problem into an 
optimization task where an objective function, 
representing the constraints on the solution, is to be 
minimized using a Hopfield neural network [6]. This 
neural approach provides good results when compared to 
the former ones using correlation. However, the Hopfield 
optimization process does not guarantee to reach the 
global minimum. 
 
Genetic Algorithms (GAs) are randomized searching and 
optimization techniques guided by the principles of 
evolution and natural genetics [7]. They are efficient, 
adaptive and robust search processes, and they are not 
affected by the presence of spurious local extrema in the 
solution space. Indeed, GAs span the solution space and 
can concentrate on a set of promising solutions that reach 
the global extrema or converge near the optimal solution. 
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They have been applied successfully in many fields such 
as image processing, pattern recognition, machine 
learning, etc. [7]. Many genetic approaches have been 
proposed for the stereo matching problem [8-9]. To 
obtain a disparity map, these methods use fitness 
functions defined from similarity and disparity 
smoothness constraints. 
 
Previously, the authors have proposed a genetic algorithm 
for matching features extracted from stereo linear 
images [10]. After generating a population of 
chromosomes representing possible matches with respect 
to two local constraints, a genetic searching is applied to 
find a solution for which the matches are as compatible as 
possible with respect to three competing global 
constraints. The genetic algorithm provides good 
matching results, but its major limitation is the 
computational effort necessary to reach an acceptable 
solution. This disadvantage comes from the fact that the 
genetic algorithm manipulates binary chromosomes, 
which introduce many matching ambiguities. 
Furthermore, the genetic algorithm requires much 
computing time to process these binary chromosomes, 
which have an important size. To overcome these 
limitations, we propose a new encoding scheme, which 
produces compact chromosomes with less matching 
ambiguities. With this new encoding scheme, the genetic 
searching algorithm explores more efficiently the solution 
space and requires less computing time to process the 
new compact chromosomes. Thus, the convergence time 
is considerably improved.  
 
The outline of this paper is as follows. Section 2 presents 
the basic principles of linear stereo vision and the method 
used to extract prominent features from linear images. 
Section 3 shows how the stereo correspondence problem 
is achieved using a genetic approach with a new encoding 
scheme. Before concluding, experimental results are 
presented in section 4. 
 

2. LINEAR STEREO VISION 
 
A linear stereo system is built with two line-scan 
cameras, so that their optical axes are parallel and 
separated by a distance E (Fig. 1). Their lenses have 
identical focal lengths f. 
 

Stereoscopic axis 

Optical plane 

f 

E 

Optical axis of the left camera 

Optical axis of the right camera 

Planar field 
of the left 
camera 

Stereo vision 
sector 

Planar field 
of the right 
camera 

 
Fig. 1. Geometry of the cameras. 

The fields of view of the two cameras are merged in the 
same plane, called the optical plane, so that the cameras 
shoot the same line in the scene [11]. If any object 
intersects the stereo vision sector, which is the common 
part of the two fields of view in the optical plane, it 
produces a disparity between the two linear images and, 
as a consequence, can be localized by means of 
triangulation. 
 
Depth reconstruction 
Let us define the base-line joining the perspective centers 
Ol and Or as the X-axis, and let the Z-axis lie in the 
optical plane, parallel to the optical axes of the cameras, 
so that the origin of the {X,Z} coordinate system stands 
midway between the lens centers (Fig. 2). Let us consider 
a point P(xp,zp) of coordinates xp and zp in the optical 
plane. The image coordinates xl and xr represent the 
projections of the point P in the left and right imaging 
sensors, respectively. This pair of points is referred to as 
a corresponding pair. 
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Left sensor Right sensor  
Fig. 2. Depth reconstruction with the pin-hole model. 

 
Using the pin-hole lens model, the coordinates of the 
point P in the optical plane can be found as follows: 
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where f is the focal length of the lenses, E is the base-line 
width and d = |xl - xr| is the disparity between the left and 
right projections of the point P on the two sensors. 
 
Feature extraction 
Low-level processing of a couple of two stereo linear 
images yields the features required in the correspondence 
phase. Edges appearing in these simple images, which are 
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unidimensional signals, are valuable candidates for 
matching because large local variations in the gray-level 
function correspond to the boundaries of objects being 
observed in a scene. 
 
Edge detection is performed by means of the recursive 
differential operator proposed by Deriche [12]. Before 
derivation, each linear image is first processed with a 
recursive smoothing filter, which removes noise while 
preserving edges. 
 
For edge extraction, we use first a low threshold value t 
to remove only the very small responses of the 
differential operator lying in the range [-t,+t]. The 
adjustment of t is not crucial. Good results have been 
obtained with t adjusted at 10% of the greatest amplitude 
of the response of the differential operator. A procedure 
is then applied to select the pertinent local extrema 
among the remaining edges [5]. This is achieved by 
splitting the gradient magnitude signal into adjacent 
intervals where the sign of the response remains constant. 
In each interval of constant sign, the maximum amplitude 
indicates the position of a unique edge associated to this 
interval when, and only when, this amplitude is greater 
than t. 
 

Profile of a linear image

Local extrema selected

+ + + + ++

- - - -
-t

Insignificant extrema

t

 
Fig. 3. Edge extraction. 

 
3. GENETIC STEREO CORRESPONDENCE 

 
The stereo correspondence can be viewed as a constraint 
satisfaction problem where the objective is to highlight a 
solution for which the matches are as compatible as 
possible with respect to the imposed constraints. In our 

approach, the stereo correspondence problem is 
characterized by two types of constraints: local and 
global ones. 
 
The two following local constraints are used to discard 
impossible matches and to consider only potentially 
acceptable pairs of edges as candidates. Resulting from 
the sensor geometry, the first constraint, named geometric 
constraint, assumes that a couple of edges i and j 
appearing in the left and right linear images, respectively, 
represents a possible match if the constraint xi > xj is 
satisfied, where x denotes the position of the edge in the 
image. The second local constraint, named slope 
constraint, means that only the pairs of edges with the 
same sign of the gradient are considered as possible 
matches. 
 
Three global constraints are used in the searching process 
of best matches by evaluating the compatibility between 
the possible pairs. The first one is the uniqueness 
constraint, which assumes that one edge in the left image 
matches only one edge in the right image (and vice-
versa). The second constraint is the smoothness 
constraint, which supposes that neighboring edges have 
similar disparities. The third constraint is the ordering 
constraint, which tends to preserve the order between the 
edges of possible pairs. This means that two possible 
pairs (i,j) and (k,l) are compatible with respect to the 
ordering constraint if one of the two following conditions 
is satisfied: 
 

ljki

ljki

xxandxx
or

xxandxx

>>

<<

 

 
New encoding scheme 
To solve the stereo correspondence problem by means of 
a genetic algorithm, one must find a chromosome 
representation in order to code the solution of the 
problem. Let L and R be the lists of the edges extracted 
from the left and right linear images, respectively. Let NL 
and NR be the numbers of edges in L and R, respectively. 
A classical encoding strategy is to use a NLxNR binary 
matrix representation where each element Eij explores the 
hypothesis that the edge i in the left image matches or not 
the edge j in the right image (Fig. 4): if Eij = 1, then the 
edges are matched; otherwise, they are not matched [10]. 
Note that the matrix chromosome codes only possible 
matches with respect to the local constraints. 
 
This binary encoding strategy introduces matching 
ambiguities simultaneously on the lines and columns of 
the matrix chromosome. Therefore, a genetic algorithm 
based on this encoding strategy does not explore the 
whole solution space in the best way. Furthermore, the 
genetic algorithm requires much computing time to 
process these binary chromosomes, which have a large 
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size. As a consequence, the convergence time of the 
genetic algorithm toward a good solution is long. 
 
To overcome these limitations, we propose a new 
encoding scheme, referred hereafter as an integer 
encoding scheme, which produces compact chromosomes 
with less matching ambiguities. This will allow a genetic 
algorithm to explore more efficiently the solution space 
and to reduce the computing time required for the 
chromosome processing. Thus, the convergence time of 
the genetic algorithm will be considerably improved. 
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Fig. 4. Binary encoding strategy. 

 
Let Tmax = {1,2,…,Nmax} and Tmin = {1,2,…,Nmin} be the 
edge lists of sizes Nmax = max (NL,NR) and 
Nmin = min (NL,NR), respectively. This means that if 
Nmax = NL, then Tmax = L and Tmin = R (and vice-versa). 
The integer encoding scheme consists in representing a 
solution as a chain C indexed by the elements of the list 
Tmax and which takes its values in the list {0}∪Tmin. The 
interpretation of the new encoding scheme is as follows: 
if Ci = 0, then the edge i in Tmax has no corresponding 
edge. Otherwise, the edges i in Tmax and Ci in Tmin are 
matched. As in the binary representation, an integer 
chromosome codes only possible matches with respect to 
the local constraints. Figure 5 gives an example of a 
chromosome, which represents a matching possibility 
between the edges of figure 4 using the integer encoding 
scheme. In this example, Tmax = {1,2,3,4,5,6} and 
Tmin = {1,2,3,4,5} represent the lists of the edges 
appearing in the left and right images, respectively. 
 

C : 

5 4 3 2 1 6 i = 

C1 = 1 C2 = 2 C3 = 2 C4 = 3 C5 = 0 C6 = 4 

{ } { } { }5,4,3,2,1,0T0C6,5,4,3,2,1Ti minimax =∪∈=∈

 
Fig. 5. A chromosome based on the integer encoding 

scheme. 
 

Note that it is easy to transform an integer chromosome C 
into a binary matrix representation E. Indeed, for 

minmax TjandTi ∈∈ , Eij = 1 if Ci = j, otherwise Eij = 0. 
We can see that the matrix representation of figure 6 
obtained from the integer chromosome of figure 5 
presents less ambiguities than the binary representation of 
figure 4 obtained directly from the binary encoding 
strategy. There are no ambiguities on the lines of the 
binary matrix obtained from the integer encoding scheme. 
Therefore, a genetic algorithm manipulating integer 
chromosomes will explore more efficiently the solution 
space and hence will reduce considerably the time 
computation necessary to converge toward a good 
solution. 
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Fig. 6. From an integer chromosome to a binary one. 

 
Integer chromosome evaluation 
A genetic algorithm needs a fitness function for 
evaluating the chromosomes. As one can pass from the 
integer encoding scheme to the binary one, the evaluation 
of an integer chromosome C is achieved through the 
evaluation of its matrix representation E (Fig. 6). Thus, 
the fitness function can be expressed as: 
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where Ku, Km, Ko and Ks are weighting positive constants. 
∆ is the set of all possible matches between the edges in 
the lists Tmax and Tmin, i.e., the set of all pairs of edges (i,j) 
that satisfy the local constraints: 
 

{ }sconstraint local the g satisfyinj)(i, ,TT)j,i( minmax ×∈=∆  
 
The first term of the fitness function corresponds to the 
uniqueness constraint. This term tends to a minimum 
when the sum of the elements of the matrix chromosome 
in each column is equal to 1. The second term is used to 
enforce the chromosomes that encode a maximum 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 112



number of matches. This term tends to a minimum when 
the number of matches is equal to Nmin. The third term 
allows to respect the ordering constraint. The coefficient 
Oijkl indicates if the order between the two possible pairs 
(i,j) and (k,l) is respected. It is computed as: 
 

)xx(signe)xx(signeO ljkiijkl −−−=  

with: 
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=
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0>a if1
)a(signe  

 
The fourth term is used to enforce the smoothness 
constraint. The coefficient Sijkl indicates how compatible 
are the two possible pairs (i,j) and (k,l). This 
compatibility measure is computed as follows: 
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where Xijkl is the absolute value of the difference of the 
disparities of the possible pairs (i,j) and (k,l), expressed in 
pixels. 
 
The nonlinear function S(X) scales the compatibility 
measure smoothly between -1 and 1 (Fig. 7). The 
parameter θ, which controls the position where the 
nonlinear function crosses the X-Axis, is adjusted so as to 
allow some tolerance with respect to noise and distortion. 
It is chosen such that a high compatibility is reached for a 
good match when X is close to 0, while a low 
compatibility corresponds to a bad match when X is very 
large. A satisfying value of this parameter is 
experimentally selected as θ = 20. 
 

 
Fig. 7. Graph of the nonlinear function S(X). 

 
Genetic matching algorithm 
The genetic algorithm for solving the stereo 
correspondence problem consists first in generating 
randomly an initial population of chromosomes 
representing possible matches that satisfy the local stereo 
constraints. The evolution process is then performed 
during some generations thanks to reproduction and 
selection operations in order to extract the best 

chromosome, which minimizes the fitness function. The 
whole genetic algorithm is summarized in figure 8. 
 

Optimal 
chromosome 

Yes No 

Random generation of an initial po-
pulation of chromosomes represen-
ting possible matches with respect 
to  the local constraints 

Evaluation of the chromosomes by 
the fitness function 

Stochastic selection of the chromo-
somes to be reproduced 

Crossover and mutation operations 

Evaluation of the new chromoso-
mes by the fitness function 

Extraction of a new generation by 
using deterministic and stochastic 
selection 

Stop 

 
Fig. 8. The genetic algorithm. 

 
Starting from a current population in which each 
chromosome is evaluated, particular chromosomes are 
chosen with a selection probability proportional to the 
fitness value. These selected chromosomes are first 
reproduced using a single point crossover operation, i.e., 
two chromosomes are divided at a random position, and a 
portion of each chromosome is swapped with each other. 
The whole of the chromosomes are then processed by a 
mutation procedure, which is randomly performed for 
each gene. 
 
After the crossover and mutation phases, a new 
generation is obtained thanks to two selection procedures: 
deterministic and stochastic ones. The deterministic 
selection is performed by means of an elitist strategy and 
used to select 10% of the size of the population. The 
stochastic selection is based on the same principle as that 
used to select chromosomes to be reproduced. 
 
The algorithm is iterated until a pre-specified number of 
generations is reached. Once the evolution process is 
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completed, the optimal chromosome, which corresponds 
to the minimum value of the fitness function, indicates 
the pairs of matched edges. 
 

4. APPLICATION TO OBSTACLE DETECTION 
 
The performance of the proposed genetic matching 
algorithm has been evaluated for obstacle detection in 
front of a vehicle using linear stereo vision. A stereo set-
up, built with two line-scan cameras, is installed on top of 
a car for periodically acquiring stereo pairs of linear 
images as the car travels (Fig. 9). The tilt angle is 
adjusted so that the optical plane intersects the pavement 
at a given distance Dmax in front of the car. 
 

Optical plane 

E 

Stereo vision sector 

Planar field 
of the right camera 

  

 

Planar field 
of the left camera 

 
(a) 

(b) 

Fig. 9. Stereo set-up: (a) top view, (b) side view. 
 
Figure 10 shows a stereo sequence shot by the set-up 
where the linear images are represented as horizontal 
lines, time running from top to bottom. In this simple 
sequence, a pedestrian travels in front of the car 
according the trajectory shown in figure 11. The 
pedestrian first moves toward his starting point, located 
slightly beyond the intersection between the optical plane 
and the pavement (A). When he leaves the plane of vision 
of the stereoscope (B), he disappears from the images. A 
few seconds later, he starts moving toward the 
stereoscope. He reappears in the vision plane, while he 
moves toward the left camera (C), before walking toward 
the right camera (D). Finally, he runs toward its left and 
leaves the vision plane of the stereoscope (E). 
 
On the images of the sequence, we can clearly see the 
white lines of the pavement. The shadow of a car, located 
out of the vision plane of the stereoscope, is visible on the 
right of the images as a black area. 
 
This stereo sequence has been processed using the 
proposed genetic matching algorithm. For each stereo 
pair, the disparities of all matched edges are used to 

compute the positions and distances of the edges of the 
objects seen in the stereo vision sector. The results are 
shown in figure 12 in which the distances are represented 
as gray levels, the darker the closer, whereas positions are 
represented along the horizontal axis. As in figure 10, 
time runs from top to bottom. The results are obtained 
with the following genetic parameters. The size of the 
population is equal to 100, the number of generations is 
set to 300, the crossover probability is 0.6 and the 
mutation probability is equal to the inverse of the number 
of genes in a chromosome. The weighting positive 
constants Ku, Km, Ko and Ks are set to 5, 5, 5, 1, 
respectively. 
 

 
Left sequence. 

 
Right sequence. 

Fig. 10. Pedestrian stereo sequence. 
 
Intersection between the optical 
plane and the pavement 

B 

A 
C 

D 

E 

 
Fig. 11. Trajectory of the pedestrian during the sequence. 
 
Figure 12 shows that the genetic approach provides good 
matching results. The edges of the two white lines have 
been correctly matched and their detection is stable along 
the sequence. Indeed, the positions and distances remain 
constant from line to line. The pedestrian is well detected 
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as he comes closer and closer to the car. The transition 
between the pavement and the area of shadow is also well 
detected. The presence of a few bad matches is noticed 
when occlusions occur, i.e., when the pedestrian hides 
one of the white lines to the left or right camera. These 
errors are caused by matching the edges of the white line, 
seen by one of the cameras, with those representing the 
pedestrian. 
 

 
Fig. 12. Depth reconstruction of the pedestrian sequence. 
 
When compared to the binary encoding strategy, the 
integer encoding scheme reduces drastically the 
convergence time of the genetic algorithm. With a PC 
Intel-Pentium IV running at 2 GHz, the pedestrian stereo 
sequence is processed in about 20 minutes thanks to the 
integer encoding scheme instead of about 4 hours with 
the classical binary encoding strategy. 
 
To show the abilities of the new encoding scheme, a 
couple of stereo images is extracted from the pedestrian 
stereo sequence in order to analyze the evolution of the 
fitness function during the genetic process. Figure 13 
illustrates this evolution using the new encoding scheme. 
With a population of 100 chromosomes and 300 
generations, the fitness function reaches a minimum 
value of -128. 

 
Fig. 13. Convergence with the integer encoding scheme. 

 
When using the binary encoding strategy with the same 
values for the population size and the number of 
generations, the fitness function reaches a minimum 
value of 112 (Fig. 14). To allow the genetic algorithm to 
converge toward a solution close to the one obtained 
when using the integer encoding scheme, it is necessary 
to increase the population size and the number of 
generations. When these parameters are set to 300 and 

600, respectively, the fitness function reaches a minimum 
value of -99 (Fig. 14). 
 
These experiments show that the integer encoding 
scheme allows the genetic algorithm to converge toward 
a good solution rapidly by exploring efficiently the 
solution space. 

 (a): with 100 chromosomes and 300 generations.  

 
(b): 300 chromosomes and 600 generations. 

Fig. 14. Convergence with the binary encoding scheme. 
 
To achieve blind evaluation, the proposed genetic 
matching algorithm has been applied to process complex 
stereo sequences acquired in real traffic conditions. One 
of the complex sequences shot by the linear stereo set-up 
is shown in figure 15. In this sequence, the prototype car 
travels in the central lane of the road and follows another 
car. The optical plane intersects gradually the shadow of 
the preceding car, then the whole car from the bottom to 
the top, as the prototype car comes near to it. A third car 
pulls back into the central lane after overtaking the 
preceding car. The prototype car is itself overtaken by 
another one, which is traveling in the third lane of the 
road. The trajectories of the different vehicles during the 
sequence are shown in figure 16. 
 
We can see on the pictures of figure 15 the white lines, 
which delimit the pavement of the road and, between 
these lines, the two dashed white lines and the preceding 
car. At the bottom of the pictures, we can see on the left 
most lane the car, which is overtaking the prototype car 
and, in the middle, the shadow of the vehicle, which pulls 
back in front of the preceding car. The curvilinear aspect 
of the lines is due to the changes in the stereoscope tilt 
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because of the uneven road surface. Note that the depth 
reconstruction is not affected by these oscillations of the 
car. 
 

 
Left sequence. 

 
Right sequence. 

Fig. 15. Road stereo sequence. 
 

Overtaking car

Pulling back car

Prototype car

Preceding car

 
Fig. 16. Trajectories of the vehicles during the sequence. 

 
This stereo sequence has been processed by the proposed 
genetic matching algorithm. The parameters are set to the 
same values as those used for the processing of the 
pedestrian stereo sequence. The results are shown in 
figure 17. 
 
Good matching results are obtained. The edges of the two 
dashed lines have been correctly matched. The edges of 
the lines, which delimit the pavement, cannot be matched 
continuously because they do not always appear in the 
common part of the fields of the cameras. The preceding 
vehicle is well detected as it comes closer and closer to 
the prototype car as time runs. The shadow of the vehicle, 
which pulls back in front of the preceding vehicle, is 
identified as a white continuous line, at the bottom of the 

reconstructed image. Finally, we can see the dark oblique 
line, which represents the vehicle overtaking the 
prototype car, at the bottom of this reconstructed image. 
 

 
Fig. 17. Depth reconstruction of the road sequence. 

 
As expected, the processing time is considerably reduced 
with the use of the new integer encoding scheme. The 
road stereo sequence is processed in about 6 minutes 
instead of 50 minutes when using the binary encoding 
strategy. 
 

5. CONCLUSION 
 
A genetic scheme for feature-based stereo matching is 
presented. The correspondence problem is first turned 
into an optimization task where a fitness function, which 
represents the constraints on the solution, is to be 
minimized. The optimization process is then performed 
thanks to a genetic algorithm for which a new encoding 
scheme is proposed. The performance of the genetic 
matching approach is evaluated for obstacle detection in 
front of a vehicle using linear stereo vision. The tests 
carried out with stereo sequences acquired on real traffic 
environment show the interest of the proposed approach 
in terms of robustness and reliability of depth 
computation. When compared to the classical binary 
encoding strategy, the new integer encoding scheme 
produces compact chromosomes with less matching 
ambiguities. This allows the genetic algorithm to explore 
much more efficiently the solution space and to reduce 
the computing time required for the chromosome 
processing. Thus, the convergence time toward the 
solution is considerably improved. The implementation 
of the genetic procedure on specific parallel architecture 
would improve the processing time for an effective 
exploitation. 
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