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ABSTRACT 

 

Network intrusion detection systems (NIDSs) face the serious 

challenge of attacks such as insertion and evasion attacks that 

are caused by ambiguous network traffic. Such ambiguity 

comes as a result of the nature of network traffic which 

includes protocol implementation variations and errors 

alongside legitimate network traffic. Moreover, attackers can 

intentionally introduce further ambiguities in the traffic. 

Consequently, NIDSs need to be aware of these ambiguities 

when detection is performed and make sure to differentiate 

between true attacks and protocol implementation variations or 

errors; otherwise, detection accuracy can be affected 

negatively. In this paper we present the design and 

implementation of tools that are called protocol scrubbers 

whose main functionality is to remove ambiguities from 

network traffic before it is presented to the NIDS. The 

proposed protocol scrubbers are designed for session initiation 

and data transfer protocols in IP telephony systems. They 

guarantee that the traffic presented to NIDSs is unambiguous 

by eliminating ambiguous behaviors of protocols using well-

designed protocol state machines, and walking through packet 

headers of protocols to make sure packets will be interpreted in 

the desired way by the NIDS. The experimental results shown 

in this paper demonstrate the good quality and applicability of 

the introduced scrubbers. 

 

Keywords: Protocols, Intrusion detection systems, Security, IP 

telephony, Protocol scrubbers. 

 

 

1. INTRODUCTION 

 

IP forms the decisive difference between circuit-switched 

networks and IP telephony networks. It is being used to carry 

voice alongside data. IP networks, which are packet-switched, 

break voice and data into packets that are routed to a certain 

destination. Upon arrival at the destination, the packets are 

reassembled into their original format. Contrary to circuit-

switched networks, packets in packet-switched networks can 

travel across multiple independent paths to the final 

destination. This feature can benefit the network in terms of 

self-recovery with failed link paths because paths can be 

allocated dynamically. These differences between traditional 

circuit-switched and IP telephony networks entail changes in 

the infrastructure and protocols used.   

 

Components in IP telephony infrastructure can be generally 

classified into servers, endpoints, and routing nodes. IP 

telephony servers are the components responsible for various 

duties aiming at maintaining the service and enhancing it such 

as address resolution and registration. Endpoints are the 

devices capable of initiating and terminating a call. Routing 

nodes have the capacity to connect IP networks to either other 

IP networks or circuit-switched networks. 

 

The most dominant multimedia suites in IP telephony are 

H.323 and SIP. Both protocols are used for signaling and with 

them come other protocols that cater for functions other than 

signaling in IP telephony environments.  In this paper we focus 

on SIP suite. Session Initiation Protocol (SIP) is a standard 

signaling protocol for IP telephony, and is appropriately coined 

as the ―SS7 of future telephony.‖ It was developed by the 

Internet Engineering Task Force (IETF) in RFC 2543 which 

was updated by RFC 3261. SIP was designed to address some 

important issues in setting up and tearing down sessions such 

as user location, user availability, and session management. 

The simplicity and versatility of SIP make it the choice of 

instant messaging, video conferencing, and multiplayer game 

applications among others. SIP uses other protocols to perform 

various functions during a session such as Session Description 

Protocol (SDP) to describe the characteristics of end devices, 

Resource Reservation Setup Protocol (RSVP) for voice quality, 

and Real-time Transport Protocol (RTP) for real-time 

transmission. 

 

IP telephony protocols have a tendency towards openness and 

simplicity which gives attackers the opportunity to manipulate 

the protocols to their advantage and use their very features to 

launch attacks. Attackers can introduce ambiguous network 

traffic that may not be interpreted in the same way at different 

endpoints. Sophisticated attackers can leverage subtle 

differences in protocol implementations to wedge attacks past 

the NIDS’s detection mechanism by purposefully creating 

ambiguous flows. In such attacks, the NIDS treats the traffic as 

benign, whereas the destination endpoint reconstructs a 

malicious interpretation. Such attacks can eventually defeat the 

purpose of NIDSs and turn them unusable. 

 

In this paper we present the design and implementation of an 

application layer network scrubbing tool that targets the 

protocols SIP and RTP in IP telephony environments. Our 

network scrubber examines incoming traffic before it gets 

examined by the NIDS and removes any potential ambiguities 

that may hinder the NIDS’s detection capabilities. The 

application layer scrubber picks one interpretation of the 

protocols and converts incoming flows into a single 

interpretation that is interpreted universally by all endpoints. 

 

The rest of the paper is organized as follows: Section II 

discusses the related work. Section III sheds some light on 

Session Initiation Protocol (SIP) and Real-time Transfer 

Protocol (RTP) internals and message structure. Section VI 

shows the design of our protocol scrubber in terms of the state 

machines and normalization process. Section V demonstrates 
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the implementation and experimental results. Section VI 

concludes the paper.  

 

 

2. RELATED WORK 

 

We start in this section with discussing insertion and evasion 

attacks which were mentioned briefly previously. Insertion and 

evasion attacks are often associated with ambiguous network 

traffic. Network traffic is called ambiguous if it is treated 

differently by different nodes in the network. In other words, a 

secondary source of information is needed by the node to 

interpret the traffic correctly. 

 

A common problem that a NIDS faces, and is related to 

ambiguity, is discerning whether a certain packet in the traffic 

is acceptable to an end-system the NIDS is monitoring or not. 

Some of the causes of such a problem are the NIDS’s lack of 

knowledge about the network topology, the end system’s 

configuration, and the end system’s operating system [1]. Such 

a problem can render a NIDS unreliable due to the misleading 

and less information it provides and the false sense of security 

it gives to security officers [1]. 

 

Insertion attacks involve the NIDS accepting packets that are 

rejected by end-systems. A good example to be given here is 

related to IP fragmentation and reassembly. A receiver 

reassembles incoming fragmented packets using sequence 

numbers and offset values. If an attacker manages to insert 

packets in the incoming stream, the packets will be 

reassembled in a way different from the expected by the end-

system which should always reject such packets. Therefore, a 

NIDS should never accept such packets. 

 

Evasion attacks on the other hand involve the NIDS rejecting 

packets that are acceptable by the end-system. Continuing with 

the same example above, an attacker can disrupt a NIDS 

causing it to miss part of the incoming traffic. Therefore, a 

NIDS will not be able to reassemble incoming traffic in the 

same way end-systems do. 

 

Most of insertion and evasion attacks can be attributed to 

attackers taking advantage of wrong behaviors in the monitored 

protocols such as sending packets with bad header fields. 

 

In the following, we shed some light on the related works in the 

area of protocol scrubbing. 

 

Protocol Scrubbing to Counter TCP/IP Fingerprinting 

TCP/IP stack fingerprinting is the process of determining the 

identity of a remote host's operating system by analyzing 

packets from that host. This process is called fingerprinting 

because it is similar to identifying an unknown person by 

taking his or her unique fingerprints and finding a match in a 

database of known fingerprints. Attackers can use 

fingerprinting to quickly create a list of targets with known 

vulnerabilities based on the operating system. 

 

M. Smart, G. Malan, and F. Jahanian developed a tool called a 

fingerprint scrubber to remove ambiguities from TCP/IP traffic 

that give clues to a host's operating system. The tool was 

designed to be placed between a trusted network of 

heterogeneous systems and an untrusted connection (i.e. the 

Internet). It operated at the IP and TCP layers to cover a wide 

range of known and potential fingerprinting scans [2]. 

 

Unlike our proposed scrubber, the fingerprint scrubber is 

confined to counter fingerprinting at the IP and TCP layers. It 

neither addresses application layer protocol issues nor other 

insertion and evasion attacks. 

 

Transport and Application Protocol Scrubbing 

The abovementioned work was taken a step further by 

developing a transport scrubber that addressed the problem of 

transport attacks by removing protocol ambiguities, enabling 

downstream passive network-based intrusion detection systems 

to operate with high assurance. 

 

The authors implemented an application scrubbing mechanism 

that allowed the creation of active, interposed intrusion 

detection systems that can be used to elide or modify important 

network protocols in real-time; effectively enabling an 

immediate response upon detection of severe misuse. 

 

The application-level scrubbing mechanism was based on the 

FreeBSD kernel, and involved modifications to the kernel to 

include additions to the socket API to allow a user-level 

application scrubber to bind a local socket to a set of remote 

network addresses. This simple primitive allowed the easy 

creation of transparently interposed application scrubbers [3]. 

 

The above application-level scrubbing mechanism provides a 

general purpose platform to create application scrubbers, 

whereas our proposed application layer scrubber is focused on 

IP telephony protocols and their ambiguities. 

 

Protocol Scrubbing Through Transparent Flow 

Modification 

The work mentioned in the previous section was taken to the 

next level by implementing scrubbers for various protocols 

such as IP, TCP, ICMP. This variety allowed the scrubbers to 

cover a wider range of attacks at an acceptable level of 

performance [4]. 

 

However, the same approaches to implementing the scrubbers 

mentioned in the previous section were followed, and the same 

argument regarding the differences from our model applies. 

 

Traffic Normalization That Maintains End-to-end Protocol 

Semantics 

Mark Handley, Vern Paxson and Christian Keibrich introduced 

Norm, a traffic normalizer that sits directly in the path of traffic 

into a site and patches up or normalizes the packet stream to 

remove potential ambiguities. The result is that a NIDS 

monitoring the normalized traffic stream no longer needs to 

consider potential ambiguities in interpreting the stream. 

 

Compared to the TCP/IP scrubbers mentioned previously, 

Norm has the distinction of attempting to develop a systematic 

approach to identifying all potential normalizations, and 

emphasizing the implications of various normalizations with 

regard to maintaining or eroding the end-to-end transport 

semantics defined by the TCP/IP protocol suite. Furthermore, it 

attempted to defend against attacks on the normalizer itself, 

both through state exhaustion, and through state loss if the 

attacker can cause the normalizer or NIDS to restart [5]. 

 

Our proposed scrubber has the advantage of following a similar 

methodology to systematically examine the ambiguities of 

application layer IP telephony protocols. 
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3. SIP SUITE RELATED PROTOCOLS 

 

As mentioned in the introduction, we consider SIP suite for our 

discussion on the related IP telephony protocols. Specifically, 

we concentrate on SIP and RTP for the vital role they play in 

establishing, tearing down, and carrying the data of the session. 

 

SIP Message Format 

The SIP message is made up of three parts: the start line, 

message headers, and body. The start line contents vary 

depending on whether the SIP message is a request or a 

response. For requests it is referred to as a request line and for 

responses it is referred to as a status line. Figure 1 shows SIP 

message format. 

 

Start Line 

Header 1 

Header 2 

….. 

 

Body 

 
Fig. 1.  SIP Message Format. 

 

The base SIP specifications define six types of request: the 

INVITE request, CANCEL request, ACK request and BYE 

request are used for session creation, modification, 

establishment, and termination; the REGISTER request is used 

to register a certain user's contact information; and the 

OPTIONS request is used as a poll for querying servers and 

their capabilities. 

 

Response types or codes are also classified into six classes. 1xx 

for provisional/informational responses, 2xx for success 

responses, 3xx for redirection responses, 4xx for client error 

responses, 5xx for server error responses, and 6xx for global 

failure responses. The "xx" are two digits that indicate the exact 

nature of the response: for example, a "180" provisional 

response indicates ringing by the remote end, while a "181" 

provisional response indicates that a call is being forwarded. 

 

Header fields contain information related to the request like the 

initiator of the request, the recipient, and call identification. 

Some headers are mandatory in every SIP request and 

response. These are: To (carries the recipient of the request), 

From (carries the initiator of the request), Call ID (carries the 

unique identifier of the call), CSeq (used to identify the order 

of transactions), Via (contains the transport protocol and the 

address where the response is to be sent), Max-Forwards (used 

to limit the number of hops a request traverses and to avoid 

loops), and Contact (contains the address of the host where the 

request originated). 

 

Message bodies can carry any text-based information whose 

interpretation is determined by request and response codes. 

 

SIP Architecture 

Elements in SIP can be classified into user agents (UAs) and 

intermediaries (servers). In an ideal world, communications 

between two endpoints (or UAs) happen without the need for 

servers. However, this is not always the case as network 

administrators and service providers would like to keep track of 

traffic in their network. 

 

A SIP UA or terminal is the endpoint of dialogs: it sends and 

receives SIP requests and responses, it is the endpoint of 

multimedia streams, and it is usually the user equipment (UE) 

which is an application in a terminal or a dedicated hardware 

appliance. 

 

SIP servers are logical entities where SIP messages pass 

through on their way to their final destination. These servers 

are used to route and redirect requests. These servers include: 

 

1) Proxy server—receives and forwards SIP requests. 

2) Redirect server—maps the address of requests into new 

addresses. 

3) Location server—keeps track of the location of users. 

4) Registrar—a server that accepts REGISTER requests. 

5) Application server—an Application Server (AS) is an entity 

in the network that provides end users with a service. 

 

SIP Session 

Figure 2 shows the establishment of a SIP session between two 

users in the same domain. 

 

Caller 

Callee

SIP Proxy Server

Registrar Server

INVITE

Query

Response to 

Query

INVITE
OK

OK

ACK

ACK

RTP packets

REGISTER

REGISTER

 
Fig. 2. Establishment of A Typical SIP Session. 

 

When turning on their devices, both users register their 

availability and their IP addresses with the SIP proxy server 

using REGISTER request. The proxy server then sends this 

information to the relevant Registrar server. The caller tells the 

proxy server that he/she wants to contact a certain callee using 

INVITE request. The SIP proxy server relays the caller’s 

invitation to the callee. The callee informs the proxy server that 

the caller’s invitation is acceptable with OK response. The SIP 

proxy server communicates this response to the caller who 

sends ACK response establishing a session. The users then 

create a point-to-point RTP connection enabling them to 

interact. Any of the parties involved in a session can end it by 

sending a BYE request. 

 

RTP Message Format 

Real-time Transport Protocol (RTP) is an application layer 

protocol that provides end-to-end delivery services for real-

time audio and video. It was developed by the Internet 
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Engineering Task Force (IETF) in RFC 1889 which was 

updated by RFC 3550. Figure 3 shows RTP message format. 

 

 Version  

 

Padding Extension  
Contributing 

Source  
Marker Payload 

Type 

Sequence Number 

Timestamp 

Synchronization Source (SSRC) identifier 

Contributing Source (CSRC) identifier 

 
Fig. 3.  RTP Message Format. 

 

The message fields are: Version (contains the version of RTP), 

Padding (indicates whether the message contains padding 

octets or not, and may be needed by some encryption 

algorithms), Extension (indicates if there is an RTP header 

extension), Contributing Source Count (contains the number of 

contributing source (CSRC) IDs that follow the fixed header), 

Marker (interpreted by an application profile), Payload Type 

(identifies the payload format), Sequence Number (increments 

by one with each packet and is used by the receiver to reorder 

the packets), Timestamp (indicates the time when the first octet 

in the payload was sampled), Synchronization Source Identifier 

(identifies the source of RTP packets), and Contributing Source 

Identifier (if a mixer has been used, this field carries a list of 

sources that have contributed to the mixed media stream). 

 

4. SIP SUITE SCRUBBER 

 

Our scrubber enforces protocol invariants on the incoming 

traffic, which allows for the elimination of insertion and 

evasion attacks that target NIDSs. We utilize a combination of 

protocol state machines and packet normalizers to eliminate 

ambiguities in protocol behaviors and header values 

respectively. The result is that a NIDS monitoring the scrubbed 

traffic stream no longer needs to consider potential ambiguities 

in interpreting the stream. 

 

Our specifications for SIP and RTP Finite State Machines 

(FSMs) and packet normalizers are based on RFCs 3261 [8] 

and 1889 [9] respectively. Request for Comment (RFC) 

documents provide designers and programmers with rich 

information regarding the operation and message flow of a 

certain protocol. However, RFC documents usually contain 

very detailed descriptions that could be time-consuming if 

implemented precisely. Furthermore, precise implementation of 

RFCs may be undesirable due to the inevitable discrepancies 

among different implementations of a protocol FSM. Such 

discrepancies could make the same traffic be classified 

differently by different FSMs of the same protocol. Therefore, 

we implement the essential details that describe a protocol in a 

more abstract way. 

 

Session Initiation Protocol 

For SIP, our state machine implementation is based on the base 

types of requests defined in RFC 3261. A certain client starts at 

the initial state INIT where no connection is established. An 

INVITE request is sent by the client if it wishes to start a call. 

If the client does not want to proceed with the call attempt, it 

can send a CANCEL request setting the state machine back to 

the initial state. Otherwise, an ACK message is sent following 

the callee’s acceptance to start a call and change the state to 

Call Established. After call establishment, a client can send a 

Re-INVITE request if it wishes to move the call to another 

device without tearing down the session. A client can terminate 

a call by sending a BYE request. Figure 4 shows the above 

described state machine of a SIP client. For the sake of 

simplicity, we have not included the remaining two requests, 

namely, REGISTER and OPTIONS nor have we included the 

various types of SIP responses and message codes in the figure 

INIT

INVITE

Sent

Call

Established

INVITE

ACK

BYE
CANCEL

Re-INVITE

 
Fig. 4.  SIP Simplified State Machine. 

 

SIP packet verifier is designed to accept messages that are 

conformant to SIP specifications. A SIP message consists of a 

start-line, one or more header fields, an empty line indicating 

the end of the header fields, and an optional message-body. The 

start-line, each message-header line, and the empty line must 

be terminated by a carriage-return line-feed sequence (CRLF).  

The empty line must be present even if the message-body is 

not.  

 

For SIP requests, the start line, which is referred to as the 

request line in this context, contains a method name, a Request-

URI, and the protocol version separated by a single space (SP) 

character. Request-URI, which indicates the user or service to 

which this request is being addressed, must not contain non-

escaped spaces or control characters and must not be enclosed 

in "<>". The SIP-Version string is case-insensitive, and 

includes the version of SIP in use. 

 

For SIP responses, the start line, which is referred to as the 

status line in this context, consists of the protocol version 

followed by a numeric Status-Code and its associated textual 

phrase, with each element separated by an SP character. The 

Status-Code is a 3-digit integer result code that indicates the 

outcome of an attempt to understand and satisfy a request. 

Each header field consists of a field name followed by a colon 

(":") and the field value. Table I shows the mandatory headers 

in every SIP request and response and their format. 

 

It is important to note that the brackets around parameters 

indicate that they are optional and are not part of the header 

syntax. Whenever (;parameters) appears it indicates that 

multiple parameters can appear in a header and that semicolons 

separate the parameters. For the sake of simplicity, we do not 

mention the different requirements for messages inside or 

outside a dialog although they have been implemented. 
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Table I: Format of Mandatory SIP Headers 

Header 

Name 

Header 

Format 

Examples and Comments 

To (carries 

the recipient 

of the 

request) 

To: SIP-

URI(;para

meters) 

To: Carol 

<sip:carol@chicago.com>. The 

display name Carol is optional 

From (carries 

the initiator 

of the 

request) 

From: 

SIP-

URI(;para

meters) 

From: Alice 

<sip:alice@atlanta.com>;tag=192

8301774. The tag parameter 

contains a random string that is 

used for identification purposes. 

Call-ID 

(carries the 

unique 

identifier of 

the call) 

Call-ID: 

unique-id 

Call-ID: f81d4fae-7dec-11d0-

a765-

00a0c91e6bf6@foo.bar.com. 

Call-IDs are case-sensitive and 

are simply compared byte-by-

byte. 

CSeq (used 

to identify 

the order of 

transactions) 

CSeq: 

digit 

method 

CSeq: 4711 INVITE. The method 

must match that of the request. 

The sequence number value must 

be expressible as a 32-bit 

unsigned-integer and must be less 

than 231. 

Via (contains 

the transport 

protocol and 

the address 

where the 

response is to 

be sent) 

Via: 

SIP/2.0/[t

ransport-

protocol] 

sent-

by(;param

eters) 

Via: SIP/2.0/UDP 

pc33.atlanta.com;branch=z9hG4b

K776asdhds. The protocol name 

and protocol version in the header 

field must be SIP and 2.0, 

respectively.  The Via header field 

value must contain a branch 

parameter that is used to identify 

the transaction created by that 

request and is used by both the 

client and the server. 

Max-

Forwards 

(used to limit 

the number 

of hops a 

request 

traverses and 

to avoid 

loops) 

Max-

Forwards: 

digit 

The value of this header field 

should always be 70. 

Contact 

(contains the 

address of 

the host 

where the 

request 

originated) 

Contact: 

SIP-

URI(;para

meters) 

Contact: 

<sip:alice@pc33.atlanta.com>. 

This header field is mandatory for 

requests that create dialog. 

 

It is important to note that the brackets around parameters 

indicate that they are optional and are not part of the header 

syntax. Whenever (;parameters) appears it indicates that 

multiple parameters can appear in a header and that semicolons 

separate the parameters. For the sake of simplicity, we do not 

mention the different requirements for messages inside or 

outside a dialog although they have been implemented. 

 

Run-time Transport Protocol 

For RTP, the implementation of the state machine is simpler 

due to the lesser number of states in the protocol state machine.  

A client starts at the initial state INIT where it can either 

receive or send packets. Upon receiving a packet, the state 

changes to Packet Received. Whilst at that state, a machine can 

either send a packet changing the state to Packet Sent, or 

remain at the same state receiving more packets. Similarly, at 

the Packet Sent state a machine can either receive packets 

changing the state to Packet Received, or send more packets 

staying at Packet Sent. Figure 5 shows the simplified RTP state 

machine. 

Packet

Received

Packet 

Sent

INIT

Received RTP Packet Sent RTP Packet

Received RTP Packet Sent RTP Packet

Sent RTP Packet

Received RTP Packet

 
Fig. 5.  Simplified RTP State Machine 

 

RTP packet verifier follows the protocol specifications when 

examining packets. Table II shows the fixed header fields of 

RTP packets and some constraints on their lengths and values. 

 

Table II. RTP Header Fields Sizes and Requirements 

Header Name Header Format 

Version 2 bits. The version identified by RFC 1889 is 2 

Padding 1 bit. If set, the packet contains one or more 

additional padding octets at the end, which are 

not part of the payload. 

Extension 1 bit. If set, the RTP fixed header is followed 

by exactly one header extension 

CSRC count 

(CC) 

4 bits 

Marker 1 bit 

Payload type 7 bits 

Sequence 

number 

16 bits 

Timestamp 32 bits 

SSRC 32 bits 

CSRC 0 to 15 items, 32 bits each. The number of 

items is given by the CC field. If there are more 

than 15 contributing sources, only 15 may be 

identified. 

 

Figure 6 shows the components and a typical placement of the 

IP telephony protocol scrubber. The scrubber sits in front of the 

NIDS to normalize incoming traffic by removing its 

ambiguities. The scrubber has two main components, namely, 

the packet normalizing engine and the FSM engine. The packet 

normalizing engine runs normalizers that walk through packet 

headers to make sure that their values do not confuse NIDS. 

The FSM engine controls the protocol finite state machines 
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which ensure that the packet flow does not deviate from 

protocol specifications which may cause ambiguity. 

Packet 
Normalizing 

Engine

FSM 
Engine

Internet

NIDS

LAN

IP Telephony Protocol Scrubber

 
Fig. 6.  Components and Placement of Scrubber. 

 

  

5.  IMPLEMENTATION AND RESULTS 

 

We use OMNeT++ to implement our IP telephony scrubber. 

OMNeT++ is an object-oriented discrete event simulation tool 

that uses a modular structure. It may be used for traffic 

modeling of telecommunication networks, protocol modeling, 

and evaluating performance aspects of complex software 

systems among other things [6]. We use MMSim [7] which 

was developed by several research groups at the University of 

Karlsruhe to simulate multimedia protocols using OMNeT++. 

The MMSim model provides support for SIP, RTP, and Real-

Time Streaming Protocol (RTSP). 

 

Implementation and Testing Approach 

OMNeT++ uses two programming languages, namely NED 

(Network Description) language and C++. NED language is 

used to describe the model structure and the topology of a 

network and its modules. A network description may consist of 

a number of component descriptions that can be reused in 

another network description, which facilitates the modular 

description of a network. On the other hand, C++ is used for 

the actual implementation of simple modules such as messages 

(packets) and queues. C++ is also used to implement the actual 

details of each protocol, where every major operation of the 

protocol is implemented as a member function in the class files 

that represent the protocol. 

 

Ambiguity is often associated with anomalous network traffic. 

Our aim is to generate such traffic and present it to the scrubber 

which is supposed to normalize it. OMNeT++ libraries provide 

various functions to manipulate traffic, editing values of packet 

header fields, changing the order of packets, or even deleting 

packets. In addition, OMNeT++ provides solid support for 

Finite State Machines in the form of ready-to-use classes and 

functions. Our testing approach is based on the following steps: 

 

1) Creating normalized traffic and capturing it in the file f_1. 

2) Recreating the normalized traffic using the same 

parameters, and introducing anomalies in it. 

3) Presenting anomalous traffic to the scrubber. 

4) Capturing traffic normalized by the scrubber in the file f_2. 

5) Comparing f_1 and f_2. 

 

Obviously, having similar traffic files (f_1 and f_2) marks the 

success of our normalization process. 

 

Experimental Setup 

As can be seen from Figure 6, our simulated environment 

comprises an Internet and a Local Area Network (LAN). The 

link that connects the two networks has a 40 milliseconds delay 

and 0.02% packet loss. 

 

We use the Audio/Video profile with minimal control 

(RTP/AVP), with UDP as the underlying protocol. An 

application profile describes how audio and video data may be 

carried within RTP. Our payload type is static with the 

identification number 10, and has the encoding L16. The 

payload type defines how a particular payload is carried in 

RTP. The clock rate, which is used to generate RTP 

timestamps, is 44100 Hz and the number of transmission 

channels is 2.  

 

Endpoints on the Internet make calls to other endpoints in the 

LAN at specified rates that can be easily configured. We 

specifically use two types of rate, namely, high (10 calls per 

second) and low (1 call per second). Each type of load is run 

five times, and each run lasts for 60 minutes. The results which 

will be shown shortly are averaged across the different runs and 

taken with and without the operation of the scrubber to observe 

the difference. 

 

Experimental Results 

Our IP telephony protocol scrubber succeeded in normalizing 

ambiguous flows of traffic presented to it. The efficient 

implementation of the packet normalizing and FSM engines 

allowed the scrubber to cope with the varying amounts of 

traffic and provide the desired results. 

 

We used two metrics to measure the performance of the 

scrubber, namely, end-to-end delay and call setup delay. End-

to-end delay in IP telephony refers to the time it takes for a 

voice transmission to go from its source to its destination. 

Every element along the voice path adds to this delay. This 

includes switches, routers, and public Internet connections. 

Figure 7 shows the end-to-end delay at an endpoint in the LAN 

with and without the operation of the scrubber. From the figure, 

the average end-to-end delay with the scrubber’s effect is 125 

milliseconds, whereas disabling the scrubber brings the average 

end-to-end delay down to 123.5 milliseconds. It is obvious that 

the operation of the scrubber does not increase end-to-end 

delay beyond IP telephony acceptable levels. 

 
Fig. 7. End-to-end Delay. 
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Call setup delay in IP telephony environments is the period that 

starts when a caller dials the last digit of the called number and 

ends when the caller receives the last bit of the response. Figure 

8 shows measured call setup delay for calls initiated by 

endpoints on the Internet to others in the LAN with and without 

the effect of the IP telephony scrubber. The average call setup 

delay without the scrubber is 252 milliseconds, whereas it is 

287 milliseconds with the scrubber. Clearly, the overall call 

setup delay remains within IP telephony acceptable limits. 

 
Fig. 8.  Call setup delay. 

 

 

6.  CONCLUSION 

 

In this paper, we have presented the design and implementation 

of an application layer protocol scrubber for IP telephony. The 

scrubber targets eliminating ambiguities in two major 

application layer protocols, namely, SIP and RTP. Such 

functionality allows network IDSs to receive and analyze 

unambiguous network traffic and avoid many evasion and 

insertion attacks among others. The scrubber has two main 

components, namely, a packet normalizing engine which 

eliminates ambiguity and ensures conformance with protocol 

standards in the packet header values, and a finite state 

machine engine that does the same to the protocol’s flow of 

messages. The experimental results demonstrate the minor 

impact of the scrubber in terms of performance and the success 

of the traffic normalization process.   
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