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ABSTRACT

Current active leg prostheses do not integrate the most re-
cent advances in Brain-Computer Interfaces (BCI) and bipedal
robotics. Moreover, their actuators are seldom driven by the
subject’s intention.
This paper aims at showing a summary of our current results in
the field of human gait rehabilitation. In a first prototype, the
main focus was on people suffering from foot drop problems,
i.e. people who are unable to lift their feet. However, current
work is focusing on a full active ankle orthosis.
The approach is threefold: a BCI system, a gait model and
an orthosis. Thanks to the BCI system, patients are able to
generate high-level commands. Typically, a command could
represent a speed modification. Then, a gait model based on
a programmable central pattern generator is used to generate
the adequate kinematics. Finally, the orthosis is trackingthis
kinematics when the foot is in the air, whereas, the orthosisis
mimicking a spring when the foot is on the ground.
Keywords: BCI, Eye Movements, Foot Drop, Human Locomo-
tion, PCPG, Phase-resetting, Prosthesis, Stroke.

I. INTRODUCTION

Over the years, different kinds of leg prostheses have
been developed in order to replace the limb that amputees
have lost [1]. The main objective of these prostheses is to
allow their user to walk as naturally as possible. In fact,
the complexity of human walk is such that most of the
leg prostheses available on the market today use passive
mechanisms. Although these systems are functional, their
performance is really limited compared to a real human leg
as they do not have self-propulsion capability. Unfortunately,
amputees using this standard technology have to compensate
for these limitations. Consequently, they generally develop
various strategies which generate reduced locomotion speed,
a non-natural gait, considerable fatigue and possibly recurrent
pain and injuries at the interface between their residual limb
and the prosthesis.
Active prostheses solve these problems partially: poweredby a
battery-operated motor, they move on their own and therefore
reduce the fatigue of the amputees while improving their
posture. Two main categories of active prostheses exist to date:
firstly, devices controlled according to the motion of other
healthy parts of the body and secondly, devices equipped with

a myoelectric control system. In the first category, sensorsare
placed on the healthy leg of the amputee. By analyzing the
motion of the leg with a sophisticated algorithm, the control
system can identify the phase of the gait cycle and trigger
an actuator to appropriately adjust one or more prosthetic or
orthotic joints [2]–[4]. Instead of exploiting the motion of the
healthy leg of the amputee, other systems analyze upper-body
motions to trigger and maintain walking patterns [5]. In this
category, the Ekso Bionics’powered exoskeleton leads a new
class of electromechanical gear that will put paraplegics back
on their feet and will be available on the market soon [6]. The
second type of active prostheses (or orthoses) is controlled by
myoelectric signals recorded at the surface of the skin, just
above the muscles. These signals are then used to guide the
movement of the artificial limb [7]–[9].
The improvement brought by the active prosthetic technology
with respect to conventional prostheses is indisputable.
However, several aspects still need to be improved. For
instance, an intuitive interface from which user’s intent can be
determined is still missing. Additionally, no sensory feedback
is provided to the user. Active research is being carried out
in these two latter areas, in particular for arm and hand
prostheses. Complex nerve surgery techniques are being
developed as well as new signal processing algorithms and new
electrodes, in order to connect an amputee to an artificial limb
that he can control intuitively with his own residual nerves
and muscles [10]. Maybe one day amputees will have the
opportunity to fully recover human mobility and perception,
but paying the price of an important and risky surgery. Thus
more simple systems taking into account the user’s intent are
desirable in the meanwhile.

Recent researches in the field of Brain-Computer Interfaces
(BCI) based on EEG signals have considerably increased the
performances of such systems [11]. By definition, a BCI is
a device that enables communication without movement. For
a few years, research has allowed the integration of such
BCIs in games, to augment interactivity of healthy users. BCI
technology has also offered new communication possibilities
to severely disabled people, by enabling them to move their
mouse or type an email just by thought.
The non-invasiveness of EEG signals represents the major
advantage of this technology (in addition to the high temporal
resolution and the relative low-cost). However, EEG signals
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are known to be noisy implying a low Signal-to-Noise Ratio
(SNR) and, consequently, a low Information Transfer Rate
(ITR). It has been recently demonstrated that an ITR of more
than 50 bits/min can be reached by using an SSVEP-based
BCI [12]. Although encouraging, this value is still insufficient
to send complex commands limiting the users to high-level
commands. Moreover, controlling in a continuous way with
this paradigm will result in an exhausting cognitive overload.
To improve the performance of current standard BCIs, Brain-
Neuronal Computer Interfaces (BNCIs) interfaces have been
proposed. Unlike BCI’s, BNCI’s rely on indirect measures
of brain activity characterized by a better SNR, and thus, a
more reliable and faster interaction. Thereby, sensors reflecting
activity from the eyes (EOG), heart (ECG) or muscles (EMG)
are used as inputs [13]. These concepts have been widely
used in rehabilitation/assistive technologies. The most famous
application of EMG signals is the control of a hand prosthesis
using residual arm muscle activity. This concept is intensively
used by the Touch Bionics company (Livingston, Scotland,
UK) for hand prostheses. EOG signal has also been widely
used for wheelchair control [14] and was recently proposed
as a potential way of controlling an orthosis [15]. However,
high-level commands are still required.

Because of this restriction, systems have to be developed to
consider all the low-level problems. This approach, widelyused
in robotics, is called shared control, which can be considered
as a complementary control of a device from an intelligent
system and a human operator [11]. The aim of this system is
to provide assistance to users with limited abilities. Typically,
with high-level commands only, a lower limb prosthesis can
not be entirely controlled. The prosthesis has to generate akind
of standard pattern of walk whose frequency and amplitude
will be driven by the user high-level command. This prosthesis
could also manage obstacles and correct loss of balance.
Shared control has been successfully applied in several
applications based on EEG signals: an asynchronous
wheelchair control [16], a walking robot [17] and a hand
grasping system [18]. To control the wheelchair, the patient
had to modulate his EEG signals by creating three different
mental states (imagination of a left hand movement, word
associations and relaxation) leading to three commands (turn
left, turn right and move forward). To control the walking
robot, a P300 paradigm generated high-level commands and
the robot executed all the low-level needed commands. Finally,
hand grasping was made possible thanks to functional electrical
stimulation and detection of foot movement imagery in the
EEG signal which activate the correct phase of the process (i.e.
grasping and releasing an object).

It is now established, at least for animals, that locomotionis
governed by a hierarchical system [19]. At the lowest level of
this system are found the Central Pattern Generators (CPGs).
Studies with cats have revealed that their gait is generatedby
those CPGs which are located in the spinal cord. A CPG is
composed of motoneurons linked together that can generate
periodic patterns whose frequencies are controlled by the brain.
This mechanism has inspired the field of robotics and could
be used for shared control. One of the algorithms developed

in this framework is called a Programmable Central Pattern
Generator (PCPG) [20]. A PCPG algorithm is able to generate
any periodic pattern after an easy learning step compared to
the vast majority of other approaches [21]. The interest of
such a system lies in the controllable aspect of the learned
parameters. Actually, the pattern magnitude and frequencyare
easily adjustable. Moreover, a modification of one of these
parameters will lead to a smooth transition of the PCPG
output in real-time. This is a particularly interesting feature for
prosthesis applications and their actuators.

In this review of our work, a first prototype is focused on
the control of a foot lifter orthosis useful for people affected
by strokes and who are unable to elevate their feet (a brief
description of our current development for a full active ankle
orthosis is also tackled). In Section 2, the bases of BCI/BNCI
interfaces and preliminary results are provided. In Section 3,
a gait model based on a PCPG, which is properly defined, is
proposed and results are summarized. In Section 4, the orthosis
design is detailed and some phase resetting methods are given
in order to synchronize the orthosis to the actual movement.

II. BCI/BNCI DESCRIPTION

In this section, the standard BCI approach is exposed as
well as a brief introduction to the different BCI paradigms.A
short introduction to BNCIs is also provided. Then, preliminary
results of a P300 interface under ambulatory conditions are
given. Finally, future work are mentioned. This section is
inspired from [13], [22], [23].

A. BCI/BNCI Interfaces

As depicted in Figure 1, several main steps are considered
when using a BCI: mental event/intention, signal acquisition,
preprocessing, feature extraction, pattern recognition,post-
processing, control of the device and feedback to the user.
First, the subject has to generate the adequate brain
activity corresponding to the used BCI paradigm. Secondly,
ElectroEncephalography (EEG) signal is acquired using dry
or wet electrodes. Wet electrodes are mostly preferred for
a precise analysis because of a lower impedance. But, from
a user point of view, dry electrodes are obviously more
convenient for a daily use. Thirdly, a preprocessing is applied
to the data in order to magnify at best the brain activity the
system has to detect. Main tools of this step are temporal
and spatial filters, independent/principal component analysis
and envelope averaging. Fourthly, the feature extraction step
tries to summarize at best the relevant information in the
preprocessed data. This typically results in a feature vector
used for classification in a next step. From the classifier
decision, and after some post-processing on the decision, the
high-level command is sent to the device. By applying the
so-called shared control, the device will operate all the low
level commands corresponding to the detected subject’s intent,
which often provides the feedback to the user.

To consider the user’s intent in the mental event/intentionstep,
current non-invasive BCIs based on EEG have two different
approaches using either evoked potentials or spontaneous
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Fig. 1: This Figure shows the main steps of a BCI application:
mental event/intention, signal acquisition, preprocessing, feature
extraction, pattern recognition, postprocessing, control of the device
and feedback to the user [24].

signal. The former one is generated unconsciously by the
subject when he perceives a specific external stimulus, suchas
the P300 and the Steady-State Evoked Potential (SSEP). The
P300 evoked potential is a potential elicited 300 ms after a
rare and relevant stimulus, visual [25] or auditory [26], which
appears, for example, when the traffic lights are turning from
the red to the green. The SSEP is a periodic brain potential that
occurs when the subject is perceiving a periodic stimulus such
as a visual flickering picture (SSVEP) [27], a sound modulated
in amplitude (Auditory SSEP) [28], or vibrations provided by
a tactor (Somatosensory SSEP) [29].
The spontaneous BCIs can be spontaneously produced.
Amongst this type of paradigm, motor and sensorimotor
rhythms and slow cortical potentials have been widely used.
Typically, µ (8-13 Hz) andβ (13-30 Hz) rhythm magnitudes
are related to motor actions, such as foot movements or
motor imagery and can be controlled voluntarily [30], or by
performing specific tasks [31]. Increase/Decrease of those
magnitudes are defined as Event-Related Synchronization
(ERS)/Event-Related Desynchronization (ERD), which can be
easily detected by an envelope detection. On the other hand,
Slow Cortical Potentials (SCP) are slow modifications (positive
or negative) of cortical activity, which can last from hundreds
of milliseconds to several seconds [32]. These potentials can
be voluntarily generated after a several-month training.

As an alternative to obtain a fast and reliable interaction,
a BNCI interface based on eye movement detection thanks to
EOG signals was proposed [13]. Actually, in the case of severely
disabled people, eye movements are often one of the last means
of communication. This is why researchers have tried to interpret
eye movements. Although different methods exist to track the
eye movements (special contact lenses, infrared light reflections
measured with video cameras), electrooculography (EOG) with
simple electrodes around the eyes, as shown in Figure 2, is
the most portable and the cheapest technology [33]. Because
the electrodes measure the resting potential generated by the

positive cornea (front of the eye) and negative retina (backof
the eye), it is possible to detect when, how much and in which
direction the eye rotates.
Given the huge interest of such EOG-based assistive technolo-
gies, some hardware solutions have been proposed. Figure 2
shows the current most close to market hardware system in terms
of design and portability, detailed in [33]. This self-contained
wearable device consists of goggles with dry electrodes in-
tegrated into the frame and a small pocket-worn component
with a DSP for real-time EOG signal processing. It has two
accelerometers and one light sensor for compensating EOG
signal artifacts caused by physical activity and changes in
ambient light. It can stream processed EOG signals to a remote
device over Bluetooth to command other systems.

Fig. 2: There are several components in the EOG-based wearable
eye tracker: the DSP (1), the Goggles (2) and the shielded core
cable (3). The pictures at the bottom show the Goggles worn bya
person with the positions of the two horizontal (h) and vertical (v)
dry electrodes, the light sensor (l) and the accelerometer (a) with
direction of its axes (ACCY, ACC Z). [33]

In order to control an external device, a succession of quick
and specific eye movements can activate high-level commands.
Actually, the direction of eye movements can be provided in
quasi real-time, which can be labeled as left, right, up or down.
As advised by [33], the most efficient algorithm to detect eye
movement sequences is to use the edit (or Levenshtein) distance.
The Levenshtein distance between two given strings is defined
as the number of deletions, insertions and substitutions required
to transform one of them into the other one. In this case, the
string is built by the concatenation of each labeled state ofthe
eyes (e.g. a left-right movement would be a LR string).
To avoid interferences with natural eye movements, the interface
can take advantage of the high speed of eye movements and
eyeblinks/winks. By winking or blinking, the user could quickly
activate or deactivate a high-level command generation envi-
ronment in which eye movement sequences would be detected.
After the patient has completed the speed modification, he closes
the command generation environment and eye movements are no
more recognized. Moreover, following this approach, emergency
stop is easily implementable.
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B. P300 Results

Using a P300 paradigm, the most common application is the
P300 speller [34]. In this text editor, a 6 x 6 matrix, that includes
all the alphabet letters as well as other symbols, is presented
to the user on a computer screen. In a trial, the detection
of the target letter/symbol is done after several sequencesof
intensifications where each row/column is randomly flashed
in such a way that P300 responses can be used to detect the
assumed target.

Based on this approach, it was proposed to control an orthosis
using a four-speed BCI plus a non-control state, i.e. which does
not modify the orthosis speed [22]. As depicted in Figure 3, the
screen was composed of two rows and two columns representing
Low- (L), Medium- (M) and High-speeds (H) and the Stop (S)
states that could respectively correspond to 1.5, 3, 4.5 km/h and
the standing state.
Because this BCI paradigm needs an external screen, it is mostly
applied in sitting conditions. This solution is not envisageable
under ambulatory conditions. Hopefully, an emerging and well-
designed augmented reality eyewear (Vuzix, Rochester, NY,
USA) could circumvent this problem by displaying stimuli on
a semi-transparent module.

Fig. 3: P300 visualization is divided into four states: Low-speed,
Medium-speed, High-speed and Stop. A fifth state is detectedby
the system when the user is not looking at the screen.

Providing the standard 32-EEG signals downsampled at 32 Hz
from an ANT acquisition system (Advanced Neuro Technology,
Enschede, The Netherlands) with left ear as reference, the
pipeline is composed of several main components: a temporal
high-pass filter, an xDAWN-based spatial filter [35], an epoch
averaging and an LDA classifier using a voting rule for the
final decision sent to a VRPN server [36].
The frequency band of interest was obtained by high-pass
filtering the EEG signals at a 1 Hz cutoff frequency through a
4th order Butterworth filter. Thus, after the downsampling,the
undesired slow drift in the measurement and high-frequency
noise such as power line interference are removed [37].
Afterwards, an xDawn-based spatial filter is designed [35].By
linearly combining EEG channels, this algorithm defines a P300
subspace. When projecting EEG signals into this 3-dimension
subspace, P300 detection is enhanced.
Then, the resulting signal is epoched using a time window of
600 ms starting immediately after the stimulus. Groups of two
epochs corresponding to a specific row/column were averaged.
The flash, no flash and inter-repetition duration are respectively
0.2 s, 0.1 s and 1 s.

Finally, a 12-fold Linear Discriminant Analysis classifier is
applied to each two-grouped averaged time windows giving a
value which represents the distance to an hyperplane separating
at best the target/non-target classes. For a given trial, ina
voting classifier, the row/column, which has been activated
is determined by summing six consecutive LDA outputs
(12 repetitions) and by choosing the maximum value. The
decision is sent to a VRPN server to be exploited outside of
OpenVibe [36].

To compare the impact on the results due to gait, the
experiment was divided into two sessions each corresponding
to a specific condition: sitting and walking at 3 km/h, which is
a convenient speed for subjects. To train classifiers and assess
the entire system for each condition separately, each session
was composed of one training set and one test set of 25 trials
each (around 12 minutes each).
To allow the detection of the non-control state, two additional
databases were recorded. During these recordings, the subject
did not look at the screen. The first one with 10 trials combined
with the training set aims at determining the threshold (by a
Receiver Operating Characteristic analysis (ROC) [38]) from
which the voting rule result is significant. The second one with
25 trials allows to assess the non-control state detection.
Actually, the non-control state is very important for the patient’s
comfort and needs a specific design. When the patient is not
looking at the screen because he does not want to modify
the speed, the system should detect this non-control state
quite precisely to avoid continuous re-adjustments of the BCI
system. Therefore, a threshold on the classifier confidence
indicator was determined by a ROC analysis with a very low
False Positive Rate (FPR=1%), i.e. the number of non-target
elements classified as target ones divided by the total number
of non-target. Then, the system was assessed on the test set
and on the second non-control set.

Four male subjects participated in this experiment with
age between 24 and 33 years old (27.7±4.11). During the
experiment, a 20-inch screen was placed at about 1.5 meter in
front of the subject. Subjects were healthy and did not have
any known locomotion-related or P300 disturbing diseases or
handicap. Moreover, for this proof of concept, the orthosiswas
not attached to the subject but the entire chain was successfully
tested by playing offline the experiment thanks to the OpenVibe
software.

As exposed in [22], preliminary results show that the system
is working as desired. It was shown that the system is actually
performing a very low number of errors, i.e. when the user
wants to modify the speed, the system does not provide a bad
speed decision, and recognizes quite perfectly the non-control
state. However, the price to pay is sometimes a relatively high
non-decision rate, i.e. when the decision is not enough reliable,
the system does not make a decision to avoid potential errors
and laborious re-adjustments. Obviously, this leads to some
perturbations when the speed has to be changed and the patient
has to focus again on the BCI interface.
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Although interesting, this approach has some limitations.
Firstly, the decision time is quite slow for real-time applications
even if it can be improved by implementing better and more
complex pipelines as well as a better management of flash, no-
flash and inter-repetition duration, of the number of trialsand
of the classifier choice. As reported in [39], a P300 system with
a dozen of items can reach an accuracy of 95 % for a time
of decision between 10-20 seconds in sitting condition. Under
ambulatory conditions, althougha priori, it is assumed that
results can be improved by applying specific gait-related artifact
removal techniques, artifacts seem to be non-problematic in a
low-speed and/or low complexity embedded framework [23],
[40].
Secondly, the current implementation of the pipeline does not
allow to work in an asynchronous way, which is an important
feature for the patient’s comfort and safety and should be
investigated for future work [41], [42].
Finally, the impact of a kind of VUZIX augmented reality
eyewear has to be assessed for a real application.

C. Future Work

The feedback will be the main point of BCI/BNCI future
work. Actually, we are currently able to control the speed of
the treadmill according to the detected high-level command.
What we intend to do is to study the subjective feedback of the
user using this commendable treadmill thanks to questionnaires.
Usability and cognitive workload can be assessed by the System
Usability Scale and NASA Task Load questionnaires [43].
Another future work will be to assess other BCI/BNCI pipelines.
Typically, SSVEP and EOG based systems will be compared to
the P300 approach using the subjectivity of subjects/patients to
determine the most suitable option.

III. SHARED CONTROL BY A PCPG

This section describes the PCPG itself and its abilities.
A special focus is on the coupling between several PCPGs,
e.g. between foot, shank and thigh angles of elevation. Then,
results of gait modeling on seven healthy subjects are depicted.
Finally, some future works are pointed out.

A. PCPG Definition and Properties

A PCPG is a kind of Fourier series decomposition and is
composed of several adaptive oscillators. This algorithm is
governed by the following equation system:
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As depicted in Figure 4, oscillators are coupled between each
other compared to an origin phase based on theRi coupling
parameters derived from the phase informationφi. They are
composed of adaptive magnitude coefficientsαi and frequency
parametersωi (ri = (x2

i +y2
i )

1

2 ). µ has a role of normalization
of the learned pattern. The other parametersγ, ǫ, τ aim at
accelerating the convergence while limiting stability problems.
The Qlearned(t) signal resulting from the sum of oscillator
outputs is compared to thePteach(t) walking pattern target
and the error valueF (t) is computed. Throughout the learning
step, all the parameters of the PCPG are modified in order to
minimize F (t). When this learning step is finished,F (t) is
close to zero and the system is generating the right pattern at
theQlearned(t) output.

Fig. 4: The PCPG is able to learn the frequency components of a
periodic signal as well as the various phases and magnitudes. The
main interest of PCPGs is the possibility to modify a learnedpattern
in amplitude or frequency in a smooth way. This Figure is inspired
from [20].

Properties of PCPGs make them suitable for trajectory
generation in robotics and also for prosthesis applications. In
fact, the pattern learned by a PCPG can be easily controlled in
magnitude and in frequency thanks to a simple linear change
of the ~ω and ~α vectors representing theℜN PCPG states (N
is the number of oscillators). This linearity leads to a smooth
change of the global system behavior. For instance, if the
~ω vector is divided by two, the underlying frequency of the
standard temporal pattern is divided by two. The same effect
occurs for the~α vector.

Finally, as proposed in [44], it is possible to couple several
PCPGs to model different angles of elevation. This is performed
thanks to equations of coupling between the fundamental oscil-
lators of each PCPG and by learning the phase difference:











ẋ0,k =γ(µ− r
2
0,k)x0,k − ω0,ky0,k

+ τsin(R0,k−1 − φ0,k)
(9)

φ̇0,k = sin(R0,k−1 −R0,k − φ0,k) (10)

where (0, k) denotes the first oscillator of thekth PCPG
(frequencies of different angles are the same).
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B. Human gait modeled by a PCPG

In order to train the PCPG, one standard (average) walking
pattern over a gait cycle was used. This temporal pattern
consists of the angle of elevation of the foot of seven healthy
subjects walking on a treadmill at 3 km/h, a typically medium
speed for humans. Actually, this angle was studied for two
reasons: this is the most complicated angle variation of human
gait and the focus in this paper is on the development of
an active foot lifter. The elevation angles were computed
using the positions of 23 passive markers disposed on the
subject, determined thanks to six Infrared Bonita Vicon cameras.

This standard walking pattern was obtained by averaging
about 50 walking cycles, determined and synchronized by
a peak detection algorithm able to locate all the relevant
maxima and minima angle values of the kinematics recordings
as depicted in Figure 6. Here, the gait cycle patterns were
synchronized with the maxima due to clearer peaks and to
their proximity with the heel strike, when the heel is touching
the ground (which is often considered as the gait cycle
beginning). The kinematics data were recorded for each leg
during 60 seconds at 100 Hz. This standard pattern is thus a
kind of average pattern along the 60-second recordings. Then,
the PCPG was trained using the procedure described in [20].
Figure 5 shows how well the PCPG is able to reproduce the
standard pattern of the foot elevation angle using 7 oscillators.
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Fig. 5: The PCPG is able to learn perfectly a standard patternof
walk by means of 7 oscillators.

What is proposed is to generate walking patterns with the
PCPG in a way differing from the bipedal robots described
in the literature which consists in walking as far as possible
without taking into account the potential patient itself. Indeed,
one of the main goals in prosthetics is to provide the user
with the most comfortable walk possible. Therefore, at each
step, the pattern should be adapted in terms of frequency
and magnitude, i.e. respectively the stepping frequency and
stride-related length between two heel strikes whatever the
walking speed. Kinematics data were thus recorded with seven
healthy subjects for 10 different speeds, from 1.5 to 6 km/h,
by step of 0.5 km/h. The normalized and centered patterns
learned by the PCPG for the speed of 3 km/h and generated
for all the other speeds were manually calibrated (by tuning
the magnitude and frequency parameters) in order to fit the
standard walking patterns of all speeds.
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Fig. 6: Local maxima and minima allow synchronization while
averaging walking cycle. In this study, the maxima are used because
of a clearer peak and due to its proximity with the heel strike.

Obviously, this procedure cannot be directly used with amputees
or a paraplegics. As mentioned in [45], a series of standard
patterns ranked by age, weight, height, etc. can be used for
the amputee depending on these parameters. Another simple
approach is to record as soon as possible kinematics data for
population at risk such as soldiers.

By doing this, we found a simple mathematical link between
the PCPG amplitude and frequency parameters (respectively,
the ~α and ~ω vectors) as a function of the walking speed.
This link was established by computing a relatively low-order
polynomial interpolation function at the least mean squaresense
as indicated in Table I. Figure 7 shows results obtained for one
specific subject. One can notice that the subject increases his
walking speed at first by extending his stride length, and then
by increasing his stepping frequency. Globally, this confirms
results described in [46]. It has to be emphasized that this
interpolation can be computed specifically for any subject,
increasing therefore the precision and adequacy of the prosthesis
control at each step.
Moreover, as BCI is far from working perfectly, a confidence
level of the command could be derived and integrated in
the speed parameter change. Considering that anaccelerate
command increases the actual speed of 0.5 km/h by default,
if the decision is uncertain, e.g. reliable at 75 %, 75 % of the
speed increase can be actually performed thanks to the parameter
interpolation. In fact, this interpolation can be considered as
reliable given the relatively low-order polynomials and the
smoothed transitions between parameters of successive speeds.

TABLE I: The orders of the polynomial interpolation are quite low
except for subject 2. For this subject, a strange behavior infrequency
was observed, i.e. the frequency first decreases and then increases
while speed is increasing.

Order Magnitude Frequency
Subject 1 4 3
Subject 2 4 8
Subject 3 4 5
Subject 4 5 3
Subject 5 4 3
Subject 6 4 4
Subject 7 3 3
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Fig. 7: Evolution of the foot pattern frequency (top) and amplitude
(bottom) as a function of the walking speed for a specific subject.
The interpolation is performed for 10 walking speeds with a 4th-
order polynomial function. Error bars in amplitude show thehigh
magnitude variability of each gait cycle. Similar results are derived
from the other subjects.

To prove the relevancy of this approach in an objective way,
a Similarity Index (SI) was assessed between the PCPG output
f1(t) at the right speed with the exact parameters and the
standard walking patternf2(t) at each speed to show the true
potential of this method. This index is defined as:

SI =

∫

T
2

−

T
2

f1(t)f2(t) dt

(
∫

T
2

−

T
2

f1(t)2 dt
∫

T
2

−

T
2

f2(t)2 dt)
1

2

(11)

whereT is the period of the limit cycle,f1(t) andf2(t) being
synchronized at the origin. Note that if both functions are
identical,SI = 1.

For the seven subjects, similarity indices were computed
with and without interpolation. Globally, SI values without
interpolation are very good but show a logical degradation for
speeds differing more and more from the PCPG learned speed
as shown in Figure 8. Regarding the interpolation, the impact
of the dissimilarity increase is clearly negligible.
An alternative to improve this procedure which relies on a single
PCPG could be to manage a multi-PCPG system at a multi-
interpolation level; each PCPG will model a typical range of
speeds with its own interpolation, e.g. 0.5-2 km/h where SI are

sufficiently high compared to the level of requirements. The
merging of those PCPGs would be used to model as perfectly
as possible real walk while making the change of PCPG as
smoothed as possible.
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Fig. 8: The difference between SI values obtained with and without
the interpolation is not significant. Error bars are standard errors.

C. Future work

The main future work about the gait modeling will be to
refine it while considering relative angle, i.e. the angle needed
to control the orthosis. Although the proposed scheme seems
to be efficient on a large range of speeds, it is not possible
to achieve the best comfort as possible without changing the
standard pattern from low speeds to high speeds. Indeed, as
shown in [47], across speeds, relative angle patterns are slightly
modified, which is consistent with the exposed results in this
study. If this phenomenon is not considered, this could result in
some inconvenience.
To enhance this model, a non-linear filter could be used at the
output of the PCPG. This filter would allow to modify the PCPG
output waveform to fit at best standard patterns at each speed.
This filter would also be required to allow smooth transitions.
Another aspect is the use of feedback. Given that this work
aims at improving the patients’ comfort, it is needed to get their
opinion to compare different solutions.

IV. ORTHOSIS

In this section, the specific case of a foot lifter orthosis
is exposed. Firstly, some considerations about the orthosis
control strategy and design in our framework are given. Then,
some encountered practical problems and some contributions to
resolve them are detailed. For further details, see [48].

A. Orthosis control strategy

In gait, there are mainly two events: the Heel Strike (HS)
and the Toe Off (TO) for each foot. The heel strike is the time
when the heel is touching the ground for the first time in the
gait cycle and the toe off is the time when the foot is leaving
the ground. These events divide gait into two gait phases: the
stance phase, i.e. when the foot is on the ground, and the swing
phase, i.e. when the foot is in the air.
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Actually, people have two highly different control schemes
depending on the gait phase. In the stance phase, the foot
is force-controlled while during the swing phase, the foot is
controlled in position. For people suffering from foot drop
problems, the control in position is deficient. Therefore, the
orthosis also comprises two different control modes, one for
the stance phase when the subject entirely drives the orthosis
and another one for the swing phase when the PCPG output
governs the system.

The first passive mode, during the stance phase, allows the
free motion of the foot around an equilibrium point while, at
the same time, it provides a certain level of stability through a
virtual stiffness element by mimicking a spring.
The second active mode is associated to the swing phase and is
intended to help the patient to achieve enough foot clearance
to initiate the next gait cycle. This mode can basically be
considered as a trajectory tracking scheme to follow the PCPG
position pattern similar to that developed by a healthy foot
during the swing phase.

B. Orthosis design

In a first prototype described in [48], the orthosis is made of
several components: two custom-fit plastic shells, two flexure
joints, a linear actuator, a ball-link transmission, a loadcell to
measure the actuator force, and two force sensors installedin
the orthosis sole, under the heel and the toes (not depicted in
the Figure). The plastic shells were designed using a 3D scan
of the right foot and leg of a healthy subject, adding mounting
surfaces for the actuator, the flexure joints, and the mechanical
transmission. The actuator includes a position control unit
based on a PID controller that can be driven by an external
analog signal in the range of0 to 10 V.
One of the main challenges that is encountered in the
development of active orthoses is the commercial actuator
weight. To satisfy the mechanical requirements for developing
a complete gait cycle, this weight was above3.5 kg. For the
particular case of a foot lifter orthosis, the weight is about
1.6 kg and its maximum power is around117 W, which
corresponds to a third of the peak power developed by a
healthy ankle [49]. In a second prototype shown in Figure 9,
a lightweight custom-fit actuator with passive energy-storage
elements was developed, powerful enough for the stance phase
as well. Control strategies specific to an active stance phase
are explored in parallel implied by the torque-angle law of a
healthy ankle during the heel strike, the flat foot and the toe
off. This mainly consists in three different but similar controls
mimicking a spring with different parameters.

The control and the PCPG algorithms reside in a DsPIC
30F4013 microcontroller running at120 MHz. Both algorithms
are calculated at each time step at a sampling frequency of
500 Hz but the output of one or the other is chosen according
to the orthosis state, as detailed in the next section. The
differential equations of the PCPG are solved by a simple
explicit Euler integration method. The microcontroller manages
three analog (two sole force sensors and one load cell) inputs
for the signals coming from the force sensors.

Fig. 9: The orthosis prototype is composed of several main compo-
nents. The spring is used to stock energy during specific gaitphases.
A homemade ultra-compact actuator of around 3 kg is controlling
the orthosis in a way depending on the current gait phase. Moreover,
this system is suitable for an active stance phase as well.

C. Phase-resetting

As mentioned in [50] and reported in [48], at a given
speed, gait cycles are not perfectly identical due to intrinsic
properties of human gait and potential external perturbations.
Those problems result in phase mismatch between the perfectly
periodic PCPG output and the real gait pattern in addition
to change in frequency. If this mismatch is too important,
the subject has to compensate for it leading to a non-natural
gait. Therefore, phase-resetting techniques aim at makingthe
orthosis to adapt to the patient as quickly and smoothly as
possible for the subject comfort.

Technically, as reported in [48], the phase-resetting consists
in resynchronizing the PCPG state according to special events
such as heel strikes.
As proposed in [48], two approaches are available: ahard
and asoft phase-resetting. The hard phase-resetting relies on
a direct modification of the integrated values: in each oscillator
i, xi and yi are put to standard values corresponding to the
heel strike event. The main advantage of this approach is
the quick phase-locking whereas the disadvantages are (1) a
more sensitive reaction to noise in the frequency estimation
due to small variations in gait cycles at constant speeds or in
the measurement itself and (2) important modification of the
actuator state, although mitigated by the low-pass filter. In the
case of a foot lifter orthosis, during the stance phase, the actuator
is not commanding the system and thus, the latter disadvantage
vanishes. However, it could be a real problem when a full
position control, which is not advised in prosthesis/orthosis, is
envisaged.
In the soft phase-resetting, in order to control the phase recovery,
the first oscillator of the PCPG is coupled to an external
oscillator. This oscillator is used as a reference oscillator at
instantaneous phaseR0,r . This allows to modify the phase
differenceφ0,r between the reference oscillator and the first
oscillator of the PCPG.
Formally, the reference oscillator is as follows:

ẋ0,r = γ(µ− r
2
0,r)x0,r − ω0,ry0,r + τsin(R0,r) (12)
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whereas the coupling with the PCPG (subscripted byp) is shown
in:

ẋ0,p = γ(µ− r
2
0,p)x0,p−ω0,py0,p+ τsin(R0,rk−φ0,r) (13)

where k =
ω0,p

ω0,r
. The coupling with the other oscillators of

the PCPG is identical to the previous description. Because the
phase of higher order oscillators had more difficulties to follow
a phase change in experiments, coupling constant was defined
asτi = τ

ωi,p

ω0,p
. In our experiments, we chosek = 1. Figure 10

shows how this modification can produce a smooth and robust
kinematics output when a phase reset is applied.
The main advantage is the possibility to recover the phase in
a smooth and thus more comfortable way if a fully-position
control system is used. On the other hand, the main drawback
is the difficult control of the phase recovery speed, which could
potentially create some uncomfort for the patient.

D. Future Work

Future work will be dedicated to control the speed of phase
recovery in the soft phase resetting in a better way while keeping
the smooth aspect. A better phase resetting procedure couldbe
to use other gait events or sensors or by combining the two types
of phase-resetting. Indeed, although a force control during the
stance phase allows a hard phase resetting to be used withoutany
problems (the PCPG output is not used), this feature could be
interesting for smoothly resynchronize the system in prevision
of the next heel strike, just after the toe off.
From experimental data, the evaluation of metrics such as
the settling time, i.e. the time the system needs to recover
the phase given a certain error band, could be interesting to
precisely characterize the recovery speed of soft phase-resetting.
When combining both phase-resettings, the determination of the
hard phase reset step distribution with and without soft phase-
resetting in realistic application will make it possible tojudge
the relevancy of this combination to reduce the magnitude of
the hard phase-resetting step.
Finally, the feedback from the patients will drive our trials to
enhance the orthosis design.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

Given the huge development of Brain-Computer Interfaces,
a lot of different applications devoted to handicapped people
have popped up. From communication to motor substitution
through wheelchair control, brain control capabilities have
been enhanced for a certain type of disabled people. However,
until now, lower limb prostheses have not been equipped with
this technology yet due to the relatively low bitrate of such
interfaces.
In this paper, a global review of our current research on how
to control an orthosis based on a Brain-Computer Interface
(BCI) or on a Brain-Neuronal Computer Interface (BNCI) is
proposed. Contrary to most current active prostheses, a kind
of direct user’s intent is here considered. This paper explains
the three main parts of this biologically-inspired approach: the
BCI/BNCI definition, the gait modeling and the orthosis design.

The BCI/BNCI is detecting some high-level commands that
the patient wants such as modifying the current speed. It has
been shown on four healthy subjects that a P300 interface is
feasible using four different speed states and a non-control state,
i.e. a state which represents that the subject does not want to
modify the current speed. Although this approach is workingas
desired, some limitations are still strong. Firstly, the duration to
modify the speed is too long (around 20 seconds). Secondly, the
system has to be used considering augmented reality eyewear
for real applications. Thirdly, this approach is synchronous and
the subject can not decide when to change the speed.
Then, by shared control, all the low-level operations are done
by the orthosis design using a kinematics-based model. It was
demonstrated that a Programmable Central Pattern Generator
is able to learn quite well average human walk patterns at a
given speed using angle of elevations. Then, it was shown that
a low-order polynomial function can model the evolution of the
PCPG parameters as a function of the walking speed in order
to adapt the orthosis to the patient’s kinematics in a large range
of speeds. Given that this interpolation was quite smooth, this
enables the integration of a confidence level of the high-level
command. If the command is uncertain, a smaller gap in speed
is actually performed than in the certain case.
Finally, by integrating a spring, a more compact orthosis design
has been proposed. People suffering from foot drop problems
are completely able to control the foot when it is on the ground
(stance phase), but they are unable to lift it when the foot
is in the air (swing phase). Therefore, the orthosis controlis
mimicking a spring during the stance phase and is tracking the
PCPG model during the swing phase. This approach can be
easily extended to a complete active prosthesis given that it is
force-controlled during the stance phase. On top of that, because
gait is not totally periodic and that some external perturbations
can occur, two phase resetting techniques were proposed to
resynchronize the PCPG output and the actual movements. The
soft-phase resetting is able to phase reset in a smooth way but
with a difficult control of the recovery speed, whereas the hard-
phase resetting is able to recover immediately the correct phase
at the price of uncomfortabilities for the patient that vanish in
our dual-control approach.

B. Future Work

Short-term future work will be devoted to study the system
usability with an online application from a large population
of patients with a series of different BCI and BNCI pipelines.
Typically, SSVEP- and EOG-based interfaces will be studied
from a user point of view. System Usability Scale questionnaires
will be used to compare user’s feedback amongst the different
BCI/BNCI approaches. In order to increase the comfort of the
patients, a refinement of the PCPG gait model will be proposed
to fit at best slight modifications of gait patterns across speeds.
For middle-term future work, to increase the comfort of the
patients, we will search for a much more natural command
generation system. Indeed, as reviewed in [51], recent studies
showed that EEG signals could detect specific periodical
gait activations and deactivations in Event-Related-Potential
analyses and Event-Related-Spectral-Perturbation, although a
lot of suspicions about the potential spurious conclusionsdue
to a lack of artifact cleaning. This would undoubtedly be a
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Fig. 10: On the left: without enhancements, the soft phase-resetting leads to an important and long transient. On the right: this problem is strongly
mitigated.

great step in non-invasive neuroprostheses if such a frequency
information or, even more important, a phase information could
be extracted to directly command the PCPG either in frequency,
or in phase [48].
For long-term work, two main achievements could be realized.
First, the frequency/phase information could be derived from
invasive technique to increase responsiveness and Signal-to-
Noise Ratio. Regarding the prosthesis, if the patient has still
his limb, functional electrical stimulation could be used.As
studied in [52], the PCPG output could be shaped by specific
neural network to generate Electro-Myographic signals.
In any case, balance control by the system for tetraplegia
is highly challenging. Robotics research has not provided a
complete solution yet. To reach the market, the product has to
consider this aspect. Shared control has also to be increased
for gait pattern adaptation when specific situations arise such
as climbing stairs, slope, etc.
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