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ABSTRACT 
 

A strategy is described that utilizes a novel application of a 
potential-force function that includes the tuning of coefficients 
to control mobile robots orchestrated as a distributed multi-
agent system.  Control system parameters are manipulated 
methodically via simulation and hardware experimentation to 
gain a better understanding of their impact upon mission 
performance of the multi-agent system as applied to a pre-
determined task of area exploration and mapping.  Also 
included are descriptions of experiment infrastructure 
components that afford convenient solutions to research 
challenges.  These consist of a surrogate localization (position 
and orientation) function utilizing a novel MATLAB 
executable (MEX) function and a user datagram protocol 
(UDP)-based communications protocol that facilitates 
communication among network-based control computers. 

Keywords: Control, Multi-agent System, Swarming Robots, 
Potential Function. 
 
 

1. INTRODUCTION 
 
From the inception of the development of robotic technologies, 
researchers have generally concluded that, with many if not 
most applications, there are significant advantages to be gained 
through the coordination and orchestration of multiple robotic 
entities [1-2].  This is not difficult at all to imagine by simply 
observing Darwinian development in biological systems 
whereby two or four legs proved superior to one for 
locomotion; or separate arms each with a hand, fingers, and an 
opposing thumb proved superior for grasping and cooperatively 
manipulating objects.  Furthermore, it similarly is 
understandable that a small group of separate robotic entities 
(e.g., a small number of cooperating or coordinating unmanned 
ground vehicles) could also exhibit significantly desirable 
characteristics in certain circumstances.  Five main motivations 
for using multi-robot systems include:  task complexity; task 
distribution; resource distribution; parallel processing; and 
robustness through redundancy [3].  Some researchers have 
explored the advantages gained for specific tasks such as 
exploration where a specified task can be accomplished by a 
number of agents surveying the maneuver space versus a single 
robot tasked with exploring the entirety by itself [4].  Indeed, 
these become valuable against overarching task 
accomplishment; however, not without burden.  Multi-robot 
systems add communications overhead and workload with the 
requirement for inter-robot cooperation and knowledge.  They 

also add complexity to path planning and collision avoidance 
schemes since each robot’s cooperating peer also exists as an 
obstacle to be avoided [5].   

Research over the past years has centered on organizing several 
to tens of mobile robots (or agents) into coordinated multi-
agent systems (MAS) [6-8]. Further, the quantity of these 
systems may reach into the hundreds or thousands that 
comprise a robotic swarm. In contrast to single mobile robots 
with their broad, comprehensive capabilities (vision, LIDAR, 
differential global positioning, ultrasonic proximity sensing, 
etc.), the agents comprising a MAS tend to have somewhat 
lesser organic capability due to a desired affordability or 
individual physical size. An example of one such capability is 
localization that could provide accurate agent position and 
orientation in a global reference akin to the Global Positioning 
System (GPS). While GPS receivers have become small and 
inexpensive, they cannot be used indoors where MAS 
experimentation and utilization typically exist.  Research in the 
field has centered on understanding the root mechanisms and 
control features that can define and drive the behavior and 
capability of the MAS architectures in terms such as task 
allocation, flocking, or foraging.  The study of analogous 
biological systems has also provided valuable insight.  
However, to date, there has been little work done with respect 
to understanding the capability of the MAS as a function of its 
composition given the option of pre-mission selection of the 
performance and capability of individual agents, as well as 
opportunity to include extra-system information sources or 
sensors.   

Various attempts at defining MAS composition [9-11] explored 
heterogeneous versus homogeneous systems, highlighting 
concepts such as hierarchic social entropy, diversity, and 
cooperative localization.  Heterogeneous MAS have been used 
to explore unknown environments for the purpose of mapping 
and exploration [12].  Here, each MAS featured varying types 
of single-mode sensor payloads including, for example, an 
infrared camera or sonar, coordinated in an occupancy grid 
Bayesian mapping algorithm.  But again, the composition of 
the architecture was held constant.   

An example of a MAS configuration is illustrated in Figure 1.  
Here, four differential-wheeled robotic agents featuring 
distributed control architectures orchestrate to conduct a 
mapping of an initially-unknown discrete arena to localize and 
identify targets and obstacles.  Each agent has imaging and 
proximity sensing.  They pass information to each other via a 
consolidated state matrix that receives data from each agent 
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and simultaneously provides state updates to each agent. 

 

Figure 1: Representative Multi-agent System Arena. 

The underlying control architecture plays an absolutely critical 
role in the efficiencies observed in the multi-agent versus 
single-robot architectures [13-16].  Clearly, beyond the 
inherent capability of the electro-mechanical configuration as 
well as the sensor payloads, the single greatest contributor to 
mission efficiencies and task capabilities will exist in the 
capability, adaptability, and comprehensiveness of the control 
system.  A wide variety of algorithms and schemes have been 
explored including feedback laws, leader follower, task-
oriented mission planning, task reallocation and reordering, and 
deliberative and reactive behavior modeling.  Beyond these, 
potential-function-based robot control strategies exhibit 
significant promise to control payload-agile MAS. 

This paper is organized as follows:  Section 2 presents a 
potential-function based robot control strategy that uses 
parametric tuning factors to increase the efficiency with which 
the control strategy can accomplish an exploration task with no 
a priori information of the search space.  Section 3 describes 
results from the research’s simulation phase.  Section 4 
describes the creation of a novel surrogate global positioning 
system based on a task-specific MATLAB MEX function 
sampling an optical motion capture system broadcasting over a 
network socket.  Additionally, this section summarizes a UDP-
based data transmission architecture that enabled inter-agent 
sharing of realized occupancy map elements.  Sections 5 offer 
the results from the research’s experimentation phase whereby 
increasing quantities of agents with various capabilities were 
placed in the arena and evaluated for task accomplishment 
metrics such as time to complete.  The last sections summarize 
the research results and conclusions. 
 
 
2. POTENTIAL-FUNCTION-BASED ROBOT CONTROL 
STRATEGY 
 
Control via potential-function theory has proven to be a 
valuable basis upon which more complex control feedback 
influence can be implemented.  In particular, potential-function 
theory affords a comprehensive and simple method to add 
factors that can be scaled either as independent input functions 
or those dependent upon selected system features.  The basis of 
the potential function is to represent system control influences 
as independent or dependent forces [17] akin to an electrical 
potential field.  Each force is calculated based on physical 
parameters (such as real distances) or on representative values 
(such as arbitrary repulsion to facilitate obstacle avoidance or 

attraction to a desired target location).  In conjunction with the 
potential function, it is convenient to represent the operational 
space as an occupancy map, i.e., a two- or three-dimensional 
grid that sub-divides the space into identifiable cells.  Each cell 
would have characteristics such as a potential related to its 
occupancy status, or status as a target destination.  Since the 
potential function depends upon proximity, the relative location 
of the cells would also be cataloged.    

The goal of the control function for the MAS is to calculate the 
agent-unique potential force witnessed by each of the agents 
comprising the MAS.  Force defines the resultant heading and 
speed that the individual agent would follow.  The potential 
force existent on the ith agent is given by: 
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where, 

ܳ௜ = inherent charge of the ith agent, 
ܳ௝ = inherent charge of the jth agent, 
 ,௝ = inherent charge of the jth cellݍ
ܽݎ ௝݀ = radius vector from the ith agent to the jth 

agent or jth cell, 
஼ܰ = number of cells in the occupancy map, 
஺ܰ= total number of agents, 

P = calculated force contribution from specified 
payloads, and 

 .௫ = tuning coefficientsߤ
 

Then, the resultant heading angle (ߠ௜) of the ith agent is given 
by: 
 

௜ߠ ൌ tanିଵ ൬
௓ ௜ܨ
௑ ௜ܨ

൰ (2) 

The calculation of P will vary with payload type as the value 
and weighting of each payload type can and should have 
varying degrees of influence on the resultant potential force 
calculation.   

Tuning coefficients (ߤ௫) provide a mechanism whereby the 
relative contribution of each of the potential forces can be 
directly tuned either as an independent variable, or dynamically 
tuned based on a feedback mechanism.  This feature is 
particularly important in multi-agent systems due to scalability.  
Since the potential forces contributed by elements within the 
system are cumulative, it becomes very important to gain an 
awareness of the proportional contributions and to 
subsequently be able to control them proactively.  To illustrate, 
assume an occupancy grid of 120 by 240 cells or a total of 
28,800 total cells.  Each cell might offer a contributing charge 
value from 0 to 1 meaning a span of 28,800 charge units.  If 
other contributors merely summed to a maximum of 1,000 
charge units, the cells’ contribution would easily overwhelm 
any potential contribution calculation.   

Arena 

Obstacles 

Agent 
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The occupancy map cell characteristic vector represents the 
probability that the cell is occupied.  A value of 1.0 indicates 
that there is a 100 percent chance that the cell is occupied.  A 
value of 0.0 indicates that there is a 100 percent chance the cell 
is unoccupied.  A value of 0.5 would indicate an equal 
probability that the cell is either occupied or unoccupied.  
Separate variables that provide valuable influence in the force 
calculation are the number of times that a cell has been 
sampled by a sensor, referred herein as the “cell visit count,” 
and the number of times that a fraction of the entire occupancy 
map has been visited.  The usefulness here is to accommodate 
the dynamic nature of agents moving in the arena as well as the 
potential for moving targets in the field of regard.  As a result, 
the charge associated with each cell is given by: 

௜ݍ ൌ   ቄ
ைܲݍ௠௔௫ 
0 

    for ଴ழ௏ழ௡
for ௏வ௡

 (3) 

where, 

ைܲ = cell occupancy probability, 
 ,௠௔௫ = maximum possible cell chargeݍ
ܸ = cell visit count defined as the number of 

visits to the ith cell, and 
݊ = number of times that a percentage of the 

cells have been visited. 
 
 
3. INITIAL OBSERVATIONS THROUGH SIMULATION 
 
Initially, the Cyberbotics’ Webots simulation package was used 
to represent a 120 by 240 centimeter arena (Figure 1) occupied 
by e-puck differential-wheeled robots.  The arena is sub-
divided into a representative occupancy mapping grid 
consisting of 1 cm by 1 cm cells each having an associated 
vector representing dynamic characteristics such as the 
probability of occupancy or potential charge.  The MATLAB 
scripting language was utilized to provide high-level potential-
function based path planning as well as map databasing.   

A comprehensive set of state and evaluation metrics are 
collected at every control time step that provide an opportunity 
to observe the progression of the exploration task.  Agent 
trajectories (Figure 2) provide insight to the energy consumed 
by each individual agent in terms of the distance travelled.  
Trajectories also illustrate the qualitative uniformity and 
dispersion with which the team of agents uniquely maneuver in 
and canvas the arena.   

 

Figure 2: Agent Trajectories. 

The occupancy map data vector (Figure 3) at a specific time 
step is displayed to show the occupancy probability, cell 

charge, and cell visit count.  Observed individually and 
sequentially over time, these vectors provide insight to the 
progression of understanding of the heretofore unknown arena 
and resolution with which obstacles and targets appear.  One 
can also conclude trends such as the extent of exploration and 
behaviors proximate to obstacles.   

 

Figure 3: Occupancy Map Data Vectors. 

Finally, mean characteristic values graphed over time (Figure 
4) quantify the performance of the multi-agent system and 
illustrate its ability to progress toward threshold goals.  The 
average occupancy map value shows the time progression of 
the average across each cell’s probability of occupancy.  Since 
there is no a priori knowledge afforded, the initial value is 0.5 
meaning all cells have equal probability of being occupied or 
unoccupied.  Over time, as the agents explore the arena and 
determine free and occupied space, the curve progresses as 
expected decreasing over time with the free space determined 
and step increasing periodically with the sensor-enabled 
detection of obstacles, i.e., occupied space.  The curve is non-
linear due to the proximity of unexplored space diminishing 
over time resulting in the necessity to travel longer distances 
(and consuming more time) to sample those unexplored spaces.  
The average cell charge plots the average of all the cells’ 
calculated charge values over time.  This curve initially 
decreases due to the fact that as cells are explored, their charge 
decreases so as to have less impact in subsequent path planning 
loops.  However, in deference to the dynamic state of the arena, 
the average cell charge begins to increase in correlation with 
the map coverage count due to the forcing relationship in 
Equation (3).   The average cell visit count tracks the average 
number of times that any agent samples individual cells over 
time.  This curve has a constant slope as expected knowing that 
the agents’ speed varies very little perhaps only to slow for 
short period of times while maneuvering around obstacles.  
Finally, the map coverage count (n, Equation 3) is an evolving 
parameter that tracks the number of times that a pre-defined 
percentage of the arena has been sampled at least the count’s 
number of times.  For example, the count starts at zero.  As 
soon as 75 percent of the arena has been sampled once, the 
count increments to 1.  As soon as 75 percent of the arena has 
been sampled twice, the count increments to 2.  This parameter 
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is used within the control loop to influence the charge 
calculation in order to accommodate the dynamic nature of the 
state representation.  The shape of this curve provides 
qualitative clues as to the efficiency of the search.  

 

Figure 4: Characteristic Value Histories. 
 
 

4. DISTRIBUTED MAS EXPERIMENTATION 
 
The transition from simulation to hardware experimentation is 
a non-trivial task.  There are many real-world challenges in  
localization and communications that can be inaccurately 
represented as perfection in the simulation.  In support of on-
going MAS research at Duke University, an arena (Figure 5) 
has been created consisting of a 120 by 240 centimeter walled 
stage hosting various numbers of e-puck robots [18], obstacles, 
and targets. The e-puck robot is approximately 7 cm in 
diameter.  It features a Microchip dsPIC processor running at 
60MHz or about 15 MIPS.  Mobility is provided by two stepper 
motors in a differential-wheel drive configuration.  The robot 
has eight infra-red sensors positioned around the robot’s 
perimeter that provide both proximity sensing and light 
sensing.  There is a 640x480 pixel camera on-board that can 
provide video and imagery in either color or black and white 
modes.  Bandwidth limitations force pragmatic collection to 
52x39 or 640x1 pixel images at up to three frames per second.  
There are three omni-directional microphones for sound 
localization, a three-axis accelerometer, and on-board speaker.  
Communications is provided by Bluetooth.  Each robot has a 
dedicated desktop computer that remotely controls the robot via 
Bluetooth communications. This dedicated computer allows for 
substantial processing capability, image processing in 
particular, that simply isn't supportable via the e-puck limited 
on-board processing capability.  The control software is written 
in MATLAB programming language. The e-puck robots have 

no inherent localization capability. 

 

 

Figure 5: MAS Experimental Arena. 
 
Two novel components of this experimentation infrastructure 
required to fully replicate the simulation environment include a 
surrogate global positioning system (GPS) and data packet 
transfer between agent controllers.  Both capabilities, 
developed under the auspices of this research, are described in 
the following subparagraphs. 

Surrogate GPS via External Optical Motion Capture and 
Tracking 

Much research effort thus far has been focused on the 
simultaneous localization and mapping (SLAM) problem [19]. 
SLAM acknowledges that externally-provided localization 
information is not typically available, and also acknowledges a 
scenario of exploration of heretofore unknown space. 
Therefore, clever schemes are explored that use available 
modalities (e.g., inter-agent communications) to determine 
relative localization among the agents. That, combined with 
robot-sensor-enabled, continually-updated mapping databases, 
generates a comprehensive representation of the spatial and 
spectral environment. Many times though, inherent SLAM 
functionality is not germane to the research problem being 
pursued. In this case, an extra-MAS localization capability is 
most desirable to minimize the experiment’s independent 
variables.  

There are several materiel possibilities for an extra-agent 
surrogate GPS capability. Fricke et al [20] utilized a 
combination of a Cognex camera and Sick LIDARs to calculate 
localization. The Vicon motion capture system [21] is a popular 
solution that uses connected high-speed digital cameras 
viewing the MAS experiment workspace with redundant 
coverage to provide localization of tracked objects.  

The Natural Point OptiTrack™ system [22] utilizing its 
'Tracking Tools' (TT) software application (Figure 6) provides 
a similar capability. The OptiTrack™ cameras are installed and 
calibrated for the desired experiment workspace. Each robot is 
given a unique spatial configuration of reflective markers 
(Figure 7) that enables individual robot identification during 
the tracking process. A critical functionality important to 
supported experimentation that TT offers is the ability to 
multicast tracked-object localization in real time through a 
designated network port on the computer hosting the Tracking 
Tools application. If connected to a local-area network, any 
other computer (e.g., one hosting an agent controller) could 
also have near-instantaneous access to the real time streaming 
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position information of itself, and of any other agent in the 
workspace with update rates approaching 100 Hertz. This is 
particularly desirable as this streaming broadcast scheme 
significantly reduces the inter-agent communications 
requirement.  TT offers three formats for broadcast: 
industry-standard Virtual Reality Peripheral Network (VRPN) 
and Trackd®, and NaturalPoint’s own NatNet format. VRPN, 
provided by the University of North Carolina’s Department of 
Computer Science, offers several advantages including a 
comprehensive C/C++ dynamic-linked library (DLL) and 
public domain license [23]. For illustration, NaturalPoint 
provides sample C++ code titled “VRPN-Listener” [24] that 
affords a simple capability for sampling to the TT port and 
output the received localization information to the screen. 

 

Figure 6: Screen Shot of NaturalPoint Tracking Tools in 
Use. 

Control can be coded in a wide variety of software languages, 
each offering unique benefits and shortcomings. MATLAB 
offers significant advantages in terms of comprehensive image 
processing routines and robust matrix manipulation routines to 
support important functionality such as volume mapping.  In 
implementation with the VRPN construct though, a significant 
challenge arises in that there are no MATLAB native 
commands or functions available to interpret the VRPN 
broadcast as the DLL is C/C++ based. Here we have realized a 
solution and its experimental implementation by creating a 
MATLAB-based MEX-function [25] that allows the robots’ 
MATLAB-based control algorithms to access and call the C++ 
DLL native to VRPN and thereby provide a comprehensive 
surrogate localization function. 

 

Figure 7: Optical Tracking Reflectors on E-puck Robots. 

MEX-functions have an organic capability offered by 
MATLAB that allows a programmer to compile software 
routines written in C/C++ and linked to C/C++ DLLs resulting 
in a function callable from within MATLAB programs just as 
one would call a MATLAB built-in function. The specific C++ 
code used in this research is a task-specific modification of the 
Natural Point-provided “VRPN-Listener” code written in C++.  
The capability of the created MEX-function is twofold. First, 
given identification of the specific agent of interest, the MEX-
function interrogates the VRPN broadcast port and obtains the 
most current localization information. Secondly, the MEX-
function converts the provided localization information into the 
desired coordinate system and units. For the cited experiment, 
this consisted of converting the VRPN-provided orientation in 
the three-dimensional quaternion rotation space in radians to 
roll-pitch-yaw parameters in degrees.   

 UDP Communications for Data Sharing 

Multi-agent systems can be characterized as having either 
distributed or centralized control with the distinction being the 
level to which each individual agent in the system governs its 
own motion.  Fully distributed control is characterized by a 
complete absence of data or control-command exchange among 
the agents whereby each agent relies upon its own sensors to 
understand the environment, and its own processing capability 
to determine controlled actions.  On the other end of the 
spectrum, centralized control is characterized by a single 
processor calculating the collective motion of the system and 
disseminating commands to each agent for the orchestration 
movement.  As a result, distributed control architectures require 
robust on-agent processing capabilities, but minimal 
communications.  In contrast, centralized control architectures 
are accomplished with a single robust processor (the central 
controller) and relatively minimal agent processing. However, 
a robust inter-agent communication capability is required to 
facilitate distribution of necessary control commands, sensor 
information, and other data such as state and localization 
information.  As described control is a spectrum, one can 
imagine that there are varying levels of processing and 
communications required among the various control schemes 
ranging from fully distributed to fully autonomous.    

The agents comprising the system in this research are 
constructed and defined as being fully distributed with each 
agent and its associated controlling computer fully responsible 
for calculating motion commands.  However, there is a slight 
variation in that a separate "state" computer exists to act as a 
surrogate global positioning system (via the OptiTrack™  
Tracking Tools system and software); and to collect, maintain, 
update, and distribute state information (position and 
orientation of each agent as well as occupancy mapping of the 
operating space).  Because of this, a comprehensive inter-
computer communications infrastructure and protocol was 
created for passing of data among the state computer and 
controller computers. 

From a hardware perspective, the seven computers (one state 
computer plus the six controller computers) achieve full gigabit 
Ethernet inter-computer communications throughput capability 
by connection to a single DLink DGS-2208 eight-port gigabit 
Ethernet switch.  That switch in turn, is connected to a Netgear 
Prosafe FVS336G gigabit Ethernet router.  That router provides 
connectivity to the external internet service provider, but more 
importantly, is set up to statically assign internet-protocol 
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addresses to each of the experiment's computers.  With this 
architecture, each computer can be uniquely identified by its 
statically-assigned IP address facilitating unique computer 
programming. 

The second aspect of providing a robust information exchange 
infrastructure is to select the underlying data protocol used.  
There are several protocols available that can be used in 
MATLAB and C programming including notably transmission 
control protocol/internet protocol (TCP/IP) and user datagram 
protocol (UDP).  In fact, MATLAB's Instrument Control 
Toolbox provides a very comprehensive set of TCP/IP and 
UDP command sets.  Each offers its own advantages and 
disadvantages.  For example, TCP/IP offers a strong recovery 
feature that consists of error-checking that will initiate the 
resending of data packets if they are not accurately received.  
UDP offers greater throughput potential due to its use of 
minimal data fields for error-checking overhead.  However, it 
can suffer some packet losses.  Ultimately, UDP was utilized 
based on the construct of the validation experiment.  In fact, 
MATLAB's TCP/IP protocol cannot be used to communicate 
between disparate MATLAB instantiations, i.e., 
communications between MATLAB running on computer "X" 
and a separate instantiation of MATLAB running on computer 
"Y."  The concern here, however, is that while it offers the 
greatest throughput, UDP does not offer any organic error 
checking.  This turned out not to be an issue in this research as 
error checking in the authored code itself was able to 
accommodate any transmission errors. 
 
 

5.  RESULTS 
 

Simulation 
 
Digital simulations showed that the potential-function path 
planning control architecture provides a robust and complete 
methodology to explore and map an initially unknown 
operating space.  One representative experiment included a 
series of excursions in which the time allowed per mission was 
held constant.  The number of agents comprising the MAS was 
varied from one to four.  These variant MAS were then 
evaluated in terms of the resulting state of knowledge such as 
map coverage count or average occupancy probability.  
Increases in number of agents utilized in sequential 
experiments consistently showed a non-linear relationship 
between number of agents and perforamance criteria, for 
example, map coverage count (Figure 8).   This likely is due to 
an inherent efficiency gained in terms of distance required to 
travel to unexplored spaces by having additional agents in the 
arena.  

 

Figure 8: Map Coverage Count versus Number of Agents. 

The physics of potential energy functions dictate that the force 
is inversely proportional to the square of the distance.  In this 
research, the energy physics were replicated as such.  However, 
Figure 9 shows that this tends to greatly magnify the influence 
of proximate cells and greatly diminish distant cells.  As a 
result, calculated path planning was heavily weighted in a more 
local versus global sense.  This clearly will influence the 
efficiency of the MAS' ability to exhaustively search the entire 
arena acknowledging that understanding the entirety of 
unexplored space and accommodating in the path planning 
scheme is likely more effective than merely considering the 
radius to unexplored space.  Nonetheless, the shortcoming of 
this inefficiency is overwhelmed by the potential function's 
ability to accomplish exhaustive search.  Ultimately, each cell 
will influence the path planning calculation insuring that each 
cell ultimately is explored.  An enhancement to consider is to 
normalize cell charges to and gain better responsiveness over 
the entirety of the stage versus proximate cells.  Effectively, 
this means breaking the laws of physics and making the cell 
charge vary as reduced exponents or even linearly as a function 
of distance.  Clearly, this deviates from classic potential theory, 
but might nonetheless offer some interesting advantages in path 
planning efficiencies. 

 

Figure 9: Total Potential Force Witnessed by an Individual 
Agent in the Arena. 

Experimental Validation 

The novel surrogate-localization and inter-agent data-
communications solutions developed for experimentation 
infrastructure proved to be robust and highly conducive to 
support control algorithm cycle rates.  Based on the data 
collection capability and mobility of the individual agents, 
governing control schemes strive for cycle times less than 200 
milliseconds to insure exhibition of responsive behaviors.  The 
surrogate localization function created only minimal processing 
time burden consuming only low-single-digit milliseconds and 
with near-real-time latencies.  This proved extremely 
supportive of the control scheme with the agents being able to 
accurately represent the locations of themselves, other agents, 
targets, and obstacles - certainly well within the 1 cm2 
resolution of the state map.  A significant enabler to this was an 
ability to calibrate the accuracy of the OptiTrackTM system 
itself to sub-millimeter levels.  Additionally, this function 
proved a robust capability to provide the variety of network-
connected controllers immediate access to their own controlled 
agent, but also to the peer agents operating in the arena, all in 
near real time, and without having to burden the inter-agent 
communications architecture. The UDP-based data-
communications function provided a reliable capability to pass 
large datasets of state information among the networked 
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computers.  A single state map consists of 28,800 cells (120 by 
240) each represented by a 64 bit data element.  Therefore, the 
single full mapping approaches 1.85 megabits of data.  Over 
the course of an individual experiment, hundreds of state maps 
are transmitted to the agent controllers along with thousands of 
state map updates from the agent controllers.  This means tens 
of thousands of packets navigating the network among the state 
and controller computers.  Notwithstanding UDP's lack of an 
error correction capability, the data-communication solution 
herein resulted in zero packet loss realized across more than 
300 individual experiments.  Certainly, this was enabled by 
isolating the network on a single 8-port network switch; 
however, also enabled by careful consideration and definition 
of ports and buffers. 

The resulting experiment infrastructure enabled a 
comprehensive series of individual vignettes and excursions 
that explored varying MAS parameters such as the number of 
imaging payloads, number of agents comprising the MAS, and 
relative agent and cell charge values.  These were evaluated 
against mission performance criteria such as time to explore a 
selected percentage of the identified space or the number of 
positive detections collected by proximity sensing or imaging.  
With these parameter and metric sets, methodical experiments 
can be conducted sequentially to result in datasets that can be 
reduced and interpreted for qualitative and quantitative 
characterization of the relative and absolute performance of the 
various MAS configurations.   

 

Figure 10: Time to Complete the Mission versus Number of 
Robots. 

 
The most interesting conclusion drawn was that the relative 
performance of a MAS as a function of the number of agents 
comprising the MAS faded non-linearly (Figure 10).  In these 
series of experiments, mission success was defined as 
exploring 75% of the arena's cells.  Further, each agent was 
capable to use its on-board camera and associated image 
processing capability to detect and localize targets in the arena.  
Each agent could also use its proximity sensing for local 
collision avoidance and for obstacle detection and localization.  
Excursions were run whereby the number of agents comprising 
the MAS was varied from one to five with ten experiment runs 
per excursion.  Mean values were taken across the ten runs to 
conclude the excursion results.  In an attempt to curve fit the 
data (annotated by the diamonds), both polynomial and power 
types were evaluated.  A third-order polynomial curve (dotted 
line) provided a better fit (R2=1) within the bounds of one to 
five agents; however, did not extrapolate as values above six 
agents drove the time to completion to negative numbers.  A 
power curve fit (dashed line) also resulted in an excellent fit 

(R2=0.9898) and additionally provided better extrapolation 
beyond five robots with 6- through 8-agent MAS resulting in 
158, 137, and 122 seconds, respectively.  Additionally, this 
curve fit has an asymptote at 0 seconds as one would expect.  
Logically, this is the case whereby the entirety of the arena is 
covered by the concatenation of agents' sensors such that that 
entirety is exhaustively sensed in the very first control cycle’s 
data collection.   
 
 

6.  CONCLUSION 
 

A solution is described that utilizes a novel application of a 
potential-force function that includes tuning coefficients to 
control mobile robots orchestrated as a distributed multi-agent 
system.  Further, MAS and individual agent parameters were 
methodically explored to evaluate and characterize resulting 
overarching performance of the MAS.   Experimentation began 
via a software simulation.  Then, with the creation of novel 
localization and data-transfer capabilities, the experimentation 
migrated to a hardware implementation.  Results provide 
valuable insight to the behavior of the various MAS 
configurations such that a priori mission planning can be 
optimized as a function of prioritized and weighted criteria and 
planning factors.  Notably, there is a distinct tradeoff between 
MAS capability and consumption such that optimal 
configuration can indeed be selected a priori to conduct of 
missions.    
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