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ABSTRACT 

 

Seismic modeling is the process of simulating wave 

propagations in a medium to represent underlying structures of 

a subsurface area of the earth. This modeling is based on a set of 

parameters that determine how the data is produced. Recent 

studies have demonstrated that deep learning methods can be 

trained with seismic data to estimate velocity models that give a 

representation of the subsurface where the seismic data was 

generated. Thus, an analysis is made on the impact that different 

sets of parameters have on the estimation of velocity models by 

a fully convolutional network (FCN). The experiments varied 

the number of sources among four options (1, 10, 25 or 50 shots) 

and used three different ranges of peak frequencies: 4, 8 and 16 

Hz. The results demonstrated that, although the number of 

sources have more influence on the computational time needed 

to train the FCN than the peak frequency, both changes have 

significant impact on the quality of the estimation. The best 

estimations were obtained with the experiment of 25 sources 

with 4 Hz and increasing the peak frequency to 8 Hz improved 

even more the results, especially regarding the FCN’s loss 

function. 

 

Keywords: Deep Learning, Geophysics, Velocity Model 

Estimation, Seismic Data Analysis, Fully Convolutional 

Networks. 

 

 

1. INTRODUCTION 

 

The exploration of subsurfaces of the earth is an expensive 

process. The first step is to place sources and receivers along a 

certain area and then propagate waves from one equipment to be 

recorded by the other. This process generates seismograms that 

have much information of the structures underneath the region 

where the acquisition was made. The understanding of these 

seismic data may lead oil and gas companies to more assertively 

drill an area that may contain, for example, petroleum. However, 

two problems arise: the raw data by itself does not provide such 

kind of detailed information and they are too big and complex to 

be analyzed by humans. 

 

In this scenario, computer simulations aim to replicate the 

process of seismic data modeling so certain methods, such as the 

Reverse Time Migration (RTM) or Full-Waveform Inversion 

(FWI), can be used. These techniques try to alleviate the 

aforementioned problems when a subsurface section is 

investigated. The RTM is a method that outputs an image where 

it is possible to identify the underlying structures of a subsurface, 

whilst the FWI is an iterative method that tries to solve a 

nonlinear inversion problem to output a high-resolution model 

of velocities of the subsurface. The latter complements the 

former, since its output is an input for the other, and both 

methods require a signal representation of the subsurface in 

order to operate, i.e., the seismic data. Moreover, the FWI also 

needs an initial velocity model in order to produce a new one 

with higher resolution. Offering an optimal initial velocity 

model to the FWI can diminish the computational power 

required to perform the method, increase its convergence rate by 

avoiding local minima and produce a high-resolution velocity 

model. 

 

In the geophysics literature there are methods that help the 

production of initial velocity models. Authors such as [2] and [3] 

have, respectively, studied the use of reflection tomography and 

migration-based velocity analysis for such tasks. There are also 

approaches that consider the use of global methods such as 

genetic algorithms [4] and simulated annealing [5]. However, 
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the first two methods pose as a high time-consuming task and 

the last two demand more computational resources as the 

subsurface being analyzed increases in size, since they will 

require a larger population and, consequently, more modeling 

steps to carry the search on. More recently, researchers have 

been experimenting the use of deep learning techniques to solve 

geophysics problems [6], including seismic inversion [7] [8] [9] 

[10]. As far as it is of our concern, the first use of a fully 

convolutional network (FCN) for the velocity model estimation 

problem was addressed by [11], on which the FCN is trained 

with the seismic data of 1000 velocity models and tested with 20 

examples of seismic data not seen during training. The seismic 

data was generated with sources and receivers placed on both the 

top and the bottom layers of the subsurface, which characterizes 

a well log seismic acquisition. The work of [12] shows how the 

same network used by [11] can be applied to a more 

conventional seismic acquisition, where the sources and 

receivers are positioned only on the top of the subsurface. 

 

None of the works previously mentioned address the 

consequences of changing the number of sources or the peak 

frequency when training a deep learning method, except for [11], 

which compares only the case of seismic data with 1 and 10 

shots. This comparison led the authors to conclude that training 

the FCN with 10 shots not only offers better results than using 

only 1 shot, but also contributes to reduce overfitting. 

 

The goal of this study is to empirically analyze how the seismic 

data generated from synthesized velocity models can influence 

the estimation of such models using a FCN. This can contribute 

to the oil and gas industry by either demonstrating that deep 

learning methods may not necessarily require a high number of 

seismic shots, as it happens with other techniques, in order to be 

able to estimate a comprehensible velocity model, which can 

lead to reduce the expense to simulate, store and process non-

synthetic seismic data, or offering a technique that perhaps is 

less sensitive to higher frequencies. Moreover, a brief 

comparison with the results of the experiments of different shots 

made by [11] is carried in this work. However, it is important to 

state that, because the scheme to generate the seismic data and 

the velocity models used in this work differ from the ones used 

by [11], their results are only discussed, not reproduced. 

 

The experiments discussed here consider a finite-differences 

approach for the seismic modeling and alterations on some of its 

parameters, such as the number of sources and peak frequency, 

with the former varying from one central shot to 10, 25 and 50 

equally spaced shots and the latter varying from 4 to 8 and 16 

Hz. The seismic data is generated with basis on the same dataset 

of velocity models independently of changes on the modeling 

parameters, which consequently yields the same training and 

testing dataset throughout the entire analysis with modifications 

only on the resolution of the seismic data due to the differences 

of parameters. 

 

The analysis is twofold: to compare the graphical results of the 

estimated velocity models of each experiment made as well as 

their metrics obtained after the FCN is completely trained. 

Analyzing the metrics can offer a statistical and more precise 

evaluation of the results obtained after training the neural 

network, since only a graphical analysis can mislead the 

interpretation of how changing the modeling parameters effects 

on the neural network training. 

 

This study is organized as follows: the following section 

presents the mathematical and physical theory behind the 

seismic modeling; section three briefly presents the importance 

of velocity models; section four overviews fully convolutional 

networks applications and theory; section five describes the 

methodology and experiments; in section six a discussion of the 

results obtained with the experiments is made; and section seven 

concludes this work and points new directions of research based 

on the results obtained.  

 

 

2. SEISMIC MODELING 

 

Seismic modeling simulates the process of propagating waves 

on a subsurface area. This is done so researches can advance on 

processes that aid the understanding of subsurface areas prior to 

going into expeditions to them. This section is dedicated to 

briefly present some of the equations considering the modeling 

via the acoustic wave equation. 

 

        
1

𝑣(𝑥)2

𝜕2𝑃𝑠(𝑥,𝑡)

𝜕𝑡2 − ∇2𝑃𝑠(𝑥, 𝑡) = 𝑠(𝑥, 𝑡)  (1) 

 

The acoustic wave equation [13] [14] is described by Eq. (1), of 

which 𝑥 =  (𝑥′, 𝑧′) is the position on the subsurface for a 2D 

representation, 𝑣(𝑥) is the velocity at a given position, 𝑃𝑠(𝑥, 𝑡) 

is the source wave field and 𝑠(𝑥, 𝑡) defines the seismic source of 

the acoustic wave. Eq. (2) denotes the second spatial derivatives, 

i.e., the Laplacian operator (²), for the two-dimensional case 

as:  

 

        ∇2=
𝜕2

𝜕𝑥′2 +
𝜕2

𝜕𝑧′2       (2) 

 

One way to perform the seismic modeling is with the finite-

differences method [14], which offers a simple and easy 

implementation [15] through the Taylor series, consequently 

leading to a discretization of the equations. Both Eq. (1) and Eq. 

(2) can be expanded by a Taylor series, but some conditions must 

be met in order to avoid the numerical dispersion and instability 

that may arise when discretizing a continuous-time equation 

[15]. 

 

On one hand, Eq. (3) [15] denotes the conditions to avoid the 

numerical instability of a 2D model, on which 𝑡 is the time 

sampling interval, 𝑚𝑎𝑥(𝑣) is the maximum velocity of the 

model, 𝑥′ and 𝑧′ are the spatial sampling interval respectively 

on the x and z axes. 

 

Δ𝑡 ≤
1

max (𝑣)√
1

Δ𝑥′2+
1

Δ𝑧′2

      (3) 

 

On the other hand, Eq. (4) [15] illustrates the conditions to avoid 

the numerical dispersion problem of a bi-dimensional model: 

𝑓𝑚𝑎𝑥 is the maximum value of frequency allowed so the 

dispersion does not occur considering a given model, i.e., its 

maximum spatial sampling interval (𝑚𝑎𝑥(𝑥′,𝑧′)) and its 

minimum velocity (𝑚𝑖𝑛(𝒗)). The parameter 𝐹 is constant 

according to the order used for the Taylor series and it decreases 

as the order increases. 

 

                𝑓𝑚𝑎𝑥 =
1

𝐹

min (𝑣)

max (Δ𝑥′,Δ𝑧′)
        (4) 
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The peak frequency (𝑓𝑝𝑒𝑎𝑘) is defined as approximately half of 

the max frequency (Eq. (5)) and represent the point of the 

spectrum of frequency with maximum amplitude. 

 

       𝑓𝑝𝑒𝑎𝑘 =
𝑓𝑚𝑎𝑥

2.3
         (5) 

 

The information generated by the simulated wave propagation is 

translated into the seismic data, which corresponds to the values 

of transit time of the wave, the amplitudes and the phase of the 

events. The seismic data varies and respects undulation 

phenomes such as reflection, refraction and transmission 

 

 

3. VELOCITY MODEL 

 

A velocity model offers a representation of the structures present 

in a subsurface based on the velocity of propagation of the waves 

emitted from the sources and recorded by the receivers that are 

placed on the surface when the seismic data is being modeled. 

This is because the velocity of propagation directly depends on 

the type of medium through which a wave travels. Therefore, it 

is possible to determine a structure, i.e., rock, water, salt body, 

etc., according to its velocity. 

 

As said before, there are different approaches to handle the initial 

velocity model problem in the geophysics literature and an 

optimal model can help when applying the full-waveform 

inversion. These models, however, are said to be smoothed 

(Figure 1a) and, although they can display an initial guess of the 

velocities of the subsurface, they lack details on its structural 

composition. In that sense, estimated models that have their 

structures clearly identified by their velocity values and are 

highly correlated to their ground-truth (Figure 1b) counterpart 

are known as high resolution models. 

 

 
a) 

 
b) 

Figure 1 - An example of a) smoothed and b) ground-truth 

velocity models 
 

 

4. FULLY CONVOLUTIONAL NETWORKS 

 

Convolutional Neural Networks (CNN) were firstly introduced 

by [16] as an option for recognizing handwritten digits from the 

U.S. Postal Service. Later it was proved that CNNs can handle, 

besides images, speech and time-series problems [17]. In the 

recent years, deep learning has gained even more importance, 

especially after the ImagetNet contest in 2012 and the 

development of AlexNet [18]. Since then, different proposals of 

deep learning methods with CNNs have been made, including 

the fully convolutional networks (FCNs). 

 

The first proposition of use of an FCN was for handling semantic 

segmentation problems [19], which is the task of segmenting an 

image into parts and classifying those parts into one of the 

predetermined classes. 

 

Eq. (6) demonstrates the operation of the basic components of 

CNNs as [19] point out. In this case, 𝑥𝑖𝑗  is the data vector, 𝑦𝑖𝑗 is 

the next layer, 𝑘is the size of the kernel, 𝑠the subsampling factor 

and 𝑓𝑘𝑠 defines the type of the layer (convolution, pooling or 

activation function). Therefore, [19] nominate CNNs that 

contain only layers ruled by Eq. (6) as fully convolutional or 

deep filter, since, differently from conventional approaches that 

use CNNs, the FCN does not contain fully connected (dense) 

layers, producing with its operations a nonlinear filter instead of 

a nonlinear function and reducing the number of parameters, 

computational time and dependency of the size of the image. 

 

                           𝑦𝑖𝑗 = 𝑓𝑘𝑠({𝑥𝑠𝑖+Δi,sj+Δj}0≤Δ𝑖,Δ𝑗≤𝑘)  (6) 

 

 

5.  METHODOLOGY AND EXPERIMENTS 

 

In this section we describe the methodology and experiments of 

this work. Firstly, the synthetic velocity models are presented 

with details regarding their construction such as number of 

layers, minimum and maximum velocities and other 

characteristics. Then, the description moves on how the seismic 

data is generated and how the FCN is configured to handle it as 

inputs and estimate velocity models. 

 

The velocity models and seismic data are both synthetic and they 

are built in different occasions. We first generate 1020 random 

velocity models and then we apply the finite-differences seismic 

modeling on each one of the recently-generated velocity models 

to create its corresponding seismic data. 

 

The subsurface area being represented by the synthetic velocity 

models is a marine region of 3000 m in length by 3000 m in 

depth. The models are two-dimensional grids of 150 samples on 

both x (𝑛𝑥′) and z (𝑛𝑧′) axes and their number of layers vary 

from 8 to 12 layers, of which the first layer represents a water 

blade of 100 m deep and velocity of 1500 m/s. Subsequent layers 

have their depth randomly defined and their velocity is 

incremented (𝑉𝑖𝑛𝑐𝑟) in a crescent order, from the first layer 

velocity onwards, depending on how many layers (𝑛) the model 

has and on its maximum (𝑉𝑚𝑎𝑥 =  3500 𝑚/𝑠) and minimum 

(𝑉𝑚𝑖𝑛 = 1500 𝑚/𝑠) velocities (Eq. 7), e.g., if the model has 12 

layers, then the velocity will be incremented in 166,66 m/s at 

each layer. Furthermore, the models can have their layers 

inclined, undulated or containing fault structures. Figure 2 

displays an example of such model. 

 

    𝑉𝑖𝑛𝑐𝑟 =
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑛
   (7) 

 

The seismic modeling is conducted on two fronts and it 

considers an arrangement of sources and receives as used by 

[12], i.e., they are simulated as they were placed on the top of 

the subsurface. The first front is to make different modeling 

changing only the number of sources and fixing a low frequency 

of 4 Hz. Since the sources are positioned on points (𝑥′, 𝑧′) of the 

subsurface, by decreasing their quantity we might inflict on the 

acquisition of information belonging to certain regions of the 

given subsurface. Hence, the goal is to analyze how the changes 

on the number of sources will affect and how much of the 

velocity model the FCN can estimate. 
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The experiments of the second front consider modifications of 

the frequency using three different bands: 4 Hz, 8 Hz and 16 Hz. 

As said before, the frequency is important to avoid the numerical 

dispersion that may occur when calculating the acoustic wave 

equation through the Taylor series. The frequency of 16 Hz is 

the frequency of peak obtained from Eq. (5) after calculating the 

maximum frequency needed to avoid such dispersion when 

applying the parameters depicted in Table 1 in Eq. (4) using 𝐹 =
2 as we considered a 32-order finite-differences. It is safe to say 

that any value below this threshold does not disperse the wave 

equation modeling, whereas frequencies above it disperse. 
 
 

 
 

Figure 2 - A synthetic velocity model containing 10 layers, 

undulations, inclinations and fault structures 

 

The frequency influences on how much of detail of the structures 

the modeling will be able to capture. It is expected that by 

lowering the frequency, the seismic data becomes smoother and 

consequently the non-linearity of the problem is decreased. 

Hence, the values picked for the experiments represent low-band 

(4 Hz), medium-band (8 Hz) and high-band (16 Hz) frequencies 

and aim to aid the understanding of how different bands can 

determine the level of details of the estimated models. 

 

Table 1 - Fixed parameters considered when modeling the 

synthetic velocity models 

 

Parameter Value 

𝑛𝑥′ 150 samples 

Δ𝑥′ 20 m 

𝑛𝑧′ 150 samples 

Δ𝑧′ 20 m 

𝑛𝑡 1500 samples 

Δ𝑡 0.002 s 

 

The FCN implementation takes the seismic data previously 

described as input and tries to estimate the velocity model 

corresponding to the input by minimizing the error between the 

estimated model and the ground-truth that generated the seismic 

data. 

 

The work of [11] proposes the use of a U-Net [20] to perform 

the inversion of a seismic data into a velocity model. This FCN 

consists of two parts: an encoder and a decoder. The encoder is 

composed of convolution and max-pooling layers, which 

gradually reduces the size of the image at the same time it 

determines what are the features of the input data. The decoder 

also has convolution layers, but the max-pooling are replaced by 

up sampling layers. This results in an increasing of the image 

size, to match the original image, and consequent localization of 

the features identified during encoding. 

 

This study relies on the same U-Net proposed by [11], having 

the same quantity of layers and the same number of filters on 

each convolutional layer. However, two major changes were 

made in order to improve the results. Firstly, the stochastic 

gradient descent (SGD) optimization function was replaced by 

Adamax [21], which computes adaptive learning rates for each 

parameter and offers a more robust solution than the SGD’s 

fixed learning rate when training a neural network model. 

Secondly, the rectified linear unit (ReLU) activation function 

was replaced by the parametric rectified linear unit (PReLU). 

 

By using the ReLU activation function one can avoid the 

vanishing gradient problem that might occur in neural networks 

trained with gradient-based optimizers, such as Adamax. 

However, such function has another issue called the Dead ReLU, 

which might compromise a netwok from learning since the 

output of some of its neurons can be zero due to this function’s 

nature (Figure 3a). The PReLU is an alternative to avoid this 

issue as it learns to parameterize the negative inputs of the 

neurons instead of assigning zeros to them as ReLU does (Figure 

3). A more detailed study demonstrating how these changes on 

the activation function and optimizer leverage better velocity 

model estimations can be seen in the work of [22]. 

 

 

 
a) 

 
b) 

 

Figure 3 - Plot showing how the a) ReLU and b) PReLU 

activation functions work 

 

The FCN is trained for 200 epochs with a batch size of 2 on 80% 

of the total of seismic data generated, saving 20% for the testing 

stage. The testing dataset is a portion of the original dataset 

unknown to the FCN, i.e., that has never been presented to it 

during the training phase, so it can offer an unbiased analysis of 

the model’s performance. The batch size is small due to the size 

of the input and, although it could increase as the number of 

sources used during modeling decreases, since less sources 

means a reduction of size of the seismic data, it was kept 

unchanged throughout all experiments. 

 

The evaluation of the FCN is made based on five different 

metrics with respect to the testing dataset: mean squared error 

(MSE), which is also the loss function, mean absolute error 

(MAE), coefficient of determination (R²), Pearson’s coefficient 

of correlation (r) and factor of two (fac2). 

 

In this context, the MSE (Eq. (8)) measures how far an estimated 

model is from its respective ground-truth model. The bigger the 
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differences between one output and its corresponding target, the 

greater the penalization and, consequently, the associated error. 

 

   𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑘 − �̂�𝑘)2𝑁

𝑘=1      (8) 

 

The MAE (Eq. (9)) have lower values when compared to MSE’s 

and indicates how much the difference of velocities between an 

estimated and its ground-truth model vary, i.e., if the MAE is of, 

say, 100, it means the output have 100 m/s of average error 

compared to the target. 

 

   𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑘 − �̂�𝑘|𝑁

𝑘=1         (9) 

 

The coefficient of determination (Eq. (10)) indicates how better 

the estimation is when compared to a baseline model - either 𝑦 

or �̂� variables of Eq. (10). 

 

                              𝑅2 =
[∑ (𝑦𝑘−�̅�)(�̂�𝑘−�̂�)𝑁

𝑘=1 ]
2

∑ (�̂�𝑘−�̂�)
2

𝑁
𝑘=1 ∑ (𝑦𝑘−𝑦)2𝑁

𝑘=1

                   (10) 

 

The Pearson’s coefficient (Eq. (11)) quantifies the linear 

relationship between an estimated model and its ground-truth 

counterpart, of which the value of -1 means opposite 

correlations, 0 means no correlation at all and 1 means total 

correlation 

 

                          𝑟𝑦�̂� =
∑ (𝑦𝑘−𝑦)(�̂�𝑘−�̂�)𝑁

𝑘=1

√∑ (𝑦𝑘−𝑦)2𝑁
𝑘=1

√∑ (�̂�𝑘−�̂�)
2

𝑁
𝑘=1

                 (11) 

 

The factor of two (Eq. (12)) determines how much of the 

estimation can be considered an outlier. 

 

    𝑓𝑎𝑐2 = 0.5 ≤
�̂�𝑘

𝑦𝑘
≤ 2                (12) 

 

The parameters from Eq. (8) to Eq. (12) are as follows: 𝑁 is the 

size of the velocity model grid, 𝑦𝑘 is the 𝑘𝑡ℎ velocity of the 

ground-truth model (target), �̂�𝑘 is the 𝑘𝑡ℎ velocity of the FCN’s 

model (estimated output), 𝑦 is the mean of velocities of the target 

output and �̂� is the mean of velocities of the estimated output 

 

6.  RESULTS 

 

An analysis and comparison of the experiments discussed 

previously are carried along this section. Both the experiments 

with variations on the number of shots and peak frequency are 

discussed and compared amongst them. It is important to restate 

that the experiments with adjustments of the number of shots 

were made with a peak frequency of 4 Hz, whereas when 

changes on the peak frequency occurs the number of shots is 

fixed at 25. The comparison is made both graphically and with 

regards to the metrics presented beforehand that are calculated 

after the deep learning model is fully trained. 

 

The statistical comparison is to give a more reliable analysis, 

since considering only the estimated image of the velocity model 

can mislead the interpretation of the results. In this case, the goal 

is to minimize both the loss (MSE) and MAE metrics at the same 

time it maximizes 𝑅², 𝑟 and 𝑓𝑎𝑐2 to values as close to 1 as 

possible. Besides the metrics, the time (in hours) taken to train 

the model also composes the analysis. 

 

The graphical results of the estimation of one ground-truth 

model from the testing dataset can be seen in Figure 3. The 

ground-truth model contains undulated and inclined layers, and 

a simple fault structure that is identified by the yellow ellipsis in 

Figure 4a. Analyzing only the images leads to pointing out that 

Figure 4c, Figure 4f and Figure 4g obtained the best 

representation of the ground-truth model because they contain 

not only well-positioned layers, with identification of their 

undulation and inclination, and a high precision of the velocities 

on each layer, as the other estimations do, but also a fair 

depiction of the fault structures. 

 

 
a) 

 

 
b) 

 
c) 

 

 
d) 

 
e) 

 

 
f) 

 
g) 

 

Figure 4 - a) Ground-truth velocity model and graphical results 

obtained with the experiments of b) 1 source, c) 10 sources, d) 

25 sources and e) 50 sources all modeled with 𝑓𝑝𝑒𝑎𝑘 = 4 Hz 

and f) 8 Hz and g) 16 Hz both having 25 shots  

 

On one hand, it is not safe to infer so straightforwardly that these 

representations are the best because this velocity model 

represents only one example of the entire testing dataset. This 

may indeed be a case where the FCN models estimated an 

optimal velocity model from the seismic data they were trained 

by, but there may also exist cases that the estimations greatly 
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differ from their ground-truth models. On the other hand, this 

analysis indeed validates the use of FCNs to produce velocity 

models from unknown seismic data. 

 

Once the graphical investigation of many examples is imprecise 

and impractical, a quantitative evaluation of the statistical 

indicators belonging to each one of the experiments is 

conducted. These metrics are measured after the training phase 

using the entire testing dataset. Table 2 displays the metrics, the 

corresponding time it took for the models to be trained and the 

peak frequency for each experiment.  

 

Before venturing into the comparison of the metrics, an 

association between the experiments and the computational time 

is conducted. It is possible to see from Table 2 that as the number 

of shots increases, so it increases the computational time taken 

to train the FCN. This happens because the number of shots have 

a direct influence on the size of the seismic data as additional 

shots mean adding matrices of size 𝑛𝑡 ×  𝑛𝑥′ to the seismic data. 

 

On the other hand, the peak frequency does not seem to have 

much importance to the computational time. Considering the 

experiment of 25 shots in Table 2, since the modeling had a peak 

frequency of 4 Hz, and comparing it with the time of the 

experiments of 8 Hz and 16 Hz, as both have 25 shots, there is 

no clear relation of computational time and higher or lower 

frequencies. In fact, the result that achieved the lowest time is 

the one with the highest frequency and the experiment with 

medium frequency took the longest to train. 

 

Table 2 - Results of the evaluation metrics and the time for 

training (in hours) for each one of the experiments with 

changes on the number of sources (shots) with fixed peak 

frequency of 4 Hz and on the frequency with a fixed 25 number 

of shots 

 

 1 shot 10 

shots 

25 

shots 

25 

shots 

25 

shots 

50 

shots 

𝒇𝒑𝒆𝒂𝒌 

(Hz) 

4 4 4 8 16 4 

Time 

(h) 

7.19 7.43 8.10 8.14 8.09 9.07 

MSE 14172 7313 6837 6126 7578 7207 

MAE 75.39 45.41 44.19 46.79 54.69 49.72 

R² 0.954 0.975 0.977 0.980 0.974 0.976 

R 0.983 0.989 0.990 0.991 0.990 0.990 

fac2 0.999 1.0 1.0 0.999 1.0 0.999 

 

The evaluation metrics of each experiment, in general, 

demonstrated close values, but it is possible to notice that 

training the FCN with seismic data that have more shots does not 

necessarily indicate a better estimation. Even though the 

experiment with 50 shots demonstrates valuable results, i.e., it 

accomplished values close to 1 for the r, R2 and fac2, and 

relatively low values for MAE and MSE, other experiments were 

able to surpass it. In this case, both experiments with 10 and 25 

shots obtained better values in all metrics, of which the latter 

bested the former. Moreover, the experiment with 25 shots could 

be further improved when the modeling was made with 8 Hz, 

reaching the lowest value with the loss function (MSE) and the 

highest with 𝑅² and 𝑟 metrics for all experiments. This, however, 

happened at the expense of slightly decreasing the MAE and 

𝑓𝑎𝑐2 metrics to values below the experiment of 25 shots and 4 

Hz. 

 

On the other hand, neither reducing much the number of shots 

nor increasing even more the peak frequency mean improvement 

on the estimation either. The worst results belong to the 

experiment with the central shot. In this case, the values of the 

metrics 𝑅², 𝑟 and 𝑓𝑎𝑐2, though show little differences from the 

same metrics of the other experiments, were the lowest and the 

MSE and MAE were the highest amongst all. Moreover, the 

experiment with 16 Hz resulted in worst metrics than the one 

with 50 shots. 

 

Although having the worst metrics, the FCN successfully 

inverted a seismogram of one shot into a velocity model. This 

possibly happened due to the size of the subsurface and the 

velocity model, which are considered small from a geophysics 

perspective, but this cannot be confirmed to happen as the 

subsurface becomes larger considering only the analysis made 

in this work. 

 

Hence, considering the extent of the experiments conducted in 

this work, it is possible to conclude that the FCN not only can 

produce velocity models from unknown seismic data, but it can 

also deliver high-resolution models. Furthermore, the 

parameters used to generate the seismic data, combined with the 

size of the subsurface area and the size of its velocity model 

representation, play an important role in determining how high 

the model’s resolution is going to be. 

 

 

7.  CONCLUSIONS 

 

This work demonstrated how changing the number of sources 

and peak frequency of the seismic modeling can affect the 

training and evaluation of an FCN model that takes seismic data 

as input to estimate 2D velocity models. 

 

The experiments firstly fixed the peak frequency at 4 Hz and 

varied the number of shots amongst one central shot, 10, 25 and 

50 shots and then fixed 25 shots and varied the peak frequency 

to 8 and 16 Hz. The results showed that the best metrics for the 

FCN were obtained with the experiments of 10 and 25 sources 

and increasing the peak frequency from 4 to 8 Hz improved even 

more the estimation, especially regarding the FCN’s loss. When 

the peak frequency was increased once again, the FCN reached 

lower metrics than the experiment with 50 shots. Nevertheless, 

the worst results amongst all were obtained with the seismic data 

produced by a single central shot. These results partially 

contradict the affirmation made by [11], since the results were 

indeed improved when increasing the number of shots from 1 to 

10 and from 10 to 25 but they worsened when considering 50 

shots. Additionally, there is no clear evidence whether the 

number of shots influences on the model overfitting or not. This 

might have happened due to the size of the dataset used in their 

work. 

 

Initial conclusions for the experiments addressed in this work 

indicate that, depending on the size of the subsurface, training 
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the FCN with seismic data that have few shots is enough to 

estimate a velocity model. However, as the size of the model and 

subsurface increases, more shots may give a better 

representation of the area. Furthermore, the results imply that the 

FCN is, up to a certain point, less sensitive to higher peak 

frequencies as the results improved when the modeling was 

changed from 4 to 8 Hz, but they worsened when 16 Hz was 

considered. 

 

In general, the results demonstrated to be valuable, since they 

show the possibility of training deep learning models with 

seismograms containing few shots and high frequencies to 

estimate optimal velocity models. 

 

Further studies point to the need of analyzing whether few shots 

are indeed enough to estimate velocity models of larger and 

more complex subsurfaces. Furthermore, improvements on the 

training stage, such as mixing the dataset with low, medium and 

high frequencies or substituting the max-pooling layers for 

convolutional layers, can be made, and other deep learning 

methods, such as generative adversarial networks (GAN), may 

be studied to determine whether they behave differently from the 

FCN for the seismic inversion problem.  
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