

Empirical Studies of Agile Software Development

to Learn Programming Skills

Yasuyo KOFUNE

Osaka Prefectural Yodogawa Technology High School

Osaka, Japan

and

Takahiro KOITA

Doshisha University

Kyoto, Japan

ABSTRACT

This paper presents a programming education support method

based on Agile Development that encourages and builds on

communication between students. Through mutual discussion,

students using our approach transform their ideas into software
and cooperate to write a program. The students complete the

software through repetition and programming. Before

completing the software program, the students learn to solve

problems by working together. The students are encouraged to
think and share ideas, and gain experience writing software.
With this approach, students not only learn how to write

programs, but also increase their logical thinking, problem-

solving, and communication skills.

Keywords: Programming Education, Agile Development,

Mind Map, UML, Pair Programming

1. RESEARCH GOAL

Our research goal is to inspire students to voluntarily study

programming and enjoy creating software and, in this way,

gain the knowledge and skills needed to successfully work as
engineers after graduation. Towards this goal, through a

process of students cooperatively creating software, our

approach using Agile Development provides a learning support

method that can improve students’ logical thinking,
programming, problem-solving, and communication abilities.

 2. BACKGROUND AND MOTIVATION

High school students in Japan are required to take an
Information Study class, which provides instruction in practical

skills, computer science, and the social aspects of computing.

In Information Study class, students learn not only how to use

the computer, but also algorithms, programming, and problem
solving [1].

 Most Japanese high school students, however, cannot

write a program on their own. Japanese students receive

considerable instruction on the grammar of programming
language. Using such software as Scratch, they learn

algorithms and problem solving [2], but most class time is

spent studying programming language grammar.

In programming class, the teacher explains the meaning of each

order using a sample program of the text and the students learn
how to write each order. Each student works individually and

rarely has the opportunity to write a program through trial and

error. Taught in this way, many students cannot understand the

sample text programs and find it difficult to learn programming
[3][4]. Hence, they find programming uninteresting and are not

inspired to learn.

 The existing techniques for teaching programming

languages in Japan are not sufficient to support learning due to
the lack of hands-on experience. Moreover, many students have

difficulty solving problems on their own or conveying their

ideas to others. However, logical thinking and problem solving

are crucial to learning programming [4][5]. Understandably,
because these students find learning programming an

unpleasant experience and one in which they cannot express

their own ideas, they do not feel a sense of accomplishment and,

therefore, have little interest in voluntarily studying
programming.

Active employment as an engineer requires logical

thinking and problem-solving abilities in addition to

programming skills. To acquire these abilities, students should
have a desire to learn programming languages. Even with

programming instruction, it is difficult for a student to be able

to actually write a program. Improving programming skills

requires trying it by oneself. However, this would require much
more learning time than is available during school hours. When

students wish to learn and improve their programming skills,

and are able to experiment through trial and error, they gain

considerable and valuable experience.

3. OUR APPROACH

Agile Development can be a useful tool for increasing the

logical thinking and problem-solving abilities of students. With
our approach, a student who is weak in programming

voluntarily participates and learns in a group with other

students. The students share work and, in this cooperative

learning environment, necessarily exchange opinions. Each
student conveys their ideas to the other students and they share

each other's thoughts. This unifying of ideas is crucial to the

development of the software the students are trying to create.

This cooperative development of software by the students
demonstrates the effectiveness of Agile Development [6].

34 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 3 - YEAR 2014 ISSN: 1690-4524

Agile Development is an umbrella term for several iterative

and incremental software development methodologies. The

following two points illustrate the Agile Manifesto’s main
principles [7]:

・ The most efficient and effective method of conveying

information to and within a development team is face-to-face

conversation.

・Working software is the primary measure of progress.

Under the Agile Manifesto’s principles, students can study
program languages, software design, and user interfaces.

 First, students inspect the structure of a certain completed

software and then discuss how to divide the software into small

functional units to examine the function of their software.
To complete their software, the students must share a mutual

idea and all members need to understand the software in its

entirety. Therefore, the students create a Mind Map of their

software’s structure and function. Mind Map is Tony Buzan’s
method of diagramming to visually outline information [8].

 Next, the students learn to model software using the Unified

Modeling Language (UML). UML is a standard general-

purpose modeling language for object-oriented programming
[9].

 The students first create a UML use case diagram based on

the Mind Map showing the software’s structure. The students

determine whether each function is important or not. Moreover,
the students design the software structure using the UML

object and class diagrams. The students describe the

exchanges between classes using a UML sequence diagram.
With UML, it is necessary that all students cooperate and write
the program. To write UML, the students need to understand

the required specifications and be able to think logically.

Learning UML is extremely beneficial [10][11].

 The students write programs based on their UML diagram.
Each student’s program is shared among the students.

Therefore, each student explains the program that they created

to the other students. Using pair programming, the students can

cooperate and write a program [12][13]. Pair programming is a
technique for two-person program development and is often

used by Agile Development. Finally, the students join the

programs with the functional units and complete their software.

Figure 1 shows the overall flow of the students’ software
development under our approach.

 The Agile Development technique values a member's

communication and repeats the development process. Similarly,

students of our approach also reexamine the entire software,
test each function of the program, and develop mutual work

conditions.

4. EXAMPLE OF OUR APPROACH

Our approach divides a development process into four phases:

Requirements specification; Mind Map creation, UML, and

programming. However, it is not necessary to follow any

particular order and students can freely return to former stages
and do them over again. Principles of Agile Development

include information sharing, short-term development, and

testing [7]. Our approach also considers information sharing

and short-term development important, particularly because
short-term development increases the students’ desire to learn.
The following is an example of our approach. In this example,

students develop a control program for a line tracing car.

A line tracing car is a model car that runs automatically along a
black line drawn on white paper, as illustrated in Figure 2.

Figure 1: Overall flow of our approach

Figure 2: Line tracing car

Inspection & Thinking

Completed

Software

Students

Mind Map

Program

UML

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 3 - YEAR 2014 35

 The first phase of making the software is determination of

the required specifications. The students discuss the functions
necessary for the line tracing car and share their ideas. The

students write the result of this cooperative discussion in a

Mind Map and later write the program for each function. To

that end, it is necessary to understand the software in its
entirety, which underscores the importance of collaborating and

sharing thoughts. Figure 3 shows an example of the Mind Map

for this project.

 The structure of the software using UML is decided in the
next step. During this process, the students may reexamine the

requirement specifications. Using a UML use case diagram,

the students confirm what is necessary for the function of the

line tracing car. Figure 4 shows the UML use case diagram for
this example. Using the UML object and class diagrams, the

students are able to consider the whole software structure.

Figures 5 and 6 show the UML object diagram and UML class

diagram, respectively, for this example. Using a UML
sequence diagram, the students can confirm the movement of

the software. Figure 7 shows the UML sequence diagram. The

students cooperate through pair programming and write the

program. In this way, the students understand not only the
portion of the program that they wrote individually, but also the

parts written by the other students.

 The students combine the parts of the program that each

student wrote to complete the software to move a line tracing

car. The students then test whether the line tracing car responds

according to their demands. The students repeat the
requirements confirmation, programming, and test runs, and

then finalize the software.

5. DISCUSSION

We used the line tracing car example to illustrate our approach
with Agile Development. However, in practice, the teacher

does not determine the problem the students will address; the

students present their own ideas and create the software that

they want. Students want to create software that they already
know, for example, software that they use daily or software that

Figure 4: Example of UML use case diagram

Figure 3: Example of Mind Map

Figure 5: Example of UML object diagram

Figure 6: Example of UML class diagram

Figure 7: Example of UML sequence diagram

36 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 3 - YEAR 2014 ISSN: 1690-4524

controls robot motion. To inspire voluntary study and
participation, it is important to allow students to do things that

they want to do at their own pace. In this way, they will

continue learning the difficult skills required for software
design and programming.

 The learning environment in a class that adopts our

approach is not based on the teacher’s lesson plan, but rather on

the ideas of the students. Furthermore, the students must meet a
great variety of demands, which keeps the subject matter

interesting. Such a class requires a high level of skill on the

part of the teacher, but the relationship of the teacher to the

students is the same as the relationship between the students;
that is, they teach and learn from each other.
 The students confront many problems and improve their

programming skills and problem-solving and communication

abilities through trial and error. However, this may be difficult
for students who are not yet adept at reading, writing, and

calculation. Therefore, we should devise a support method to

assist teachers working with less experienced students.

6. CONCLUSIONS

With our approach, students confront many problems while

creating software, which may or may not be solved. Through

trial and error, failure and success, the students gain invaluable

hands-on experience. This provides students with the skills
necessary to write software programs and strengthens their

logical thinking, problem-solving, and communication abilities.

 The students also stay motivated to learn because they are

creating the kind of software that they want. Inspired by the
opportunity to make their ideas reality, students will voluntarily

participate and increase their computer programming skills.

REFERENCES

[1] Japanese government guidelines for high school education

(Information subject area), Ministry of Education, Culture,

Sports, Science and Technology-Japan (MEXT), 2010.

[2] M. Resnick, "Scratch Programming for All," ACM

Communications, Vol. 52, Issue 11, pp. 60-67, 2009.

[3] E. Lahtinen, K. Ala-Mutka and H. Järvinen, "A Study of the

Difficulties of Novice Programmers," Proc. of the 10th

Annual SIGCSE Conference on Innovation and Technology

in Computer Science Education ITiCSE,
 Vol. 37, Issue 3, pp. 14-18, 2005.

[4] K. Ala-Mutka, "Problems in Learning and Teaching

Programming - A Literature Study for Developing
Visualizations in the Codewitz-Minerva Project, " 2003.

[5] A. Gomes and A.J. Mendes, "Problem Solving in

Programming," Proc. of the PPIG, 2007.

[6] V. e ed i and S.R. Milen o i "Teaching Agile

Software Development: A Case Study," IEEE Transactions

on Education, Vol. 54, Issue 2, pp. 273-278, 2011.

[7] Manifesto for Agile Software Development,

http://www.agilemanifesto.org/.

[8] Tony Buzan - Inventor of Mind Mapping,
http://www.tonybuzan.com/about/mind-mapping/.

[9] UML: Object Management Group, http://www.uml.org/.

[10] I. Diethelm and L. Geiger, A. Zündorf. "Teaching

Modeling with Objects First," Proc. of the World

Conference on Computers in Education, 2005.

[11] C. Starrett, "Teaching UML Modeling Before

Programming at the High School Level," Proc. of the IEEE

International Conference on Advanced Learning
Technologies, pp. 713-714, 2007.

[12] A. Cockburn and L. Williams, "The Costs and Benefits of

Pair Programming," Extreme Programming Examined,
2000.

[13] L. Williams and R.L. Upchurch," In Support of Student

Pair-programming," Proc. of the SIGCSE Technical
Symposium on Computer Science Education, pp. 327-331,

2001.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 3 - YEAR 2014 37

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4280926
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4280926

	HB618EY14

