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ABSTRACT 

 
Many computer vision applications such as augmented 
reality require head pose estimation. As far as the real-time 
implementation of head pose estimation on relatively 
resource limited mobile platforms is concerned, it is 

required to satisfy  real-time constraints while maintaining 
reasonable head pose estimation accuracy. The introduced 
head pose estimation approach in this paper is an attempt to 
meet this objective. The approach consists of the following 
components: Viola-Jones face detection, color-based face 
tracking using an online calibration procedure, and head 
pose estimation using Hu moment features and Fisher 
linear discriminant. Experimental results running on an 

actual mobile device are reported exhibiting both the real-
time and accuracy aspects of the developed approach.  
 
Keywords: Head pose estimation, mobile platform, real-
time implementation, face detection  

1. INTRODUCTION 

 
Many computer vision applications require a face pose 
estimation module; for example, identifying the head 
gesture during conversation [1], designing a smart room 
that monitors its occupants’ activities [2], deploying a 
driver assisted system [3]. Recently due to the growth in 

the use of mobile devices, face pose estimation on mobile 
devices has become of interest. Normally, the real-time 
implementation of head pose estimation algorithms is 
reported on PC platforms with relatively powerful 
processors and large memory sizes. The real-time software 
implementation of head pose estimation on mobile 
platforms without using any dedicated co-processor poses 
its own challenges. 

 
Although many face pose estimation algorithms have been 
introduced in the literature, most suffer from one or more 
of these limitations: predefined assumptions about the 
environment, high computational complexity and low 
accuracy. Recently, Murphy-Chutorian et al. [4] presented 
a survey on various face pose estimation algorithms and 
pointed out that further improvements need to be made to 
get a robust real-time pose estimation system. When it 

comes to relatively resource limited mobile platforms as 
compared to PC platforms, it becomes more challenging to 
meet the real-time aspect while maintaining reasonable 
head pose estimation accuracy. This paper presents a robust 
real-time head pose estimation algorithm by using the Hu 
moment shape features [5] in an online training manner to 
classify a face pose into one of the following five poses: 
center/up/down/left/right.  

 
The remaining part of the paper is organized as follows: 
Section 2 includes an overview of the existing head pose 
estimation algorithms. The introduced real-time head pose 
estimation algorithm is then presented in section 3. Real-

time experimental results on a mobile platform are then 
provided in section 4 and finally the conclusions are stated 
in section 5. 
 

2. OVERVIEW OF EXISTING HEAD POSE 
ESTIMATION ALGORITHMS 

 
In the past few years, much research has been done on head 
pose estimation. The existing approaches can be 
categorized into two general categories of appearance-
based and model-based approaches. The interested reader is 
referred to [4] for details on these approaches. 

 
Head pose estimation is normally done after face detection. 
Appearance-based approaches consider head pose 
estimation as a multi-class classification problem. The 
orientation of detected faces gets classified into several 
different poses. These approaches use the detected/tracked 
faces as the input, and extract various features such as 
Gabor-wavelet and Hu moments. A classification is then 

applied. Some of the commonly used classifiers include 
support vector machines, neural networks, and Adaboost 
cascade classifiers. Generally, the training is performed 
offline and the recall is done online.  
 
Model-based approaches mainly use face features such as 
the mouth, eyes and/or nose to determine the right pose. 
Even though many of these features are simple, the 

difficulty lies in detecting these features with high precision 
and accuracy, in particular when faces appear small in 
captured images.   
 
In this paper, the emphasis is placed on head pose 
estimation running in real-time on mobile devices. The 
main attribute of the developed solution is that it does not 
require any offline training. In what follows, various 
components of our head pose estimation system are 

discussed.  
 

3. REAL-TIME HEAD POSE ESTIMATION SYSTEM 

 
The developed real-time head pose estimation solution 
consists of four main components: Viola-Jones face 
detection for the front faces, online color calibration, color-
based face tracking, and finally online head pose 
estimation. 
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Fig. 1: Face detection algorithm based on Viola-Jones object detection. 

 
 

3.1 Viola-Jones face detection 

 
The developed head pose estimation system requires face 
detection first. Among the face-based detection algorithms, 
the one based on the Viola-Jones object detection approach 
has been shown to be most robust to environmental lighting 
changes [6-8]. Let us briefly state the real-time 

implementation of the Viola-Jones face detection on mobile 
platforms which we previously reported in [9].  
 
For detection, a so called integral image for the entire 
image frame is computed. Then, each subimage with 
different positions and sizes is tested against all trees/stages 
in the classifier. Figure 1 provides an overview illustration 
of the algorithm. First, the available classifier parameters 

are read into one data structure such as a binary tree or an 
array. In the implementation reported here, we used the 
classifier parameters for frontal view faces. It should be 
mentioned that for profile faces or other face orientations, 
the corresponding classifier parameters can be used. The 
classifier selected for frontal view faces consists of 22 
stages with each stage comprising different numbers of 
trees ranging from 3 to 212. For each subimage to be 

examined, its corresponding features are computed. Viola 
and Jones proposed four different rectangular features 
within a subimage as shown in Fig. 2. During the training 
process, the number of rectangular features within one 
24x24 block is about 18,000. After training, each tree does 
the comparison for one rectangular feature. Therefore, 
during each stage, each tree is applied to the subimage 
under testing. This will generate one value to be compared 

with a threshold of that tree. If the value is less than the 
threshold of that tree, the left value of the tree gets 
accumulated. Otherwise, the right value gets accumulated. 
For each stage, if the stage sum is less than the stage 
threshold (T# in the figure, where # indicates the number of 
stages), then the testing ends indicating that the tested 
subimage does not contain any face. Otherwise, it continues 

to go through all the trees/stages until the last one. If one 
subimage goes through all the stages and the final result is 
1, this indicates the subimage is a face.  
 
 

 
 

Fig. 2: Rectangular features shown for a tested subimage 

 

 
This algorithm has been implemented in hardware in digital 
camera products. In [9], we presented a software-based 
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implementation of the Viola-Jones face detection algorithm 
on the TI OMAP3430 mobile device. We considered a 
number of optimization techniques including data 
reduction, search reduction and numerical reduction to be 
able to run the Viola-Jones algorithm in real-time. After 

incorporating all these optimizations, we were able to run 
the Viola-Jones face detection algorithm on this device 
every 90ms for VGA resolution video frames.  

3.2 Online color calibration 

 
After faces are detected, a skin color-based look-up table is 
used to identify the skin face area. We previously reported 
the details of our skin color-based face detection in [10]. 
 
Figure 3(a) shows a sample detected face area (outer box) 
and the area from which skin samples are collected (inner 
box). To separate skin pixels from non-skin pixels, the k-

means clustering algorithm is applied to the inner area 
pixels. Figures 3(b) and 3(c) show the face area from which 
data samples are collected and the segmented skin area 
after clustering, respectively. A skin color model is then 
trained online and a lookup table is generated using the 
chrominance values of the skin pixels as exemplified in 
Fig. 3(d).  
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Fig 3: (a) Detected face area, (b) face area from which 
skin samples are collected, (c) segmented skin area 
after clustering, and (d) skin color cluster in Cb-Cr 

chrominance space. 

 

3.3 Color tracking  

 
In [10], we reported a robust color tracking algorithm to 

detect faces in video streams captured by the OMAP3430 
mobile device. 
Figure 4 shows the flow chart of our online color 
calibration and color tracking algorithm. At the beginning, 
few of initial frames are skipped because, in many camera 

systems, auto white balance and auto exposure have not 
reached a stable state. After this initial warm-up time, the 
feature based face detection algorithm is started and 
allowed to run for next five frames. The median of these 
five frames is obtained in order to avoid any ambiguity 

caused by false alarms and then the detected face area is 
used for the online calibration of the skin color model.  
 

 
Fig. 4: Components of our hybrid face detection algorithm. 
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 As soon as training is finished, the skin color based 
algorithm is started. If a face is detected, then the search 
region for next frames is arranged to be in a neighborhood 
area around the detected face. The full image area is used 
again in a next key frame or if the algorithm fails to find 

any face in a previous frame. This stabilizes occasional 
abrupt changes in the face position or when a new face 

enters the image. If the skin color based algorithm fails to 
detect any face for 10 consecutive frames, then the Viola-
Jones algorithm is executed again to recalibrate the skin 
color model assuming that the lighting condition has 
changed or a new person has entered the frame. 

 
 

  
Fig 5: Components of the developed real-time head pose estimation system. 
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3.4 Online training  

 
As illustrated in Fig. 5, in our approach, an online training 
is carried out first by collecting five different poses of a 
subject whose face poses are to be identified. Hu moments 
from each pose are captured by pushing the keyboard 

buttons 1 through 5 of the mobile device. During this 
online training procedure, feature vectors are obtained by 
projecting Hu moments via the Fisher linear discriminant 
matrix [11]. The k-nearest neighbor (KNN) algorithm is 
then applied to provide representative feature vectors for 
each pose. The recall gets started by pushing the button 6.  

Let 
L
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L

NNN ,,, 21 �  denote the 

pose classes and the number of sample images in each 

class, respectively. Let 
L

MMM ,,, 21 �  and 

M denote the class means and the overall mean, 
respectively. The within-class and between-class scatter 
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. The projected features via the projection 

matrix are then used during the recall phase. 

 
 

4. EXPERIMENTAL RESULTS 

 

In this section, the above computationally efficient head 
pose estimation algorithm is implemented on the OMAP 
mobile platform. We selected this platform since it is a 
widely adopted platform in many modern cell-phones. This 
platform possesses a triple core engine consisting of an 
ARM Cortex-A8 processor, a graphics processor, and a 
C6400 DSP processor. Figure 6 and Figure 7 show a 
snapshot of the head pose estimation algorithm running in 

real-time on the PC and on the OMAP3430 mobile device. 
 
The developed head pose estimation algorithm achieved 
more than 90 percent correct pose estimation when 
considering individual frames as part of live video streams 
running on the OMAP3430 platform. The outcome of a 
typical test experiment for three subjects appears in Table 1 
based on individual frames in the corresponding video 
stream. As can be seen from this table, an average  

estimation accuracy of 94.1% was resulted. A sample 
confusion matrix based on individual frames of a video 
stream is shown in Table 2 exhibiting the origins of the 
misclassified cases. 

Table 1: Head pose estimation accuracy  
 

Subject Detection Rate 

Subject 1 91.2% 

Subject 2 96.8% 

Subject 3 94.2% 

Average 94.1% 

 
 

Table 2: Sample confusion matrix 
 

 Center Up Down Left Right 

Center 74 9 25 0 0 

Up 3 69 0 0  0 

Down 0 0 33 0 0 

Left 0 0 0 100 0 

Right 0 0 0 0 127 

 
 
It is evident from Table 2 that the misclassification is 

primarily caused between the center-down and center 
poses. The reason for this is that the captured face image 
still retains most of the frontal facial features when tilting 
the head down. This problem was addressed by using 
majority voting. That is to say a time or moving window 
was used and the classification outcome was considered for 
a number of consecutive frames. Then, the pose with the 
majority number of frames was selected. This majority 
voting approach led to 100% correct pose estimation on 

live video streams.  
The breakdown of the processing time for each part of the 
head pose estimation process is as follows: Viola-Jones 
face detection 90ms, online calibration (worst case 250ms, 
depends on detected face size), color-based face tracking 
70ms and head pose estimation 10ms. These times are 
listed in Table 3. It should be noted that the Viola-Jones 
face detection and the on-line calibration are only run for 

the first few frames, which is to say after an initial warm-up 
time, the color tracking takes over.  
 

Table 3: Computational breakdown of head pose 
estimation components during recall 

 

 

Component   Processing Time 

Viola-Jones face detection 90ms 

Online calibration At most 250ms, 
depends on face size 

Color tracking 50ms for VGA 
resolution 

Head Pose estimation 10ms 
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Fig 6: Snapshot of five head poses for a video stream running on PC platform. 

 

   

           

            
 

Fig 7: Snapshot of five head poses running in real-time on mobile platform (OMAP3430). 
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5. CONCLUSION 

 
In this paper, a robust head pose estimation approach for 
real-time deployment on mobile devices is presented. The 
developed solution consists of three parts: (1) Viola-Jones 
face detection, (2) color tracking based on an online 
calibration procedure, and (3) a computationally efficient 
head pose estimation algorithm. An actual implementation 
on a mobile device is performed demonstrating both the 

robustness and real-time aspects of the introduced solution.  
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