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ABSTRACT 

The data available in the average clinical study of a disease is 
very often small. This is one of the main obstacles in the 
application of neural networks to the classification of 
biological signals used for diagnosing diseases. A rule of 
thumb states that the number of parameters (weights) that can 
be used for training a neural network should be around 15% of 
the available data, to avoid overlearning. This condition puts a 
limit on the dimension of the input space.  

Different authors have used different approaches to solve this 
problem, like eliminating redundancy in the data, 
preprocessing the data to find centers for the radial basis 
functions, or extracting a small number of features that were 
used as inputs.  It is clear that the classification would be 
better the more features we could feed into the network.  

The approach utilized in this paper is incrementing the number 
of training elements with randomly expanding training sets. 
This way the number of original signals does not constraint the 
dimension of the input set in the radial basis network. Then we 
train the network using the method that minimizes the error 
function using the gradient descent algorithm and the method 
that uses the particle swarm optimization technique. 

A comparison between the two methods showed that for the 
same number of iterations on both methods, the particle swarm 
optimization was faster, it was learning to recognize only the 
sick people. On the other hand, the gradient method was not as 
good in general better at identifying those people. 

Keywords: Neural Networks, Radial Basis Functions, Particle 
Swarm Optimization, Signal Processing, Wavelets, Health 
Sciences, Multiple Sclerosis. 

 

1. INTRODUCTION 

Doctors utilize BSAEP to diagnose patients with multiple 
sclerosis. MS can reveal, among other symptoms, a 
decrease of the wave V amplitude, an increase on absolute 
latencies and interpeak interval latencies I-III, I-V, III-V. 
But the border between pathological and normal values 

sometimes is not well defined [1]. Doctors very often find it 
difficult to state the rules they use to reach their conclusions, and 
their success rate is higher for healthy people than for sick 
people. It should be noted that the biological signals studied in 
this paper are Brain Stem Auditory Evoked Potentials (BSAEP) 
for the diagnosis of Multiple Sclerosis, the techniques that we 
applied to them could be easily applied to study any time series 
related to the evolution of biological parameters. For instance, 
they could easily be used dealing with VEP, ECG’s, EEG or 
EMG’s potentials, [2] - [8].  

The relevant features in a BSAEP would involve the relative 
position of peaks and not their absolute value.  Figure 1 shows 
the BSAEP of one of the healthy people, who is called healthy # 
25, one of the sick people, called sick # 3., and another one of a 
patient called sick #6.  
  

 

 

 

 

 
 
 
 
 

 

 

 

Green: Healthy # 25, Black:  Sick # 3, Red: Sick # 6 
 Fig.1. Different BSAEP signals 

The BSAEP of a sick people and a healthy one could look 
sometimes very similar, see Figures 2 and 3. But other times the 
shape of the signal is completely different for sick people, as 
Figure 3 and 4 shows.  
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Figure 2: Healthy # 40 

 
Figure 3: S ick patient # 13 

 

Figure 4: S ick patient # 50 

We work with an artificial neural network, that uses radial basis 
functions, but is trained using two different methods. One 
method tries to minimize the error function using the gradient 
descent algorithm with decreasing learning rates, by locating 
where the gradient is equal to zero [9]. The other method uses 
the particle swarm optimization technique [10], [11], [12].  

But before we feed the signals to the neural networks, we 
preprocessed and compress them. The preprocessing begins by 
using the same time interval for all signals [13]. Then we 
normalize them [14].   Since we need to identify the instants in 
time at which certain events occur, we use wavelet transforms 
for the compression [15]. We assume that they will be able to 
capture the amplitude and relative position of the peaks of the 
signals, information that doctors use for their diagnosis.  

For this compression we use all the 37 different wavelet 
transforms found in MATLAB that allow us to capture the 
decrease of the wave V amplitude, and an increase of interpeak 
interval latencies.  

 Once they have been compressed, the author selected a small 
number of the most significative features, according to the 
Kolmogorov-Smirnov statistical criteria, following the ideas 
found in a previous paper [16]. These selected coefficients 
were then used as inputs.  It is quite clear that the classification 
would be better the more features we could feed into the 
network. 

We have a set of 193 BAEP signals, obtained from the 
Hospital Ramon y Cajal, Madrid (Spain), where 70 are normal 
signals, i.e., corresponding to healthy people, and 123 belong 
to patients diagnosed with multiple sclerosis. Small samples 
impose a limit on the number of parameters that can be learned 
by neural networks. In this paper we first increment the 
number of training elements, using randomly expanded 
training sets [17] and we use them to train the radial function 
network, following the ideas on [18], [19].  

Clustering algorithms were used previously to find centers and 
radii for the radial basis functions [20], [21]. The availability 
to generate an arbitrary number of samples removes not only 
the need to find centers and radii, but also the constraint that 
the number of original signals places on the dimension of the 
input set of the network. For each neuron we can determine the 
coordinates of the center (the same number as the inputs), the 
radius and the output weight. Thus, an n input network, with m 
radial functions, would require the fitting of m*(n + 2) 
parameters. This implies that the computing time will be in the 
order of m*n, but it will also depend upon the number of 
iterations performed in the training. So we still must select, 
from the hundreds of wavelet coefficients, only a handful of 
them and they must be the coefficients that contain the most 
significant features [22]. We use these networks with different 
kinds of wavelets and the Kolmogorov-Smirnov test as the 
criteria for the selection of 25 input coefficients. Our hidden 
nodes consists of 4 radial basis functions. 

Once the radial basis function has been trained with each 
method, we tested them and recorded our results. The process 
was repeated seventeen times, and we obtained the mean and 
standard deviation of all the cases. As a result, we could see 
that for the same number of iterations on both methods, the 
particle swarm optimization was faster, but tended to 
recognize mostly the sick people On the other hand, the 
gradient method was in general better at recognizing the 
healthy people. 

2. PRE-PROCESSING OF DATA 

Expert doctors use the shape of the principal components of the 
Brain Stem Auditory Evoked Potential (BSAEP) signal to 
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determine if a person is sick or healthy. This suggests that the 
wavelet transform of the BSAEP could be used to capture the 
features that determine if a person is sick or healthy with the 
help of a neural network. 

We have a set of 193 BSAEP signals. The signals were taken 
from 84 people with multiple sclerosis, using the left and/or 
right hemisphere and from 35 healthy volunteers, using both 
hemispheres. The signals for the sick people, where obtained 
from the Hospital Ramon y Cajal, Madrid (Spain). These 
signals where acquired from people that complied with the 
criteria needed to establish a diagnosis of clinically definite 
multiple sclerosis (MS): A reliable history of at least two 
episodes of neurologic deficit, and objective clinical signs of 
lesion at more than one site within the Central Nervous System. 
Since the disease affects the way signals are transmitted in the 
brain, a recording of the reaction of the brain to external stimuli 
should reflect the existence of the disease. Thus doctors can 
diagnose the disease using BSAEP.   

When doctors diagnose this disease they often find it difficult to 
state the rules they use to reach their conclusions. We aim to 
help them with the diagnosis using an artificial neural network 
with radial basis functions in the hidden nodes  
In order to work with the signals, we digitized them using a 
scanner, and restricted them to a common time (the minimum of 
all of them).  Then we generated analog signals using cubic 
splines. Finally we selected 512 equidistant points, from the 
analog signals.  After this process was done, we applied all the 
discrete wavelet transforms found in MATLAB to the set of 512 
points already obtained.  Since we need to identify the instants 
in time at which certain events occur, we use wavelet transforms 
because we assume that they will be able to capture the 
amplitude and relative position of the peaks of the signals, 
information that doctors use for their diagnosis.  

It is impossible to feed the coefficients supplied by the wavelet 
transforms directly into a neural network.  It is clear that the 
more features we could feed into the neural network, the better 
the classification would be.  

Therefore we increment the number of training elements, using 
randomly expanded training sets [17].  We generate 579 new 
signals, with the same proportion of sick and healthy people as 
in the original set, i.e. 369 for sick people and 210 for the 
healthy ones.  In fact for For each of the two clusters 
corresponding to sick and healthy people, an estimation of the 
values for the elements in the probability density function, 
fkME(z), also denoted as Nk(U, R), k =1,2 Eq.(1), that 
maximized the differential entropy for that cluster, were 
computed. 

Nk (U, R) = 𝟏𝟏

(�𝟐𝟐𝟐𝟐)
𝒏𝒏+𝟏𝟏 

|𝑹𝑹𝒌𝒌|
𝟏𝟏
𝟐𝟐

 𝒆𝒆−
𝟏𝟏
𝟐𝟐 (𝒛𝒛−𝑼𝑼𝒌𝒌)𝑻𝑻𝑹𝑹𝒌𝒌−𝟏𝟏(𝒛𝒛−𝑼𝑼𝒌𝒌)  (1) 

Here z denotes an input-output data vector, Uk is the mean 
vector of the cluster k, Rk is the covariance matrix of the same 
cluster, |Rk| is its determinant, and T denotes the operation that 
performs the vector transpose operation. We represent the 
estimation of the mean vector as Ȗk, and of the covariance 
matrix as Ȓk, where a diagonal load was added to insure its 
invertibility 

With this information, data were drawn for each cluster using 
the formula given in Eq. (2) 

Zi  = Ȗk + L̑ksi     (2) 

where si is an independently identically distributed (i.i.d.) 
vector sequence drawn from N(0,1), and L̑k is the Cholesky 
lower triangular matrix from the decomposition of Ȓk. 

Then from the hundreds of wavelet coefficients, we select 25 
coefficients using the Kolmogorov-Smirnov test. . 

3. NEURAL NETWORK ARCHITECTURE 

The radial basis function network architecture used for this work 
can be seen in Fig. 5. There are n input nodes in the fanout layer, 
m nodes and a bias in the hidden layer, and one output node.  

 
Figure 5: Radial basis function neural network 

The value of n is 25, as the number of most significant 
coefficients selected. As for m we used 4, so the total number of 
free parameters is 105, well within the range of the 15% to 20% 
of the number of training elements. 

The network was trained using the 37 different wavelet bases 
offered in MATLAB: all biorthogonal bases (bior11- bior68), 
all Coiflets bases (coif1-coif5), the first 10 Daubechies bases 
(db1-db10) and the 7 first Symlets bases (sym2- sym8).  

 The input-output space of our data requires that all the values 
of every coefficient on our sample, are normalized, with mean 
zero, and standard deviation of one. This avoids the problem 
that the output values, being far greater than any of n inputs in 
the case of sick people, could dominate the making of the 
partitions and in doing so, defeat the purpose of the algorithm. 
The mean value for each coefficient, and the corresponding 
standard deviation should be kept, to be utilized for the 
normalization of any future input vector that needs to be 
tested. 

For the method of minimizing the error function using the 
gradient descent algorithm, each training process consisted of 
10,000 random presentations, beginning with different random 
values.  In this case the learning rates η(k) for the centers, the 
radii and the weights were given by the linear function 

             𝜂𝜂(𝑘𝑘) = 𝜂𝜂0 + (𝜂𝜂1 −𝜂𝜂0) * 𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁                 (3) 

where k is the iteration step, NPR is the number of presentations, 
η0 is the initial learning rate, set at 0.001, and η1 is the final rate, 
set at 0.08. These values for the initial and final learning rate for 
both the hidden and input layers were known to be acceptable. 
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      Table 1: Gradient Method 
 

          Table 2: Particle Swarm Optimization 

 

Wavelet Average St. Deviation 
bior11 56% 0.01 
bior13 29% 0.07 
bior15 59% 0.16 
bior22 85% 0.03 
bior24 51% 0.10 
bior26 95% 0.00 
bior28 13% 0.03 
bior31 1% 0.00 
bior33 55% 0.13 
bior35 23% 0.06 
bio37 63% 0.10 
bior39 61% 0.01 
bior44 93% 0.00 
bior55 19% 0.02 
bior68 34% 0.11 
coif1 27% 0.07 
coif2 32% 0.08 
coif3 35% 0.09 
coif4 20% 0.05 
coif5 95% 0.23 
db1 12% 0.03 
db2 49% 0.12 
db3 80% 0.04 
db4 65% 0.16 
db5 6% 0.01 
db6 31% 0.07 
db7 35% 0.03 
db8 93% 0.23 
db9 33% 0.08 
db10 92% 0.22 
sym2 8% 0.02 
sym3 60% 0.03 
sym4 25% 0.06 
sym5 20% 0.05 
sym6 55% 0.07 
sym7 72% 0.02 
sym8 69% 0.17 

Wavelet Average St. Deviation 
bior11 100% 0.00 
bior13 100% 0.00 
bior15 70% 0.26 
bior22 99% 0.00 
bior24 99% 0.00 
bior26 98% 0.01 
bior28 53% 0.29 
bior31 100% 0.00 
bior33 100% 0.00 
bior35 100% 0.00 
bio37 100% 0.01 
bior39 99% 0.00 
bior44 100% 0.00 
bior55 100% 0.00 
bior68 100% 0.00 
coif1 100% 0.00 
coif2 100% 0.00 
coif3 100% 0.00 
coif4 100% 0.00 
coif5 91% 0.06 
db1 100% 0.00 
db2 78% 0.42 
db3 98% 0.01 
db4 99% 0.01 
db5 100% 0.00 
db6 100% 0.00 
db7 100% 0.00 
db8 100% 0.00 
db9 100% 0.00 
db10 100% 0.00 
sym2 19% 0.25 
sym3 100% 0.00 
sym4 100% 0.00 
sym5 100% 0.00 
sym6 100% 0.00 
sym7 100% 0.00 
sym8 98% 0.01 
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For the method of minimizing the error using the particle swarm 
optimization we used 10 particles, and each of them updates its 
position and its velocity 1000 times. 

Once the artificial neural networks were trained, we checked the 
results with our original set of data, and recorded the general 
rate of success and the corresponding rates for sick and healthy 
people. We repeated the process 17 times for each method and 
for each wavelet. 

4. EMPIRICAL RESULTS 

After all the training had occurred, we took the average and 
standard deviation of all the samples. Tables 1 and 2 shows the 
results for diagnosis for sick people using the gradient algorithm 
and the particle swarm optimization algorithms for training, 
respectively. Both tables have the same structure. Each row 
corresponds to the success rates for a particular wavelet basis 
whose name appears in the first column. The second column 
reflects the general success rate for recognizing the sick people 
and the third column of the table shows the standard deviation 
corresponding to the sample of trainings. 

Looking at table 1, it is worth noting that in the case of the 
particle swarm optimization, although the average is very high 
in 33 of the wavelet decomposition, the values of the standard 
deviation are very high for the other 4 cases, with values of 0.25 
(sym2),  0.26 (Biorthogonal 15), 02.9 (Biorthogonal 28) and 
0.42 (Daubechies 2). On the other hand, in table 2, there are only 
4 cases with very high average, and all of them, except one, 
have the highest values of the standard deviation, although not 
as high as in table 1. In fact, these standard deviations are 0.22 
(Daubechies 10), 0.23 (Coiflet 5) and 0.23 (Daubechies 10). 

It is worth noting that two wavelet that performed poorly 
according to the results in table, 2, (Biorthogonal 28 and 
Symlet 2) also performed poorly,, with averages of 13% and 
8%, as shown in table 1  

There are other samples that were computed, but due to the 
lack of space they are not shown. In the conclusion some of 
their properties will be discussed. 

 

 

5. CONCLUSIONS 

Radial basis function networks had been used to diagnose 
Multiple Sclerosis.  They provide an automatic, fast and reliable 
way to discriminate the signals from sick and healthy people. But 
it seems that the results differ according to the method used for 
the training of the neural network. But since this was the result of 
only one specific network architecture, with a specific method of 
expanding the training set, further investigation is needed to 
determine if this result is similar when we use a different artificial 
network, and/or expand the set of training elements applying a 
different technique, and/or we use a different random generator 
that MATLAB supplied.   

To answer these questions we should first allow to modify the 
number of hidden nodes. This will increment the number of 
centers and radii, and it will constraint the number of input nodes. 
We could probably assume that the first coefficients that 
discriminate more are enough to convey most of the Ȓk 
information, and selecting a larger number does not enhance the 
learning of the network. But on the other hand, we should be 

careful when the number of hidden nodes is so large that the 
number of input nodes goes below 8.. It seems that in this case 
we will not be able to capture enough discriminating features of 
the input space. [19]. 

Another point to highlight is that table 1 has a great variety of 
averages, and standard deviations. Table 2 shows small 
differences in the averages, and most of them with very low or 
zero standard deviation. But in this last case, the standard 
deviations reach big values while using some wavelet, as 
mentioned above. 

For future research, we could compare these results to those 
obtained by using a different statistical discriminating criterion, 
like the largest sum of the absolute value of the coefficients, the 
principal components analysis, the Wilcoxon rank sum test, or 
Shannon’s entropy.. We could also apply the expanding of the 
training set according to [17] using the original values of the 512 
points instead of the coefficients of the discrete wavelet 
transform.  Or we could increment the number of training 
elements using white noise applied to the original signals. We 
could also change the number of hidden nodes, with the 
corresponding variation of the number of input nodes, to avoid 
overlearning. With respect to the artificial neural network that we 
have used, we could investigate if the removal of the bias hidden 
node would affect the result. 

We could also use a margin based feature selection criterion 
and apply it to measure the quality of sets of extracted features 
[23]. Another possibility is to pass a message between the 
different particles at various level of training. Finally we could 
select the even or odd values in the set of original data when they 
are expanded using cubic splines. This will generate twice as 
many numbers of start data for the randomly generated expanded 
training set. Of course we could use a combination of all these 
approaches to compare the results with those obtained in this 
paper. 
 
In conclusion we can say that our findings are a good sign that 
artificial neural networks with radial basis functions could be 
used to help doctors when they are diagnosing cases of multiple 
sclerosis 
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