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Abstract - We quantitatively analyze the multistability of 
dynamic patterns of a busting neural system with 
diffusive coupling. Through effective coupling analysis, 
we show that the system is not in-phase locking but 
exhibits various phase locking patterns, each of which 
corresponds to the stable fixed points of the effective 
coupling. The simulation proves the validity of the 
effective coupling method in analyzing the multistability 
of neural systems which presents complicated dynamic 
patterns such as bursting. 
 
 
 

1. INTRODUCTION 
 
 Multistability has been introduced to provide mechanisms 
for information processing in biological neural systems. In 
perception of ambiguous or reversible figures, it has been 
proposed that different interpretations of a figure 
correspond to switching among dynamic patterns with 
different collective frequencies in a switching time course 
[1]. The multistability of dynamic patterns can also be used 
to explain activity changes of theoretical neural systems 
occurring due to the transient input changes. This 
corresponds to a parameter independent mode-switching 
mechanism with fixed parameter values, which is 
distinguished from a parameter-dependent mechanism 
based on changing parameter values such as synaptic 
coupling [2]. 
Various parameters or concepts such as time delay [1], 
stochastic resonance [3], etc., based on physiology have 
been introduced to explain the multistability in neural 
systems. A quantitative analysis of multistable dynamic 
patterns, however, remains the focus of research. In this 
paper we show that various phase locking patterns coexist 
in a neural system with diffusive coupling. In other words, 
the system is ultimately stabilized in one of those phase 
locking patterns. We analyze multistable phase locking 
patterns using the effective coupling method [4,5]. We 
focus on limit cycle oscillators with diffusive coupling 
which model the electrical activities of gap junctional 
neural system [6]. 

 It has been recently shown that diffusive coupling may 
induce dephasing of limit cycle oscillators [7,8]. Using 
effective coupling analysis for the weak coupling case, we 
show that at some parameter values the system is out of 
phase, and even exhibits multistable out-of-phase locking 
dynamic patterns. We choose a limit cycle oscillator system 
which presents not only the firing behavior of neurons but 
sequences of bursts [8-12] to show the wide applicability of 
the effective coupling method. For fixed parameter values, 
we find all of the dynamic patterns, each of which 
corresponds to one of the fixed points of the asymmetric 
part of the effective coupling. By changing the initial 
conditions, which corresponds to changing the transient 
inputs, the system is switched from a locking mode to 
another with fixed parameters. 
 

2. EFFECTIVE COUPLING METHOD IN A 
BURSTING NEURAL SYSTEM 

 
 In this paper we study a system of Hindarsh-Rose (HR) 
neurons [9,10]. Even though this model is not based on 
physiology, it simulates some features observed in neuronal 
bursting. The electrically coupled HR model with two 
neuron is described by the following 3 coupled equations 
   dXi/dt = Yi – aXi

3 + bXi
2 – Zi + I – K(Xi – Xj)   (1a) 

dYi/dt = c – dXi2 – YI                (1b) 
      dZi/dt = r[s(Xi – α) – Zi],           (1c) 
where i, j = 1,2, which labels the two neurons. Variable X is 
thought of as the membrane voltage of a neuron, Y as the 
recovery variable, and Z as a slow adaptation current. I is 
the uniform external current. α is the membrane voltage 
when the neuron is at a stable fixed point of the null clines 
dX/dt = 0 and dY/dt = 0 for I = 0. We will fix the 
parameters to the values a = 1.0, b = 3.0, c = 1.0, d = 5.0, s 
= 4.0, r = 0.003, and I = 2.7. We refer to Ref. [9] for a 
detailed bursting strength. 
 In order to describe the phase dynamics of the coupling, 
we calculate the effective interactions. Assuming the weak 
coupling, the system may be approximated as a phase 
model [4], where the phase φ of a limit cycle oscillator is 
defined as dφ(V)/dt = 1 and V = (X,Y,Z) in this paper. For 
the limit cycle without perturbation, 
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   Dφ/dt = (dφ/dV) (dV/dt) = 1.            (2) 
When there is a small perturbation P(V), 

    Dφ/dt = 1 + gradVφP(V).              (3) 
Then the small coupling  in Eq. (1), where only the 
variable X is involved, gives 

     Dφi/dt = 1 + gradXjφjP(Xi,Xj),         (4) 
where P(Xi,Xj) is the coupling term in Eq. (1). 
The effective coupling Γ(ψ) is then defined as 
       Dψ/dt = Γ(ψ) = (1/2π) ΣdφZ(φ) P(φ,ψ),  (5) 
where ψ is the difference between the phase of the two 
neurons, φi – φj, and ZP is the phase shift defined as Z(φ) 
P(φ,ψ) = (gradVφ) P(φ,ψ), where (gradVφ) is evaluated at 
V=V0(φ) and V0 is the point on the limit cycle at phase φ. 
Σ is the integration and it ranges from 0 to 2π. Here we 
adapted the extended notion of phase using the concept of 
isochrons which are defined as a subset of domain 
converging to a point on the limit cycle.  P(φ,ψ) = 
P(V0(φ),V0(φ+ψ)) describes the rate of change of the state 
vector V of an oscillator due to the interaction with the 
other at phase difference ψ. P(φ,ψ) is the coupling term in 
Eq. (1) expressed as a function of the phases, which is 
considered a small perturbation. The sensitivity function 
Z(φ) = gradVφ evaluated  at V=V0(φ) gives the change of 
phase along the limit cycle caused by the change of V: we 
choose a point V0 on the limit cycle and V not on the limit 
cycle but close to V0 , then measure the difference between 
the two phases corresponding to V0 and V. The difference in 
the phase divided by |V – V0| is the sensitivity function. 
 

3. MULTISTABILITY ANALYSIS 
 
 Now we investigate the multistability in phase locking 
patterns. To this end, we consider the asymmetric part of 
the effective coupling, and therefore only the positive part 
of the phase difference.  
  

Fig. 1 : The antisymmetric part of the effective coupling 
normalized by the coupling strength vs the phase difference 
(units in π). U1-U6 are unstable fixed points, and S1-S6 are 
stable fixed points. The locations of S1-S6 are at ψ=0.017π, 

0.23π, 0.39π, 0.52π, 0.64π, and 0.75π, respectively. 
 
 In Fig.1, we plot the asymmetric part of effective coupling 
normalized by the coupling value. The zero of the 
antisymmetric part of the effective coupling with negative 
value of the slope in Fig.1, S1,S2,…,S6, correspond to the 
stable fixed points, and the ones with positive slope values, 
U1,U2,…,U6, correspond to the unstable points.  
 The system is eventually stabilized in one of the stable 
fixed points according to the initial conditions. In other 
words, the system is eventually phase locked with the phase 
difference given by the corresponding stable fixed point. 
The reasoning for this is as follows. If the phase difference 
of the two neurons is initially given by a value, for example, 
between U2 and S2, the effective coupling is positive. This 
implies that the phase difference becomes larger until it hits 
S2. By the same argument, the initial difference at a value 
between S2 and U3 is attracted to S2. Therefore, the 
unstable points play the role of a separatrix.  
 Six phase locking patterns when K=0.001 are explicitly 
presented in Fig. 2; each corresponds to one of  the stable 
fixed points in Fig.1. To check the validity of the effective 
coupling method, we simulated the changing rate of phase 
difference, which shows that the effective coupling method 
correctly predicts the multistability of limit cycle oscillator 
systems even when the system is at complicated activities 
such as bursting. 
 

4. Summary and Discussions 
 

 We have shown that diffusively coupled neuronal 
oscillators exhibit various rhythmic phase locking patterns. 
Assuming weak coupling, we have analyzed the effective 
coupling on the limit cycle of a coupled HR model with 
two neurons. The model has been shown to exhibit stable 
activity patterns coexisting at fixed parameter values. The 
system is eventually stabilized in one of the coexisting 
patterns which correspond to one of the stable fixed points 
of the effective coupling according to the initial conditions. 
The stabilized pattern is reformed to another by a slight 
transient input at a fixed parameter. This corresponds to the 
mode-switching mechanism which changes the electrical 
properties of the system with fixed parameters.  
 The rhythmic activities of oscillatory networks, such as 
the swimming and heartbeat of invertebrates, have been 
widely understood via the post-inhibitory rebound 
mechanism [12]. Here an alternating patterns of activity is 
produced through post-inhibitory rebound between the 
inhibitory coupled neurons or groups of neurons. Adjusting 
the external current value or the coupling strength of Eq. 
(1), we observed various patterns both on the spiking and 
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on the bursting levels. Our results, therefore, suggest 
another route to generating the rhythmic patterns, which, 

however, should be supported by the physiological facts. 
 

Fig. 2(a)-(f) Phase locking patterns of Eq. (1) when K=0.001. The membrane voltages of the two neurons, X1 and X2 are 
plotted vs φ (units in π). Each pattern corresponds to one of the stable fixed points, S1-S6 in Fig.1, which is equal to (2π/T)t, 
where T and t are the duration of one period of bursting and time, respectively.  
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