
Simulation-Based Performance Evaluation of Predictive-Hashing Based
Multicast Authentication Protocol1

Seonho Choi
Department of Computer Science, Bowie State University, Bowie, MD 20715, U.S.A.

and
Hyeonsang Eom

School of Computer Science and Engineering, Seoul National University, Seoul, South Korea
and

Edward Jung
School of Computing and SE, Southern Polytechnic University, Marietta, GA 30067

1 This work was supported by ARO grant 48575-RT-ISP.

Abstract
A predictive-hashing based Denial-of-Service (DoS)

resistant multicast authentication protocol was proposed
based upon predictive-hashing, one-way key chain, erasure
codes, and distillation codes techniques [4, 5]. It was
claimed that this new scheme should be more resistant to
various types of DoS attacks, and its worst-case resource
requirements were derived in terms of coarse-level system
parameters including CPU times for signature verification
and erasure/distillation decoding operations, attack levels,
etc. To show the effectiveness of our approach and to
analyze exact resource requirements in various attack
scenarios with different parameter settings, we designed
and implemented an attack simulator which is platform-
independent. Various attack scenarios may be created with
different attack types and parameters against a receiver
equipped with the predictive-hashing based protocol. The
design of the simulator is explained, and the simulation
results are presented with detailed resource usage
statistics. In addition, resistance level to various types of
DoS attacks is formulated with a newly defined resistance
metric. By comparing these results to those from another
approach, PRABS [8], we show that the resistance level of
our protocol is greatly enhanced even in the presence of
many attack streams.
Key Words: denial of service, network protocol,
authentication, multicast, resource requirement,
cryptographic hashing, simulation

1. Introduction
For real-time streaming applications, a new multicast

authentication protocol was proposed which shows a higher
level of resistance to Denial-of-Service (DoS) attacks [4,
5]. It was claimed that the resource (CPU, buffer, and
network bandwidth) usage level can be greatly reduced by
utilizing predictive hashing (PH) technique.

Our scheme is based on a block-based approach where a
real-time data stream is divided into blocks of packets. In
the predictive-hashing approach, packets in one block
contain messages along with predictive authentication
information required for authenticating the next block
messages. Preliminary analysis on worst-case resource
requirements conducted in our previous work [5] indicates
that this new scheme consumes much less CPU and buffer

space than one of the recently proposed denial-of-service
(DoS) resistant multicast authentication schemes, pollution
resistant authenticated block streams (PRABS) [8], and that
its resistance to DoS attacks is greatly enhanced.

However, in the previous analysis, we derived various
formulae, for estimating upper bounds on the resource
requirements, in terms of coarse-level system parameters
such as CPU times needed for performing erasure
decoding, distillation decoding, signature verifications, etc.
In addition, worst-case scenarios were assumed in analyses,
which may yield too pessimistic estimation results that may
not happen in real attack situations. Also, the analysis
didn’t provide a way to estimate the resource requirements
for different attack types and/or different parameter
settings. For example, by examining resource requirement
changes for different block sizes (with the same bandwidth
maintained for the data stream), we may have more insight
on which block size we need to choose. The use of a
smaller block size may lead to reduced resource usage
compared to the use of a bigger block size. Also, using a
smaller block size may loosen security condition under
which it may be guaranteed that the worst DoS attack type
cannot be launched, which the system designer may prefer.
However, using a smaller block size means that the
receivers will be more susceptible to messages losses due
to bursty packet losses (from network congestion and/or
from attack streams). Hence, the system designer needs to
take these factors into consideration when determining
values of the system parameters. Finally, to evaluate
resistance level of our protocol against other approaches, a
formal metric should be devised. By using a simulator we
developed, it becomes possible to quantify resistance levels
on different platforms.

We designed and implemented a simulator for the
predictive-hashing based multicast authentication protocol.
Multiple attack streams along with an authentic data stream
may be generated and launched against a virtual receiver
which is equipped with the predictive-hashing based
protocol. Different attack types may be used in generating
such attack streams with various system parameters such as
block size, redundancy level for erasure encoding, message
size, loss rate, packet (or block) period, and simulation
duration, etc. The packets generated by the stream
generators will be written to multiple files, and the system

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 19ISSN: 1690-4524

parameters used by the stream generators are written to a
separate file. These files are read by the virtual receiver
process later and the packets will be fed as inputs to the
packet processing object (called decoder) which performs
authentication operations. One feature of this simulator is
that it is platform independent, and the timing parameters
such as block period or packet period may be specified in
absolute time and will be enforced in any platform where
the simulator is running. This simulator is written in Java.

By using this simulator, we may be able to obtain
accurate information on resource usages by the protocol in
a variety of attack scenarios with different parameter
settings. The simulator also outputs detailed information on
how much resources are used by each component in the
protocol implementation. The type of DoS attack that may
be launched varies depending upon the level of attack
complexity. The attacker may simply generate packets
randomly and launch an attack. Or, he/she may intercept
authentic packets somewhere in the network and modify
some fields in the packet and launch them against receivers.
Alternatively, the attacker may intercept packets at one
location in the network, reuse/modify some fields in the
packets, and relay them to another location in the network,
launching an attack with those relayed packets. This type of
attack is named in this paper as a strong relay attack (SRA)
and it will be addressed later on the effects of this type of
attack and how to avoid such attack scenarios in PH-based
approach. These various attack types may be specified as
one of the input parameter to our simulator, and attack
streams matching these specifications will be generated.
Also, by using the simulator, we may formally define the
concept of DoS resistance level (DRL) for different attack
types as the number of attack streams the receiver may
tolerate in terms of authentication throughput and memory
requirement.

Preliminary information is given in Section 2. Section 3
provides a brief explanation on predictive-hashing based
authentication protocol. Section 4 describes approaches we
have taken in the design and implementation of the
simulator. In Section 5, detailed simulation results are
explained. Conclusions are presented in Section 6.

2. Preliminaries
Block: The original data (or message) stream at the sender
side is divided into blocks, and each block data is
packetized into the same number of packets. Each packet
contains message portion (from original data stream) and
additional information related to authentication may be
attached. Block period, p, corresponds to a duration of time
during which block packets are generated by the sender.
Erasure codes: This is one of the forward error correction
(FEC) techniques to recover lost packets during
transmission [6]. The encoder redundantly encodes
information into a set of symbols. If the decoder (receiver)
receives sufficiently many symbols, it can reconstruct the
original information. An (n, t) erasure encoder generates a
set of n symbols from the input. The decoder can recover
all the original data as long as n-t symbols are available. t is
named as a redundancy level.

Strong Threat Model: In this model, there is no limitation
on attacker’s capability:
 Packets may be eavesdropped, deleted, and spoofed (and

sent). 
 More than one of these attack operations may be

combined to launch more powerful attacks against
receivers. For example, packets may be first
eavesdropped and deleted (blocked) so that receivers
may not receive them. Based on the eavesdropped
contents, newly spoofed packets may be sent
immediately to the receivers. This attack scenario
assumes that attackers can combine all of the above three
operations at the same time. 

Denial of service attacks
As in [6], an attack level, f, is introduced and used in this

paper which defines the ratio of the bandwidth of injected
invalid traffic to the bandwidth of valid traffic. For
example, if an adversary injects 10,000 bytes of invalid
data in one unit time while the sender is sending 1,000
bytes in a unit time, then the attack level is 10.
One-way accumulators

We can build a secure set membership operation by
using one-way accumulators [1, 2]. There are several one-
way accumulator schemes based on different cryptographic
techniques. In distillation codes, Merkel hash trees [3] are
used as one-way accumulators. When Merkel hash trees
serve as one-way accumulators, the size of witnesses grows
logarithmically with the size of the accumulated set.

3. Predictive Hashing Based Approach
We developed a new mechanism, which is based on

Predictive Hashing (PH) and One-way Key Chain (OKC),
to significantly reduce resource requirements at a receiver
even in the presence of DoS attack packets flowing in. The
basic idea of predictive hashing is that each block of
packets conveys authentication information that will be
used to authenticate the next block packets instead of
sending authentication information within the same block
as in previous approaches [6, 9, 10]. The PH technique
allows receivers to save significant amount of buffer space
since only authentication-related portions from each packet
needs to be saved for future packet authentication, while
the message portions of arrived packets are processed (or
authenticated) immediately upon receipt. However, in our
scheme, the sender needs to keep the message portions
from two consecutive blocks in its buffer to calculate PH.

One-way key chain technique is already used in other
contexts such as in one-time password [8], TESLA [11],
etc. In our approach, the sender obtains a hash chain by
applying hash operations recursively to some seed value,
and obtained key values are assigned to blocks in backward
order of their generation times. The sender uses the
assigned key to calculate Message Authentication Codes
(MAC) images of the prediction hashes/signature
information for the next block, and attach them (along with
other authentication related information) to the current

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201220 ISSN: 1690-4524

M1 Ki-1 E1 Γ1 D1 Distillation Encoding
applied to E, and Γ

–> attach Dj

M2 Ki-1 E2 Γ2 D2 MAC(Ej, Ki) is obtained
and attached to the end of

:
j-th packet. (Denoted as

Γj)

Mn Ki-1 En Γn Dn

Erasure Encoded
Hashes/signature is segmented

Insert Ki-1 for key disclosure and attached to the end of each
packet. Denote them as E1, E2,

…, En. Messages

M1 M2 M3 … Mn M1 M2 M3 … Mn

Hash Operations Hash Operations

…
Erasure

…

Encoding

Signature from hashes Signature from hashes

Bi Bi+1

One-way Key Chain
Ki Ki+1

Figure 1. Overview of our PH-based scheme at a sender

block packets. Also, each block packet reveals the key used
in the previous block to let the receivers use it in
authenticating the previous block packets (or partitions)
without applying erasure decoding and signature
verifications in most of the cases. These mechanisms are
combined with erasure codes and distillation codes to
develop a multicast authentication protocol which is very
resistant to Denial-of-Service attacks and resource-
efficient. Figure 1 shows an overview of our approach at
sender side. The receiver side operation is the reverse of the
process shown in Figure 1.

PH Decoding Algorithm at Receiver
The receiver side algorithm is presented in Figure 2 in

detail [4, 5].

4. Simulator Design and Implementation

The following are the goals of our simulator design:
 accurate measurement of resource usages at a receiver

where the simulator is running: whatever computing
platform the simulator is running, it should provide
accurate measurements on resource usages (CPU time,
memory, and bandwidth) as if it were acting as a
receiver in a real network. To achieve this goal, the
simulator is implemented in Java with a capability to
adjust its execution scenario based upon timing
parameters such as block period (or packet inter-
arrival times). 

 platform independence: this is achieved by
implementing the simulator in Java. Also, specified
timing parameter such as packet inter-arrival time
will be enforced regardless of the computing
platform. 

 support for a variety of DoS attack types and other
system parameters to be specified as input to the
simulator: attack packet streams may be generated
with various attack types including simple relay-
attack and strong relay-attack types by attack stream
generators. Also, other system parameter values,
such as block size(n), redundancy level (t), message
size in each packet, loss rate, and the number of
blocks to be simulated, may be specified to the
simulator. 

 formulation and estimation of DoS resistance: the
resistance level to various attack types is formulated
as a number of attack streams that may be tolerated
without affecting packet authentication throughput.
That is, a threshold on the number of attack streams
will be found beyond which packet authentication
delays will increase indefinitely.

Taking these goals into consideration, we designed and
implemented a simulator in Java, and carried out
extensive simulations. Figure 3 shows the overall
architecture of the simulator. The receiver side decoding
is performed following the algorithm given in Figure 2.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 21ISSN: 1690-4524

Network Raw Packet Buffer

Mj Ki-1 Ej Γj Dj

(5) Valid timestamp or
sequence number No

Yes
Exi
t

(6) Finding hash
from message

(7) if no authenticated hashes exist
for Bi in HashBuffer, go to (10),

otherwise continue

(1) If authentic key is already found for
Bi and it matches Ki-1 in this packet

No

(2) Retrieve Ki-1 and check
Hash(Ki-1) == Ki-2

Yes

(3) Store Ki-1 as a
valid key

Yes

(10) Apply Distillation Decoding,
and store Ej and Γj into a matching

Go to (5) partition in SymbolBuffer

No

Exit (Packet is altered)

SymbolBuffer

(8) matching with Failure
authentic hashes in
HashBuffer (for Bi) Exit

Success

(9) Authenticate
message.

(4) Loop on each partition for Bi --
Apply MAC with a key Ki-1 to some Ej in next partition

(stored in SymbolBuffer) which has at least n-t members.
And check whether it matches Γj in the same member. –

Partitions are checked in FIFO order (based on times
when (n-t)-th member was received).

If match, execute (4-1) and (4-2)
If no match, execute (4-3)

(4-1) For matching partition,
perform erasure decoding
and signature verification

(4-2) If successfully verified, store
hashes/signature into HashBuffer, and go to

(5). Otherwise, return to (4)

For failed partition

(4-3) remove the partition
from SymbolBuffer, and

return to (4).

HashBuffer

Figure 2. Detailed algorithm at the receiver

The reason why authentic and attack packets are stored into
multiple files is to allow all the resources to be devoted
later for running the receiver side decoding routine.
Another alternative approach might have been to let packet
generators run concurrently along with the receiver side
decoding process. But, this approach would not permit us
to measure exact resistance levels and resource usages as if
the computer were wholly used for processing received
packets as in real situation. We also assume that the
overheads resulting from file access is insignificant to the
simulator performance compared to the cases where the
packets are received from the network.

5. Simulation Results
We conducted extensive simulations by running the

simulator on a PC with Pentium 4 CPU (1.7 GHz) and 1GB
of memory.
CPU Time Requirements
In Table 1 we show resource usage statistics in terms of
CPU times with an attack level f=0 (i.e., no attack stream
was introduced). The simulator was run for 100 block
periods where a block period was 1.5 second. We used

system parameter values n=32, t=16, loss rate =0.01, and
message size = 1024 bytes.

Figure 3. Simulator Architecture

Authentic Packet Stream Generator

Files

Attack Packet Stream Generator

Attack Packet Stream Generator

…

Attack Packet Stream Generator

attack level
f Predictive-Hashing Based

Packet Decoder

Authentic Packet StreamInvalid Packet Streams

Discard

Deliver

Sender Parameters for each stream
(attack type, n, t, msg_rate, msg_size, loss rate,

and num_of_blocks)

Decoding Parameters
(attack type, n, t msg_rate, msg_size, and

num_of_blocks)

Packet Buffer

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201222 ISSN: 1690-4524

algorithm steps Cumulative percentage
(Figure 2) execution time

(ms)
(1) 0 0.0
(2) 0 0.0
(3) 0 0.0

(4-1) 0 0.0
(4-2) 31 3.03
(4-3) 0 0.0

(4-Erasure 0 0.0
Decoding)

(4-Signature 838 81.8
Verification)

(5) 0 0.0
(6) 30 2.93

(7,8,9) 16 1.56
(10) 109 10.64
Total 1024 100%

Table 1. Cumulative CPU times and percentages of CPU times
spent for each algorithm step when there was no attack stream.

Most of the CPU time is spent for the signature verification
step (81.8%), followed by the distillation decoding step
(10.64%). The average signature verification operation with
data size of around 1200 bytes and signature size of 46
bytes took about 23-26 ms.

Figure 4 shows changes on CPU usage percentages
among different algorithm steps with varying values of
attack level. As is shown, more CPU time will be used for
step (10), distillation decoding operation, while the
percentage for step (4), signature verification operation,
decreases as the attack level increases. This is due to the
fact that only one signature verification operation is needed
regardless of attack level in the PH-based approach, while
the percentages of CPU times spent for the other steps will
increase for higher attack levels. Note that this would not
be true in PRABS [8] and signature verification cost will
still dominate for higher attack levels.

Figure 4. CPU time percentage changes with varying
attack levels (from 0 through 50) in the presence of simple
relay-attack streams

Resistance Level
For two different attack types, we ran the simulator to find
threshold points (in terms of attack level) beyond which
inter-packet authorization delay becomes steadily bigger

than inter-packet arrival time. The ratios of inter-packet
authentication delays to inter-packet arrival times are

1.4

1.2

1

0.8

r a t i o

0.6

0.4

0.2

0
200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420

attack level

Figure 5. Ratios of inter-packet authentication delays to inter-
packet arrival times with simple relay-attack streams.
Resistance level is 390. With the PRABS approach, the
resistance level becomes 26 as is shown in Figure 6.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

attack level

ra
tio

Figure 6. Ratios of inter-packet authentication delays to inter-
packet arrival times with strong relay-attack streams.
Resistance level is 26

shown in Figure 5 for simple relay attacks with different
attack levels, where erasure-encoded symbol values in
authentic packets are arbitrarily modified to generate attack
packets. If this ratio is greater than 1.0, it means that the
resistance level is reached. The simulations for other
simple-relay attacks (such as modifying the key values or
distillation code values) showed similar results due to the
fact that, for any kind of simple relay-attacks, only one
signature verification operation is needed in the PH-based
approach.
Figure 6 shows the ratios of inter-packet authentication
delays to inter-packet arrival times for strong relay-attacks
when the same system parameter settings are used as in
Figure 5. This figure may also be considered as the one
showing performance gains we may achieve by using the
PH-based approach compared to the PRABS approach
when simple relay-attacks are launched. This is because the
resource consumption in PRABS will increase in
proportion to the number of attack streams regardless of
attack types. In PRABS, the same number of signature
verification operations is needed as the number of streams
that a receiver receives.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 23ISSN: 1690-4524

0

50

100

150

200

250

300

350

400

450

500

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

Attack Level

Pa
ck

et
 B

uf
fe

r S
iz

e

Figure 7. Memory requirement in terms of packet buffer size
in the PH-based approach. The buffer size begins increasing
around resistance level 390. With PRABS, the buffer size
begins increasing around attack level = 26 as is shown in
Figure 8.

0

50

100

150

200

250

300

350

400

450

500

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

Attack Level

Pa
ck

et
 B

uf
fe

r S
iz

e

Figure 8. Memory requirement with strong relay-attack
streams. It begins increasing near resistance level=26. Packet
Buffer Size is measured in terms of the maximum number of
packets stored in the packet buffer at any time

Memory Requirements
The memory requirements in the presence of simple

relay-attacks streams and strong relay-attack streams are
shown in Figure 7 and 8. Note that the major memory
requirement comes from the packet buffer where the
incoming packets are stored while the receiver is
processing packets. The memory requirements for other
buffers, such as Symbol Buffer and Hash Buffer, are
negligible compared to that for the packet buffer due to the
size difference, and are not shown here due to space
limitation.

6. Conclusion
We designed and implemented a simulator based upon a

new PH-based multicast authentication protocol. This
simulator may be used on any computing platform to
measure exact resistance level to various types of DoS
attacks in different parameter settings. This tool may also
be used to determine optimal system parameter values such
as block period (p), block size (n), redundancy level (t), etc.
This simulator was used to derive detailed resource usage
information, and to measure the resistance levels against

different types of DoS attacks on a selected computing
platform. The result shows that our PH-based protocol
outperforms other protocols (including PRABS which is
outperformed by 15 times) in terms of resistance to DoS
attacks.

References
[1] D. Adkins, K. Lakshminarayanan, A. Perrig, and I.
Stoica. Taming IP packet flooding attacks. In Proceedings
of Workshop on Hot Topics in Networks (HotNets-II), Nov.
2003.
[2] N. Baric and B. Pfitzmann. Collision-free accumulators
and fail-stop signature schemes without trees. In Advances
in Cryptology --EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pages 480–494, 1997.
[3] J. Benaloh and M. de Mare. One way accumulators: A
decentralized alternative to digital signatures. In Advances
in Cryptology – EUROCRYPT ’93, volume 765 of Lecture
Notes in Computer Science, pages 274–285, 1993.
[4] Seonho Choi, ''Denial-of-Service Resistant Multicast
Authentication Protocol with Prediction Hashing and One-
way Key Chain,'' ism, pp. 701- 706, In Proceedings of the
Seventh IEEE International Symposium on Multimedia
(ISM'05), 2005.
[5] Seonho Choi and Yanggon Kim, “Resource
Requirement Analysis for a Predictive-Hashing Based
Multicast Authentication Protocol,” In Proceedings for
EUC Workshops, pages 302-311, IFIP, August 2006.
[6] M. Goodrich, R. Tamassia, and J. Hasic. An efficient
dynamic and distributed cryptographic accumulator. In
Proceedings of Information Security Conference (ISC
2002), volume 2433 of Lecture Notes in Computer Science,
pages 372–388, 2002.
[7] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar,
Distillation codes and applications to DoS resistant
multicast authentication, in Proc. 11th Network and
Distributed Systems Security Symposium (NDSS), San
Diego, CA, Feb. 2004.
[8] Leslie Lamport, "Password Authentication with
Insecure Communication", Communications of the ACM
24.11 (November 1981), 770-772
[9] A. Pannetrat and R. Molva. Efficient multicast packet
authentication. In Proceedings of the Symposium on
Network and Distributed System Security Symposium
(NDSS 2003). Internet Society, Feb. 2003.
[10] J. M. Park, E. Chong, and H. J. Siegel. Efficient
multicast packet authentication using erasure codes. ACM
Transactions on Information and System Security
(TISSEC), 6(2):258–285, May 2003.
[11] A. Perrig, R. Canetti, D. Song, and J. D. Tygar.
Efficient and secure source authentication for multicast. In
Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS 2001), pages 35–46. Internet
Society, Feb. 2001.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201224 ISSN: 1690-4524

