
 
 

 

ABSTRACT 
Super-resolution is a smart process capable of generating 
images with a higher resolution than the resolution of the sensor 
used to acquire the images. Due to this reason, it has acquired a 
significant relevance within the medical community during the 
last years, especially for those specialties closely related with 
the medical imaging field. However, the super-resolution 
algorithms used in this field are normally extremely complex 
and thus, they tend to be slow and difficult to be implemented 
in hardware. This paper proposes a new super-resolution 
algorithm for video sequences that, while maintaining excellent 
levels in the objective and subjective visual quality of the 
processed images, presents a reduced computational cost due to 
its non-iterative nature and the use of fast motion estimation 
techniques. Additionally, the algorithm has been successfully 
implemented in a low-cost hardware platform, which guarantees 
the viability of the proposed solution for real-time biomedical 
systems-on-chip. 
 
Keywords: Super-resolution, medical imaging, motion 
estimation, hardware mapping. 

1. INTRODUCTION 
The imaging field is gaining an increasing importance within 
the worldwide medical community, as it greatly helps the health 
personnel in order to establish a correct diagnosis. Although the 
technology involved in these systems has experienced a 
considerable advance during the last decades, in many of them 
there is still need of increasing the resolution of the images 
beyond the resolution provided by the respective sensor. A 
smart solution to this problem is to increase the resolution using 
algorithms such as the super-resolution (SR) ones, wherein 
high-resolution images are obtained using low-resolution 
sensors at lower costs. In this sense, super-resolution can be 
defined as a technique to increase the image resolution of 
pictures by exploiting the spatio-temporal correlation of data in 
several displaced images. In fact, different super-resolution 
algorithms have proven to be very effective in the fields of 
magnetic resonance imaging (MRI) [1], positron emission 
tomography (PET) [2] or three-dimensional microscopy [3], just 
to name some. However, these algorithms present a complex 
and iterative nature that prevent their use in other brand new 
scenarios with real-time constraints and/or high levels of 
integration associated, like smart capsule endoscopy systems. 
This paper addresses low-cost solutions for the implementation 
of SR algorithms over SoC (System-on-Chip) platforms in order 
to achieve high-quality image improvements. These solutions 
are based on the following three tips: a) to radically modify the 

SR algorithms, breaking their iterative behavior in order to 
speed up their execution, b) to accelerate as much as possible 
the motion estimation stage, as it represents the most 
computationally intensive process within the SR procedure, and 
c) to avoid the need of developing specific SR hardware by 
reusing the logic present in an existing SoC imaging platform. 
Several results will be presented in terms of amount of memory 
needed, computational load and image quality in order to 
demonstrate the viability of the proposed solution for the next-
generation of intelligent biomedical imaging systems.   
The remainder of this paper is organized as follows. Section 2 
presents the basis of the dynamic SR algorithm used along this 
work. Section 3 details the study performed in this work in 
order to accelerate as much as possible the motion estimation 
stage of the SR algorithm without sacrificing the visual quality 
of the processed images. Section 4 presents the details of the 
implementation of the algorithm onto a generic hardware 
platform and finally, Section 5 outlines the conclusions 
obtained in this work as well as future research lines.  

2. THE DYNAMIC SR ALGORITHM FOR VIDEO 
The approach to SR followed in this work consists on gathering 
information from a shifted image set in order to integrate all the 
available information in a new super-resolved image. 
After an exhaustive study of previous work in SR, the first 
super-resolution algorithm (SRA) developed during this 
research was described in [4], where a static iterative SRA was 
successfully mapped onto a generic hybrid video coding 
HW/SW platform. Nevertheless, the algorithm exhibited an 
iterative behavior which prevents its real-time execution. In 
pursuit of a real-time implementation, the algorithm was firstly 
modified to avoid the iterative behavioral obtaining a non-
iterative version for the static SRA described in [5], where the 
mapping details onto the aforementioned platform are detailed 
in [6]. Although this version works properly for real time 
applications, it exhibits a major drawback in the memory 
requirements, which results to be very high for a low-cost 
single-chip implementation. In order to overcome these 
drawbacks, this paper proposes a new dynamic SRA for video. 
In particular, the proposed algorithm is composed by three 
different and somehow independent processes: registration, 
fusion and restoration. 
Image registration is the task of finding the motion between two 
or more views of the same scene, although it does not 
necessarily describe the real motion of either the camera or the 
scene. For this purpose, a motion estimation stage is used, as it 
estimates the motion vectors between the current frame and 
each frame within a working window. In order to estimate 
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motion vectors in a feasible way, the frame is split into 
macroblocks (blocks of 16×16 pixels). It is important to note 
that, in order to obtain SR improvements, the precision of the 
motion estimator has to be at least the inverse of the scale factor 
(zoom scale). To improve the image quality by means of SR 
techniques, it is necessary to obtain information from the 
nearby frames and combine it with the current frame. This is the 
goal of the fusion stage, as it uses the positions pointed by the 
estimated motion vectors within the search window in order to 
add information. However, if the nearby frames do not have 
enough fresh information to be added to the current frame under 
processing, there will be some empty positions in the super-
resolved frame. To display the processed frame properly, these 
empty positions, named holes within the field of this paper, 
must be interpolated by the restoration stage. Due to their 
inherent nature and functionality, the processes of registration, 
fusion and restoration will be referred along this paper as 
motion estimation, shift and add, and fill holes, respectively, as 
it is stated in Figure 1 where the SR approach followed in this 
work is depicted. As it is seen in this figure, the motion is firstly 
estimated by computing a set of motion vectors per macroblock 
(MB) with sub-pixel accuracy (¼ pixel) that will be used to 
compensate the motion of every new incoming frame towards 
the frame used as the reference one in every frame-time. A 
temporal window of WIN frames before and after the current 
processing frame has been used together with a search area of 
SA pixels around the current MB of size MBS. Next, all the 
information is gathered in a higher resolution grid by the shift & 
add process that will create the first super-resolved draft image. 
Finally, if any pixel is not filled throughout these processes, it 
will be interpolated by the fill holes process using a bilinear 
surface interpolator. 
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Figure 1. General approach for SR 

 
An average comparison among the previously reported super-
resolution algorithms is shown in Figure 2 in terms of quality of 
the super-resolved sequence (measured as the peak signal-to-
noise ratio, PSNR) and memory requirements. As it is depicted, 
the single-step approach followed by the dynamic SRA reduces 
the memory requirements when compared with the static 
iterative SRA in [4], and the static non-iterative SRA in [5] and 
[6]. In particular, moving from static iterative to static non-
iterative, produces a 40.32% increase in the memory 

requirements while the quality increases in 31.39%.  However, 
moving from the static to the dynamic SRA (both non-iterative) 
decreases the quality in 1.92 dB (only a 6.3 %) while the 
memory requirements decrease in 94.84%. 
 

 
 
Figure 2. Comparison between the different SR algorithms 

 
Although the proposed dynamic SRA represents an excellent 
tradeoff between the quality of the super-resolved images 
obtained and the amount of memory needed, it still has 
associated a huge computational cost that jeopardizes its real-
time execution. In this sense, a profile of the SR execution 
reveals that, in average, about 51% of the computational cost 
relies on the ME process. Therefore, any effort focused on 
decreasing the computation load of this process will 
considerably speed up the overall SR process, allowing a 
reliable hardware implementation. 

3. FAST MOTION ESTIMATION FOR DYNAMIC SR 
Motion estimation represents, as it has been highlighted, a key 
task in the SR process, where the final quality of the super-
resolved sequence critically depends on the accuracy of the 
motion vectors. From a hardware perspective, the block 
matching motion estimation algorithms suppose a higher 
guarantee for implementation, being the Full Search (FS) 
algorithm the only one that exhaustively evaluates all the MVs 
in a predefined search area, thus guarantying the lowest cost 
function used and the minimal distortion. The cost function 
commonly used is the Summation of the Absolute Differences 
(SAD) evaluated pixel-by-pixel between the given reference 
macroblock and every candidate position. The price to pay for 
this minimal distortion is a very high computational cost, given 
as a direct proportion with the square of the size of the search 
area. In this sense, a tradeoff problem between quality and 
computational load is encountered, being highly 
recommendable a situation where the quality loss, compared 
with the FS algorithm, is negligible with respect to a significant 
reduction in the number of operations to be performed. 
For this purpose, a two-stage strategy has been followed in this 
work. In the first stage, a preliminary selection has been 
performed using nine fast block matching algorithms (FBMAs). 
Based in these results, the four FBMAs that exhibited the best 
performance in terms of quality and computation load have 
been selected to be evaluated in a second detailed stage. In this 
second stage, additional simulations have been performed in 
order to help in the decision of which FBMA could better 
substitute the FS algorithm for SR. 
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For the first preliminary selection and among all the ME 
algorithms available in the current literature, nine FBMA 
algorithms have been chosen based on their relevance in video 
compression environments. These algorithms are: 

1. The Three-Step Search (TSS), described in [7]. 
2. The New Three Step Search (NTS), described in [8]. 
3. The Four step search (FSS), described in [9]. 
4. The Two Dimensions Logarithmic (TDL) search, 

described in [10]. 
5. The Cross Search Algorithm (CSA), described in [11]. 
6. The Diamond Search Algorithm (DSA), described in [12]. 
7. The Block Based Gradient Descent Search (BBGDS), 

described in [13]. 
8. The One at a Time Search (OTS), described in [14]. 
9. Parallel Hierarchical One Dimensional Search 

(PHODS), described in [15]. 
These nine algorithms, together with the FS algorithm as the 
reference, have been tested inside the SR environment returning 
data related to quality and computational load for each FBMA. 
In Figure 3, the higher-level block diagram of the SR-core is 
shown inside the setup environment. Every test starts reading 
the configuration file where several parameters as the images 
size, the number of frames to be processed, the block matching 
algorithm to be used, and the search area, among others, are 
fixed. Firstly, the input High-Resolution (HR) sequence is 
decimated in a given integer scale factor (factor 2 in this case) 
obtaining the Low Resolution (LR) sequence. At the same time, 
the LR sequence is interpolated using the same scale factor, as 
it will be used as the lower image quality to surpass. Once here, 
the SR process starts using the LR sequence as input.  
 

HR 
Sequence DDeecciimmaattee  LR 

Sequence 

SSuuppeerr  RReessoolluuttiioonn  

Motion 
Estimator Shift & Add Fill Holes 

FBMA 

SR 
Sequence 

PPSSNNRR  
CCoommppuuttaattiioonn  

Results: 
PSNR (dB) 

# Operations 

Interpolated 
Sequence 

 Figure 3. Test setup to select the best FBMA 
 
In order to allow a reliable comparison among all the FBMAs, 
six real-life CIF sequences (352×288 pixels) commonly used in 
image processing testing (DEADLINE, FLOWERS, NEWS, MOBILE, 
CHILDREN AND FOREMAN), have been processed. The results 
obtained are depicted if Figure 4, where the quality obtained 

and the computation of the search algorithms are shown for the 
set of sequences used. It is important to mention that, in these 
charts, only the results obtained with the algorithms selected for 
the second analysis stage are shown. The quality is given as the 
average PSNR computed during 100 frames while the 
computational cost is given as the average number of operations 
performed by the ME algorithms. 
The comparison between algorithms has been done by selecting 
the set of parameters (MBS, SA and WIN) that maximize the 
quality of the FS, which is different for every sequence. The set 
of parameters used for every sequence is shown in the header of 
every chart. As expected, the average quality always drops 
below the quality of the FS. 
The average results for every FBMA in terms of performed 
operations, percentage of operations with respect to the FS, 
PSNR, PSNR loss with respect to the FS and the Standard 
Deviation (SD) of the PSNR loss, are summarized in Table 1.  
 

 
From these data, it is clear that the NTS is the most robust 
algorithm, which exhibit the lowest average PSNR quality loss 
(0.09 dB) and PSNR loss SD (0.11 dB). The NTS supposes a 
good tradeoff between quality (26.78 dB) and computational 
cost (5.66% of FS). The computation can be decreased by using 
the DS (4.91% of FS) with only a slight reduction of the quality 
(0.1 dB) but it is not so robust as the NTS, experimenting 
severe quality drops in sequences like “News” and “Children”. 
On the other hand, the OTS offers the lowest computational 
load (3.46% of FS) but at the cost of a low robustness (0.35 
dB). The TDL is not a good candidate as it has the highest 
computation load (6.02% of FS) together with the lowest 
average quality (26.3 dB) and robustness (0.39 dB). The 
robustness of the NTS can also be observed in the six charts of 
Figure 4, where the PSNR variations are small, no matter what 
the sequence characteristics are. In order to visually inspect the 
quality of the images obtained with each FBMA, Figure 5 
shows one frame of the “Mobile” sequence obtained with SR 
using three different FBMAs: NTS, DS, and OTS, and the 
interpolated image from the low-resolution version. In the 
bottom part of Fig. 12 an enlarged detail of the same frames 
reveals the video enhancements for the numbers of the calendar 
with respect to the bilinear interpolation.  
These considerations make the NTS algorithm the best 
candidate to potentially substitute the FS algorithm in real-time 
SR application, and due to this reason, it has been selected as 
the motion estimation algorithm in the implementation of the 
SR algorithm detailed in the next section of this paper.  
 

TABLE 1 
AVERAGE RESULTS FOR THE SIX SEQUENCES CONSIDERED 

FBMA Oper. Oper. as % 
of FS 

PSNR 
(dB) 

PSNR 
Loss 
(dB) 

SD 
PSNR 
Loss 
(dB) 

NTS 3.25·108 5.66% 26.78 0.09 0.11 
TDL 3.55·108 6.02% 26.30 0.57 0.39 
DS 2.81·108 4.91% 26.68 0.19 0.24 
OTS 1.98·108 3.46% 26.57 0.29 0.35 
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Figure 5. Full frame (top) and detail (bottom) of the 

“Mobile” super resolved sequence using four different 
FBMAs. 

4. IMPLEMENTATION DETAILS 
The SR algorithm proposed in this work has been implemented 
onto the Texas Instruments (TI) TMS320DM642 Evaluation 
Video Module (EVM) hardware platform. The main device of 
this platform consists on a fixed point digital signal processor 
(DSP), named as DM642 in Figure 6, that works at a clock 
frequency of 720 MHz.  The aforementioned DSP has 64 
general purpose registers and 8 functional units, performing up 
to eight parallel instructions. In addition, it counts with a two-
level cache memory. The first level has 128 Kbits for the 
program and 128 Kbits for general data, while the second level 
has 2 Mbits for program and data. Finally, the hardware 
platform also counts with some facilities for video applications 
to be mapped onto it: a 32Mbytes external SDRAM memory, 
capture video ports that support NTSC, PAL and SECAM 
formats, and the display video port that supports RGB, HD, 
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Figure 4. Quality and computational load for the set of CIF 
sequences used for SR and different FBMAs 
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PAL, NTSC and S-Video. 

 
 

Figure 6. General diagram of the TMS320DM642 EVM 
platform 

 
It is important to mention that the first implementation mapped 
onto this hardware platform was not fast enough in order to 
achieve real-time levels of performance. Due to this reason, the 
following procedures were considered: 
 
• Compiler options: the compiler used has certain options 

that may improve the processing speed, such as loop 
unrolling, utilization of SIMD (Single Instruction 
Multiple Data) instructions, etc. 

• Loop simplification: in order to have an efficient pipeline 
within the architecture, the loops in the code have to be as 
simple as possible, i.e. no function calls, control flow 
changes, data hazards or too much code inside the body of 
the loop. 

• Multiple memory accesses: the DSP used in this work 
can access up to 64 bits in a single instruction, therefore it 
is possible to access eight bytes at a time. 

• Memory management: the most used variables have to 
be placed into the internal memory, speeding up the 
access to these variables. 
 

According to these procedures, the following ‘operating points’ 
were obtained, being the latencies obtained for each one of 
them for a 64×80 video sequence depicted in Figure 7: 
 
• O1: First version (without any optimization). 
• O2: Some inefficient parts of the code are rewritten based 

on the DSP profile. 
• O3: The compiler options are used in order to improve the 

performance of the code. 
• O4: Floating point operations removal. As the 

TMS320DM642 is a fixed point DSP, floating point 
operations are emulated, wasting several instructions and 
cycles. It is important to note that, since the floating point 
operations were replaced with fixed point ones, a quality 
loss was obtained. In this sense, the performance of the 
fixed-point SRA was tested again for several video 
sequences, obtaining for all the cases losses not greater 
than 0.01 dB. 

• O5: Optimized library functions are used. 
• O6: Multiple memory accesses in a cycle. 
• O7: The most frequently used variables are placed into 

internal memory. 
• O8: Further memory access improvements. 
 

The application of these optimizations has finally led to a DSP-
based implementation able to process YUV 4:2:0 CIF video 
sequences (352×288 pixels) sampled at 20 fps. 

 

 
Figure 7. Latency obtained for each of the optimizations 

considered 

5. CONCLUSIONS AND FURTHER RESEARCH 
Super-resolution represents a promising solution for the medical 
imaging field. In this sense, some recent works have proven the 
usefulness of these techniques when applied to different types 
of medical images. However, the super-resolution algorithms 
utilized in these cases suffer from a double drawback that 
prevents their use in future biomedical systems-on-chip.  The 
first one is their high computational cost, mainly because of the 
huge number of operations involved in the motion estimation 
stage. The second is their unsuitability for being implemented 
into a piece of hardware, due to their iterative and complex 
nature. 
This paper has presented a set of strategies in order to overcome 
these challenging issues.  Firstly, a new non-iterative super-
resolution algorithm for video sequences has been introduced, 
characterized by its good compromise between the quality of 
the super-resolved video sequence and the amount of memory 
needed for the super-resolution process. In order to accelerate 
the execution of such algorithm, a study about the use of fast 
motion estimation algorithms has been also presented in this 
paper. The results obtained have revealed that the The New 
Three Step Search (NTS) algorithm is able to reduce the 
number of operations needed with respect to a generic 
exhaustive search algorithm in a 94% with negligible losses in 
the final video sequence quality. Finally, this super-resolution 
algorithm has been implemented onto a DSP-based platform. 
Starting from an initial implementation, the introduction of a set 
of simple tricks, mainly related with compiler options and the 
use of cache memories, has allowed to process CIF video 
sequences sampled at 20 frames per second or, alternatively, 
128×160 video sequences sampled at 140 frames per second, 
assuring the viability of the proposals introduced in this paper.  
In order to explore the goodness of the proposed super-
resolution algorithms, it has been applied over a set of medical 
images, following the setup shown in Figure 8. The result 
obtained by using the bilinear interpolation for an upscale factor 
of 5 is shown in Figure 9(a), while the super-resolved image for 
this scale factor is shown in Figure 9(b). As it can be observed 
from these figures, the results obtained by using the super-
resolution algorithm introduced in this paper are significantly 
better than the ones provided by interpolation, especially for 
large scale factors, as it is the case of the results shown in 
Figure 9. These encouraging visual proofs, together with its 
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aforementioned characteristics in terms of speed and ease of 
integration, definitely point out the proposed super-resolution 
technique as a potential candidate for real-time image and video 
enhancement in future biomedical systems-on-chip. 

 
 

Figure 8. Setup for super-resolving medical images. 
 

 
(a) 

 
(b) 

 
Figure 9. Comparison of the results obtained with bilinear 
interpolation and the proposed super-resolution algorithm 
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