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ABSTRACT 

 

A wireless network with a mesh topology works reliably and 
offers redundancy. In modern broadband wireless mesh 
networks that use MIMO and OFDMA techniques, the problems 
of time, frequency, and space resource allocations are different 
from a cellular system and more complicated due to system 
architecture and distributed control and management. This paper 
focuses on the resource allocation problem of the OFDMA 
system and we define the term of separability order. For simple 
topologies like the square grid configuration, the allocations are 
simple and an optimal solution can be shown, but for an 
arbitrary architecture we need advanced tools and we use Graph 
Theory tools to present two different algorithmic solutions, to 
allow frequency reuse. 
 
Keywords: Wireless mesh networks, OFDMA, resource 
allocation, graph colouring, graph theory, graph algorithms.  

 

1. INTRODUCTION 

 
A wireless mesh network (WMN) [1,2] is a communications 
network made up of radio nodes organized in a mesh topology 
usually composed of mesh clients, mesh routers and gateways. 
The WMN enables rapid deployment with lower-cost backhaul 
and good coverage. The interest in these networks increases in 
parallel to the developments of cellular systems and has its own 
values. A wireless network with a mesh topology is reliable and 
offers redundancy. Broadband modern networks use multiple 
antennas at both transmitter and receiver (MIMO - multiple 
input multiple output) and multicarrier transmission techniques 
(OFDMA - orthogonal frequency division multiple access) [3].   
 
The allocation of frequency resources in OFDMA WMN has 
unique characteristics due to WMN spatial architecture which is 
different from cellular network spatial architecture and due to 
the fact that the OFDMA channel can be split in sub-bands of 
subcarriers.  Methods of dynamic sub-carrier assignment in 
OFDMA WMN are shown in [8-10] using cross-layer 
optimization taking into account interference among links and 
adaptive power allocation and admission control. In [12] the 
graph theory is used for resource allocations, in this paper the 
concepts are reviewed, and new methods and results are added. 

 

2. RESOURCE ALLOCATION 

 

Resources and Separation Order 

The resources to be shared considered in this paper are: 
o Time: The system may operate with time slots division, 

requiring network synchronization. 
o Frequency: The frequency division can be among different 

OFDMA bands, inter-band, or among different sub-carriers 
in the same OFDMA band, intra-band.  
A group of subcarriers dedicated to some purpose, such as 
transmission for a specific user forms a sub-band. 

o Space: Frequency reuse can be made using spatial 
separation: 
• Among geographically separated links. 
• Among different transmission directions using MIMO 

or directional antennas. 
• Among different reception directions using MIMO or 

directional antennas. 
 
We define [4] the time frequency separation order (TF-SO) λTF 
as the number of combinations of time slots and frequency 
bands which give practical separation among such combinations 
(not according to frequency sub bands). If NT  is the number of 
time slots and NFB is the number of frequency bands, then TF-
SO is given by: 

λTF = NT · NFB    Eq. (1) 

For example, with four time slots and two frequency bands, the 
TF-SO is λTF = 8.  
 
With multiple antennas, the spatial domain can be used to create 
additional degrees of freedom for communications. Utilizing 
multiple antennas may result in additional spatial channels. The 
TF-SO may be modified to include the space separation. 
Assuming that for each terminal, we have directional antennas 
that divide the space in NsS sectors, we can extend the TF-SO to  
time, frequency and space separation order (TFS-SO) λTFS, 
according to the number of combinations of time slots, 
frequency bands, and angular directions that offer practical 
separation among such combinations. The TFS-SO is given by: 

λTFS = NT · NFB · NS   Eq. (2) 
However, since the number of angular directions of each 
terminal is not fixed, the separation varies with time. Therefore, 
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we must find an effective (average) TFS-SO factor with an 
effective number of sectors NS.eff: 

λTFS.eff = NT · NFB · NS.eff.  Eq. (3) 

 

Separation Rules and Separation Order Extension 

The OFDMA should be combined with TDMA to allow 
connectivity among nodes in WMN. There are NFB frequency 
bands of OFDMA and in each frequency band, NFSB frequency 
sub-bands and NT  time slots of TDMA. In each slot, all 
frequencies may be used according to non-collision rules: 
o A node may not transmit and receive in the same time 

slot in the same frequency band. 
o All transmissions from a node to other nodes in the same 

time slot in the same frequency band should have 
different frequency sub-bands. 

o All receptions at a node from other nodes in the same 
time slot in the same frequency band should have 
different frequency sub-bands. This includes intentional 
transmissions to this node as well as interferences, i.e. 
receptions from transmissions to other nodes received 
from transmitters in the node’s area of reception. 

 
The intra-band division does not give the same level of 
separation as different time slots and different frequency bands 
due to the additional constraints imposed. The extension of the 
notion of separation order that includes the effect of the sub-
bands is denoted as extended separation order of time and 
frequency λxTF, or as extended separation of time, frequency and 
space λxTFS. For example for the case when each band has the 
same number of sub-bands NFSB, the extended separation order 
is given by λxTF=NFSB·λTF  and  λxTFS=NFSB·λTFS.. 

 

The meaning of the extended separation order is the number of 
combinations of time slots, frequency bands and frequency sub-
bands (and of angular directions) and each such combination is 
denoted as a resource element (or briefly - elements).  
 
Perfect Square Grid Example 

A perfect square grid serves as an example of resource 
allocation. We denote the node coordinates as (i,j), where i and j 
are integers. 
 
Assuming that the communication range R is 1<R< 2 , then 
only the four closest neighbors can communicate directly, 
which defines a perfect grid graph. 
 
 Lemma The minimum number of resource elements, to be 
allocated on the edges of the grid, without causing disturbances, 
is λxTF=16.  
 
Proof First regard any edge of the grid, the 6 edges adjacent 
to its end-vertices, and an additional parallel edge, that is 
located right beyond that edge. If any pair of these edges is 
allocated the same element, then the two edges would be in 
disturbance, therefore, to avoid disturbances, we need to set 
different elements on those 8 edges. Since every bi-directed 
transmissions on an edge must use two different elements, then 
we need to allocate 8×2=16 different elements on those edges. 
Therefore, we need at least 16 different elements for every 
disturbance-free allocation of elements on the grid.  
 
To terminate the proof, we present a disturbance-free allocation 
of one element on every edge of the grid, using 8 different 
elements (16 elements when doubling the required elements per 
edge).   
 

Allocation of elements on horizontal edges: For every i, 
i=0,1,2,3, we set the element i on the edges connecting the two 
coordinates (i mod 4, 0 mod 2) and (i+1 mod 4, 0 mod 2), and 
on the edges connection the two coordinates (i+2 mod 4, 1 mod 
2) and (i+3 mod 4, 1 mod 2) .  
 

Allocation of elements on vertical edges: For every j, j=0,1,2,3, 
we set the element j+4 on the edges connecting the two 
coordinates (0 mod 2, j mod 4) and (0 mod 2, j+1 mod 4), and 
on the edges connection the two coordinates (1 mod 2, j+2 mod 
4) and (1 mod 2, j+3 mod 4) .  
 
It is easy to verify that no pair of edges is in disturbance on this 
allocation, and thus, if the number of elements per edge is 
doubled, we get a non-disturbing allocation of 16 elements on 
the edges of the grid.   �  
 
The resource for a square grid is shown in Figure 1. The 
numbers 1 to 8 represents each two elements, one for each 
direction. 

 

Figure 1.   Optimal resource allocation for a square grid. Each 
of the numbers 1 to 8 represents  two elements, one for each 
direction. 

If the resource elements are combinations of time slot and 
frequency band there are no restrictions to allocations.  
 
 Often from practical considerations there is restriction to one 
frequency band. Therefore we have to use different time slots 
and may use sub division of the band into sub bands and 
limitations have to be taken into considerations according to the 
non-collision rules. For this case a solution will be described 
with four time slots and for sub-bands. We denote the two 

resource elements related to an horizontal link i  as ii
��

 and 
and the two resource elements related to an vertical link j  as 

↓↑ jj  and . The active transmissions in each one of the four 

time slots are: 

1. 2 and 1
��

 , 4 and 3
��

 

2. 2 and 3
��

 , 1 and 4
��

 

3. ↓↑ 8 and 7  , ↓↑ 6 and 5  

4. ↓↑ 5 and 8  , ↓↑ 7 and 6  
In each time slot there are four subband, which are the same 

subbands, e.g.  1
�

,  2
�

,  7 ↑ ,  8 ↑ occupy the same frequency 
subband. Therefore each node is transmitting in two time slots 
out of the four. The node with the links 1, 2, 8, 5, as an example 

transmits in slot 1: 2 and 1
��

 and in slot 3: ↓↑ 8 and 7 ; slots 
2 and 4 are used  for reception. According to the links 
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connected to each node there are 16 types of nodes and each 
node type have a different template of operation.  
 

3. FORMAL RESOURCE ALLOCATION PROBLEM 

 
In the rest of the paper we use Graph Theory methods and 
terminology [5,6,7], where each terminal, having a transmitter 
and a receiver, becomes a vertex, and the links become edges.   
 
Let V be a set of topologically allocated vertices, and R be an 
upper bound on the distance between any two communicating 
vertices, i.e. if the distance between any two vertices does not 
exceed R, then they can communicate, and thus we connect 
them by an edge.  
 
To avoid collisions, for every two vertices u, and v, different 
resources are being used to broadcast from u to v and to 
broadcast from v to u. Hence, there cannot exist simultaneous 
broadcasting from u to v and from v to u , and thus, for every 
slot of time, we may disregard the direction of the broadcasting, 
and use undirected graphs to describe the connections between 
the vertices of V.  Therefore, the set of vertices, V, and the upper 
bound on the distance, R, induce an undirected graph  
G = ( V , E(V,R) ) were E denotes the set of edges connecting 
the vertices V within the distance R. 
 
A resource allocation on G defines a set of resource elements, 
such that every edge of G uses one resource element of the set 
in each direction. A resource element stands for any 
combination of elementary resources: It can be regarded as a 
combination of time slots, band frequencies, sub-carriers, etc. 
Hence, it can represent pairs of the type {time, band}, {time, 

sub-band} etc.  
 
The resource elements allocated on the edges of G must follow 
the following rules:     

• For every vertex v∈V, all the simultaneous 
broadcasting from v, and to v, are mutually 
disturbing, and thus should be allocated by different 
resource elements. 

• Moreover, if a vertex x transmits to a vertex y, then y 
is disturbed by the transmissions of x to other 
vertices, and it may disturb y to receive transmission 
from other vertices.   

A more restrictive rule may be added to allow autonomous 
management of links between two nodes by the nodes it links 
by allowing the resources allocated to the link to be used in both 
directions according to the traffic between these nodes.  
 
Therefore, the edges adjacent to x and the edges adjacent to y 
must all be allocated by different resource elements. We thus 
define two edges (u,v), and (x,y), with resource elements f1, and 
f2 respectively, to be mutually undisturbed  if and only if they 
satisfy the following demands:  

 
• Vertices u, v, x, and y, are all distinct,  and 
• Vertices u and v are not neighbours of vertices x, and y.  
Obviously, if edges (u,v), and (x,y), are not mutually 
undisturbed, then they are mutually disturbed, and every pair of 
transmissions, set on this pair of edges, is also mutually 

disturbed.  
 
Our goal is to allocate as few different resource elements as 
possible to the set of edges of the graph G, such that no two 
transmissions are mutually disturbed.  

 
In the following two chapters, Chapter 4 and Chapter 5, we 
present two algorithms of two distinct approaches for solving 
this problem (however none of the algorithms is preferable). 
The first algorithm paints closed vertices (neighbours and 
neighbours of neighbours) with different colours, and allocates 
different resource elements to their edges. The second algorithm 
takes advantage of the radius of the reach range to allocate 
different elements to the edges in that range, while farther edges 
repeat using the same set of elements (and their vertices are 
regarded as being differently coloured).  
   

4. FIRST RESOURCES ALLOCATION ALGORITHM 

 
The first algorithm, (A1), uses the Graph Theory term "Coloring 
of Vertices" to set elements only on edges that are "far enough" 
from each other.  

 Algorithm 1        (Α1)  

Input: 

• A set V of topologically allocated vertices V, 

• An upper bound on the distance R 

• A set F of elements (Assume that F is large enough) 

1) Build the graph G = (V,E) from V according to R (as 

suggested on the problem description)  

2) Build the graph G' = (E,E') from G such that for every 

e1,e2∈E , (e1,e2)∈E'  if and only if  e1,e2 are mutually 

disturbed.  

3) Colour the edges of E by using as few colours as possible, 

such that the end vertices of every edge of G' are coloured 

differently.  (Notice that even if the vertices of G' are 

randomly coloured properly, then every vertex is set by a 

colour that is different from the colours of its neighbours, 

and thus no more than ∆(G')+1 colours are needed to 

colour properly the vertices of G' , where ∆(G')  is the 

maximum degree of G'  [5,6]).  

4) The colours of E in G' are the colours of E in G .  

Output:  A resource element on every edge of G .  
 
Notice that every pair of edges, that was set by the same 
element, is mutually undisturbed, since G' was built accordingly  
 
Obviously, if the graph G' is properly coloured by the minimum 
number of colours, then the algorithm may set as few elements 
as possible to the edges of G , since that colouring of G' ensures 
that the same elements are set properly as many times as 
possible.  Unfortunately, the problem of properly colouring the 
vertices of an undirected graph with the minimum number of 
colours, is known to be NP-hard [11], that is, mathematicians 
believe that no polynomial time algorithm exists for solving that 
problem. We believe that this is also the status of our proposed 
Resources Allocation Problem.  Therefore, we must settle with 
the random colouring of the vertices of  G', that ensures the use 
of no more than ∆(G')+1 colours. The result ∆(G')+1 is  a small 
enough number of elements to be set on the graph G .   
 
The following Example, (E1), illustrates how Algorithm (A1) 
runs on a given undirected graph. Notice the two suggested 
colourings of E of G' in step 3: The first randomly uses the 
alphabetic names of E, and needs 10 colours to colour E 
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properly , while the second detects the existence of a triangle of 
G' with a "crowded" neighbourhood, (i.e. many edges are 
adjacent to the vertices of the triangle), and starts the colouring 
there, resulting the optimal 9 colours for the proper colouring of 
E. (Notice that the vertices of that triange - emphasized by 
yellow - and its neighbours, must all have distinct colours. 
Therefore, the 9 colours, needed to colour them, are the 
minimum number of colours in a proper colouring of E ) .  
 
Unfortunately, detecting maximum cliques (i.e. subgraphs of 
maximum number of vertices, where every pair of edges is 
connected by an edge), is also known to be NP-hard [11], 
therefore it is pointless to add the detection of crowded 
maximum cliques  to the algorithm.  

Example 1    (Ε1) 

 

Figure 2.  Algorithm 1, step 1: The given graph G=(V,E)  

 

Figure 3.  Algorithm 1, step 2: Numbering the edges of G 

 

Figure 4.  Algorithm 1, step 2: The graph G'  

 

Figure 5.  Algorithm 1, step 3: Colouring E in G' in 

alphabetic order – Colouring with 10 colours 

 

Figure 6.  Algorithm 1, step 3: Colouring E in G', starting 

with the emphasized triange and its neighbours – Optimal 

colouring with 9 colours  

 

 

Figure 7.  Algorithm 1, step 4: The resulting allocation - 

Optimal colouring of E in G  

1 

b c g 

h 

i 

a 

j 

k 
m 

l 

f 
e d 

q 
p 

n 
o 

2 3 6 

9 

1 
8 

4 5 
1 

2 

1 

3 
7 

10 

6 

2 

9 
2 3 7 

7 

2 
6 

1 4 
8 

1 

3 

2 
9 

5 

3 

1 

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 12 - NUMBER 1 - YEAR 2014 55



 

5. SECOND RESOURCES ALLOCATION ALGORITHM 

 
Our second algorithm, (A2) , is a topological algorithm, that 
uses an algorithm we denote as Common Elements Algorithm 
(CEA), to draw as many non tangent circles of diameter R as 
possible, on the area of the graph G. Every two edges of 
different circles, cannot be mutually disturbed, and thus can be 
set the same element. Therefore, the same scope of elements can 
be set to the edges of each such circle.  

 Algorithm 2              (Α2)  

Input:  

• A set V of topologically allocated vertices V ,  

• An upper bound on the distance R   

• A set F of elements (Assume that F is large enough)  

1) Build the graph G = (V,E) from V according to R (as 
suggested on the problem description) 

2) As long as E≠∅ , 

a) Run the following algorithm, (CEA) , on G  

b) Subtract the elements, being used by (CEA) of previous 
step, from F  

c) Delete the edges, that received elements by (CEA) of 
previous step, from E  

d) Delete vertices, that became isolated after the previous step 

Output: The elements on all edges of G .  
Following is the sub-algorithm that is used by (A2): 

 Common Elements Algorithm    (CEA) 

Input:  

• An undirected graph G=(V,E)  

• A set F = {f1,f2,….,fr} of elements (Assume that F is 
large enough) 

1) As long as E≠∅ ,  

a) Choose a random vertex x∈V ,  

b) Denote by B the area of the circle centered in x with 
the radius R  

c) Denote by A the set of edges of E with at least one 
vertex in B 

d) Set on each edge of A a different element from 
{f1,f2,….,f|A|} (If sub-bands are used, then regard their 
vertices as being differently coloured) .  

e) Denote by U  the set of all end vertices of the edges of 
A  

f) Denote by H the set of edges of E with at least one 
vertex in U  

g) V ← V-U  ,  E ← E-H  

Output: Subgraphs G1=(V,H) , and G2=(V,E-H) , such that 
elements are allocated to the edges of H and no elements are 
allocated to the edges of E-H  . 
 
Notice that each iteration of (CEA) determines a new circle of 
diameter R, and allocates the edges of that circle, the same 
scope of elements as were set to the circles of the previous steps 
of that algorithm. Since two such circles are "far enough" from 

each other, no two edges, with a common element, are mutually 
disturbed.  
 
Moreover, every call of (CEA) uses a different scope of 
elements, and thus two adjacent edges are allocated with 
different elements, and thus are not mutually disturbed.  
 
The following Example, (E2), illustrates how Algorithm (CEA) 
runs on a given undirected graph. 

Example 2     (Ε2) 

 

Figure 8.  Algorithm 2, steps a,b: The circle B around the 

centre x 

 

Figure 9.  Algorithm 2, steps c,d: The set A and the different 

allocations  

 

Figure 10.  Algorithm 2, steps e,f: The sets U and H   
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Figure 11.  Algorithm 2, results for first run of Algorithm CEA     

 

Figure 12.  Algorithm 2, results for second run of  CEA    

 

Figure 13.  Result of Algorithm 2 : Union of results of all CEA 

 

6. SUMMARY 

 
The paper is focused on time, frequency and space resource 
allocations in WMN and defines the separation order of a 
system. The main contribution of the paper is in presenting 
algorithms, based on graph theory, that provide solutions to 
frequency and time resource allocations that can be used in 
various ways in OFDMA WMN.  
 
As previously mentioned, the results of the algorithm can be 
used in several ways: One option allocates the same elements 
set of the form {time, band} to the edges of all the vertices with 
the same colour. Another option allocates the same combination 
of time slot and band, {time, band}, to all vertices coloured with 

the same colour, while their edges share the same set of sub-
bands, for transmissions directed from the vertices to their 
neighbours. Therefore, each colour presents a different 
combination of a time slot and a band. Therefore, the first 
options sets pairs {time, band} to the edges, while the second 
option sets pairs {time, sub-band} to the edges of the graph. In 
both cases the pairs stand for the elements.  
 
Note that each edge can be used to transfer to both directions, 
but not in the same time slot or not using the same band. Thus it 
should be allocated by two different elements. Therefore, regard 
every element f of the resulting algorithms, as a pair of elements 
(f, f '), one for each direction of the edge.  
 
Although Example (E1), on the first algorithm, results in the 
optimal solution for the graph of the example, these two 
algorithms are not necessarily optimal, but they result in a small 
number λTF of combinations of time slots and frequencies, i.e. a 
small number of pairs of the form (time, frequency).   
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